Mirroring resources or mapping requests:
implementing WS-RF for Grid workflows

Thomas Heinis, Cesare Pautasso, Gustavo Alonso
Department of Computer Science
ETH Zurich
8092 Zirich, Switzerland
{heinist, pautasso, alonso} @inf.ethz.ch

Abstract— The Web Services Resource Framework (WS-RF)
and the Web Services Notification (WS-N) specifications are
a crucial component of Grid infrastructures. They provide a
standardized interface to stateful services so that they can be
managed remotely. There are already several implementations
of these specifications and initial performance studies have
compared them in terms of the overhead observed by a single
client. In this paper we address the problem of implementing
the WS-RF and WS-N specifications for large scale systems.
In particular, we discuss how to implement WS-RF and WS-
N as the management interfaces to a Grid workflow engine. In
the paper we describe and compare two different architectures
for mapping resources to processes. The first one mirrors the
state of the process as a resource. The second one maps the
client requests to access the state of a resource embedded into
the Grid workflow engine. We include an extensive performance
evaluation, comparing the resulting systems in terms of scalability
when servicing a large number of concurrent clients.

I. INTRODUCTION

In order to provide Grid workflows with a stateful service-
oriented interface, we have used the Web Services Resource
Framework (WS-RF) [1] and the Web Services Notification
(WS-N) [2] specifications to define the interface to a Grid
workflow management system. Processes (or workflows) are
used to model the interactions between computational and data
services deployed on the Grid [3], [4]. Such interactions are
captured in a workflow, which is then deployed for execution
into a Grid workflow engine. Through WS-RF and WS-N the
resulting workflows can themselves again be published as Grid
services. This allows clients to easily integrate workflow-based
Grid services into Grid applications and portals.

In [5] we have presented a mapping of a process model
common to most Grid workflow languages onto the notion of
resource used in the WS-RF and WS-N specifications. This
mapping is however not particularly efficient and the resulting
system does not scale well when facing large numbers of client
requests.

In this paper we discuss an alternative implementation of
the WS-RF and WS-N mapping for Grid workflow systems
which provides improved scalability when servicing a large
set of concurrent clients. To do so, we compare two different

Part of this work is funded by the European IST-FP6-004559 project
SODIUM (Service Oriented Development In a Unified fraMework) and
the European IST-FP6-15964 project AEOLUS (Algorithmic Principles for
Building Efficient Overlay Computers).

architectures. The first uses WS-Core (part of the Globus
Toolkit [6]) to mirror the state of the execution of a process
into a locally managed resource. That is, the workflow process
is mapped to a resource. The second embeds the state of the re-
source into the Grid workflow engine by mapping the WS-RF
requests to the engine’s API. Although the first approach lets
clients read resource property values faster, the performance
of this mirrored architecture is limited due to the redundancies
shared between the WS-RF layer and the underlying workflow
engine. The second solution, mapping requests rather than
mirroring resources, removes unnecessary layers of indirection
and scales significantly better. To demonstrate this, we include
an extensive performance comparison of the two solutions.

The remaining part of this paper is organized as follows. In
Section II we give a brief overview over the relevant aspects
of WS-RF and WS-N. In Section III we describe the Grid
workflow management system we have used (JOpera [7]) and
present the mapping from processes to WS-RF resources. In
Section IV we discuss the first solution. Initial measurements
will be used to motivate the need for a more lightweight
implementation. We then outline the second solution (Section
V) and compare the two implementations in Section VI.
In Section VII we present related work and in Section VIII
we present conclusions. We conclude the paper in Section IX
with a discussion of future work.

II. WEB SERVICE RESOURCE FRAMEWORK (WS-RF) AND
WEB SERVICE NOTIFICATION (WS-N)

The Web Service Resource Framework specification pro-
vides Grid computations with a service oriented interface.
Although Web services are commonly used to provide legacy
applications with a service oriented interface, plain Web ser-
vices lack the notion of state used in long running Grid compu-
tations. The Open Grid Service Infrastructure (OGSI) [8] was
originally proposed to address this problem. This specification
defines a Grid service to be a Web service conforming to a set
of conventions, therewith introducing the concepts of stateful
Web service instances, common properties that can be read and
written, asynchronous notification of state changes, references
to instances of services, and collections of service instances. In
early 2004, OGSI was refactored into WS-RF and WS-N [9] in
order to harmonize it with the evolving Web service standards.
The WS-RF set of specifications comprises features related to

the basic definition of a Grid service. It defines the implied
resource pattern which allows clients to access the stateful
resource using a well-defined and well-understood interface
as defined in WS-Resource [10]. Additionally it defines op-
erations for lifecycle management, property manipulation and
service groups specified in WS-ResourceLifetime [11], WS-
ResourceProperties [12] and WS-ServiceGroup [13] respec-
tively. The WS-N set of specifications defines the publish-
subscribe interaction patterns in WS-BaseNotification [14],
WS-BrokeredNotification [15] as well as in WS-Topics [16].

A. Web Service Resource Framework (WS-RF)

1) WS-Resource: This specification defines the representa-
tion of a Grid service as a WS-Resource. It does so by defining
the implied resource pattern according to which a Web service,
referred to as WS-Resource, is used to access the state of
the corresponding resources. One WS-Resource can be used
to access several different resource instances. In order to do
so, the endpoint reference defined in the WS-Addressing [17]
specification is used to identify: 1) the WS-Resource using
a URI, and 2) the resource instance using a custom opaque
identifier.

2) WS-ResourceLifetime: The WS-ResourceLifetime spec-
ification defines two mechanisms for ending the lifetime of a
resource. The first destroys the WS-Resource immediately. The
second method allows the scheduled (lease-based) destruction
of a resource. Scheduled destruction is done by setting the
lifetime property associated with each resource.

Although resource instantiation is an integral phase of the
lifecycle of a resource, it is not covered by this specification.
The reason is that the mechanism used to construct a new
resource instance is highly dependent on the specific kind of
resource.

3) WS-ResourceProperties: This specification defines how
properties of a resource are defined and how they can be
accessed (by using a pull mechanism) and be modified through
the WS-Resource. The properties of a resource are defined in a
XML document which can be retrieved and queried by clients.

4) WS-ServiceGroup: The WS-ServiceGroup specification
defines how service groups can be used to simplify the man-
agement and discovery of groups of WS-Resources. A service
group is defined to be a set of WS-Resources conforming to a
criterion associated with the group. Groups can then be queried
in order to find all their members.

B. Web Service Notification (WS-N)

1) WS-Topics: This specification defines how to describe
the topics a client can subscribe to. These topics are defined
as properties and can therefore be found in the same XML
property definition document.

2) WS-BaseNotification: The WS-Notification specification
defines a push mechanism by which clients can be informed
about events (e.g., state changes) occurring at the resource
using an asynchronous event-notification pattern. To do so,
clients subscribe to topics and will subsequently receive no-
tifications from the WS-Resource. Clients cannot unsubscribe

from a topic but can cancel their subscription using the same
soft-state mechanisms as for resources.

III. GRID WORKFLOWS WITH JOPERA

In this section we provide a high level description of a Grid
workflow engine. We do so in order to describe the constraints
imposed by the architecture of Grid workflow engines and to
illustrate the mapping between processes and Grid services.
We take JOpera [7] as an example.

A. Process Design and Execution

Using JOpera, developers compose Grid services into
processes which are then automatically published as Grid
services. The processes are visually composed out of different
heterogeneous tasks (mixing coarse grained Grid and Web
service invocations with fine grained Java snippets) which are
linked by a control flow and a data flow graph [18]. The control
flow defines the partial order of invocation of the tasks while
the data flow is a directed graph which defines the data to be
copied between the tasks, i.e., what data is copied between
output and input parameters of tasks.

For each execution, a new instance of a process is created.
The runtime state of a process instance consists of all data
associated with the execution. This includes all the values of
the input and output parameters of the tasks and the process,
as well as process and task attributes written by the execution
engine (e.g., execution status, debugging, profiling and lineage
tracking information, and other execution related metadata).
The state of the computation can be stored persistently in a
database.

B. Execution Engine Architecture

The JOpera workflow execution includes of following
components (Figure 1).

Execution Engine API: The JOpera execution engine pro-
vides an API for clients to issue commands and interact with
the engine and the processes deployed therein. Once a process
is deployed, a client can request to start it. To do so, the engine
instantiates the process and begins with the execution. The API
provides clients with the ability to start, to stop and to manage
processes and their instances.

Execution Engine: The execution engine is in charge of
executing process instances. It follows the control flow to
determine what tasks to execute and the data flow for moving
data between tasks. The tasks are executed through the service
invocation adapters. For each process instance the engine
stores intermediate and final results in the persistent storage.

Service Invocation Adapters: The engine dispatches task ex-
ecutions to the Grid service adapters. These adapters carry out
the actual invocation of the Grid service. The execution engine
can use different adapters for different kinds of services.

C. Mapping Processes to Grid Services

The mapping of a process and its state into a WS-Resource
is as follows [5]. The persistent state of a process instance
is mapped to the state of a resource. This means that the

JOpera
Clients

T

@ Client Requests

Engine API

Process
Instances

Persistent
Storage

Service Invocation

JOpera Workflow
Execution Engine

Adapters
8 @ @ Service Calls
1
Web l Grid Java
Services Services Snippets

Fig. 1. Architecture of the JOpera workflow execution engine

WS-Resource interface is used to access and control the
execution of the process corresponding to the resource. When
a resource is created, a new process instance begins execution.
When a resource is destroyed, the execution of the process is
interrupted and its state discarded. Properties of a resource
are directly mapped onto the elements of the state of the
corresponding process instance. Thus, all data parameters and
attributes can be read (and updated) by clients. Similarly, all
elements of the process state are considered topics to which
clients can subscribe. Once the particular element of the state
(e.g., the execution status of a task) changes, the client will
receive a notification. In this way, Grid clients can initiate
the execution and track the progress of a long running Grid
process using a standardized mechanism.

IV. MIRRORED ARCHITECTURE

In this section we describe a first implementation of the
mapping of processes to resources using the WS-Core im-
plementation of WS-RF and WS-N. WS-Core provides a
complete implementation of the WS-RF and WS-N specifi-
cations [19]. Being written in Java, it can easily be integrated
with the JOpera engine. At the end of this section we illustrate
the problems that stem from this approach and motivate the
need for a more lightweight implementation.

A. Architecture

The mirrored architecture (Figure 2, left) builds on the
idea of using the WS-Core implementation and to follow
its programming model. This prescribes to develop a Web
Service, the WS-Resource, as well as a resource. Web ser-
vice and resource are linked by the ResourceHome which is
used to create, find, manage and potentially persist resources.
Following this model, we have mapped JOpera processes into
resources, developed the necessary WS-Resource and used

the ResourceHome accordingly. With this, the state of the
resource (located in the WS-Core hosting environment) reflects
the state of the corresponding process instance (located inside
the underlying Grid workflow engine). Furthermore, only one

Mirrored | Embedded
Architecture I Architecture
|
|
Client | Client
Requests | Requests
B Requests to] I M B
b= resources | NN
[TN\ Translate
1= gﬁ% I requests to
g’ S Resources | Engine AP
—_
- I
8 > WS- WS-
T LI:J Resource | Resource
. [
_ - I -
Engine | Engine
API API
o
£ |
‘R
32 \§§§ Mirrored |
g 1T} process - I
X c resources
)
o2 |
; = Process I N\ Embedded
- © Instances Instances | resources
- @
s X |
ouw Persistent Persistent
Storage I Storage
|
Service | Service
Calls | Calls
|

Fig. 2. Mirrored Architecture (left) discussed in Section IV and Embedded
Architecture (right) presented in Section V

WS-Resource needs to be deployed for each process. This
interface provides access to all of its resource instances as
they are addressed by the endpoint reference sent along with
each client request.

In the following, we present how each part of the stan-
dardized interface has been implemented in this mirrored
architecture.

1) Lifecycle management: When receiving a client request
to instantiate a process, the WS-Resource will first create a
resource in the hosting environment. Doing so will trigger the
resource to also create a process instance in the underlying
execution engine using the engine’s API. Since resource
instance and process instance are tightly coupled, the resource
instance is identified by the process instance identifier, which
is returned by the WS-Resource to the client.

Should a client request the immediate termination of a
process instance, the WS-Resource will destroy its resource
instance which in turn destroys the process instance. In case

of a scheduled destruction, this implementation relies on the
mechanisms provided by WS-Core to destroy the resource
instance in due time. Also in this case, destruction of the
resource instance will lead to the destruction of the process
instance.

2) Properties: The WS-Resource provides clients with ac-
cess to the process instance properties. To do so, the WS-
Resource maintains a list of all properties that can be read
and written by clients. This list is the same for all instances
of a process and can therefore be defined when the process is
deployed. A resource instance maintains a copy of all prop-
erties and synchronizes each of these with the properties of
the process instance. This is very efficient for read operations
where the value need not be read from the process instance
but can be returned immediately upon request. If, however, the
value of a state element of a process instance changes, this
method incurs the overhead of having to update the cached
property value in the resource instance. Similarly, changes of
resource properties triggered by clients (e.g., through a set
property operation) need to be forwarded to the underlying
engine’s APL.

3) Notifications: As mentioned earlier, the topics to which
clients can subscribe are the elements of the execution state of
a process instance. Once a client is subscribed to a particular
topic, it will receive a notification once the value of the
corresponding process state element changes.

In order to send out notifications, the resource instance
registers listeners with the engine for the property values the
clients have subscribed to. When the value of a topic changes,
the engine calls back the resource instance and informs it about
the change. The resource instance will then notify the WS-
Resource which in turn will send out notification messages to
subscribed clients.

B. Initial measurements

The goal of this experiment is to perform a basic evaluation
of the mirrored architecture and study the design problems that
limit scalability.

This initial experiment has been carried out by running
the Grid service provider on a server running Linux (RedHat
AS 4), equipped with two AMD Opteron 2.4GHz CPUs and
2GB of memory. The clients were running on a cluster of 50
dual processor (1Ghz) nodes connected with a 100Mb/s local
area network. Up to two clients were run on each node. In
order to reduce the size of the configuration space, the WS-
Core installation was configured to use a pool of 100 threads
to handle client requests and all security mechanisms were
disabled.

First, we measured the throughput of the raw hosting
environment. By deploying a simple Web service and invoking
it with up to 100 concurrent clients, we observed that this
amount of clients is not enough to saturate the Web service
(Figure 3). Unfortunately, this result does not hold for the WS-
Resource used to create resources by calling the Grid workflow
engine. For this case, our results indicate that the throughput
reaches the maximum at 36 resource creations per second with

only 5 clients. Clearly, this performance is not enough in large
scale applications.

Web Service Mirrored -------
600 ———T T T T T T T

500

400

300

200

100

Throughput (requests/s)

0
0 10 20 30 40 50 60 70 80 90
Number of Clients

100

Fig. 3. Comparison of the throughput when calling a raw Web service and
the create resource operation of the WS-Resource

In order to find the bottleneck, we have analyzed the execu-
tion profile of resource creation requests. WS-Core builds on
its own hosting environment. Client requests are accepted by
a ServiceDispatcher which uses a pool of ServiceThreads to
service them. In our experiments, this pool was configured to
use up to 100 threads, therefore we believe that the scalability
problem is not due to a misconfiguration of the system.
Moreover, as the throughput of the plain Web service indicates,

the loss in performance happens past this point.
JOpera
Engine API

new
Process

Service
Dispatcher

WS-
Resource

Resource
Home

Service
Thread

create
Resource

process

create

new
Instance

Resource

Fig. 4. Sequence diagram of the resource creation operation

Following the profile shown in Figure 4, a ServiceThread lo-
cates the deployed Web service (in our case the WS-Resource)
and calls it to execute the requested operation on the resource.
To do so, first the resource object is located (or created),
one of its methods is called and the results are returned to
the client. In this architecture, resources are managed by a
central component, the ResourceHome. Thus, when a resource
is created, the WS-Resource delegates this operation to the
ResourceHome, which instantiate a new Resource object. As
part of the implementation of our mapping, the constructor of
the Resource class instantiates a process by calling the engine’s
APL

We measured the time needed for each of these steps in case
of 1 client and 20 concurrent clients (Figure 5). The time spent
in the create method is much bigger than the time actually
required for instantiating the resource in case of 20 clients. The
relative difference between these two times is not as big in case

g 2 2
_) <
600 : 5 § W 20 Clients
500 1 01 Client
-g 400
= 300 A
(0]
E 200
= o~ ® = § o Noo
100 - 5 5 3 8 &8
© 2 * m P S8
0 -

process ~Create

Resource

new new

create
Instance Process

Fig. 5. Average time required for each of the methods called when creating
a resource (as shown in Figure 4) in case of 1 and 20 client(s)

only one client is creating resources. This clearly indicates a
contention problem in the create method preventing multiple
clients from creating resources simultaneously.

From this analysis it can be concluded that while linking
the WS-Resource and the resources using the ResourceHome
adds flexibility (in terms of finding, managing and making
resources persistent), it also involves synchronized access to
the resources. This synchronization is thus the main reason for
the increased time required to create resources when multiple
clients are doing so concurrently. This bottleneck leads to the
performance loss observed in Figure 3.

V. EMBEDDED ARCHITECTURE

As shown in the previous section, synchronized access to
the ResourceHome can amount to a performance penalty when
a large number of clients accesses a resource simultaneously.

In the context of publishing processes as resources, the
mechanisms provided by the ResourceHome are not strictly
needed. Equivalent functionality to the one provided by the
ResourceHome is available in the vast majority of Grid work-
flow engines. As a consequence, the API of the engine can be
directly used to find, manage, destroy and create the process
instances. In this architecture, the WS-Resource only provides
a translation of all client requests in terms of the engine API.
This way, the state of the resources becomes embedded into
the engine. Although this involves accessing the engine for all
resource operations, it removes unnecessary redundancies and,
as we are going to show, provides much better scalability.

Figure 2 (right) depicts the embedded architecture of the
WS-REF specification implementation in the context of JOpera.
Clients interact with the WS-Resource hosted on top of the
execution engine API. The WS-Resource uses the API to
access the resources stored in the persistent storage. Different
processes designed and run in JOpera are mapped to different
WS-Resources. Still, there is only one WS-Resource made
accessible in the hosting environment. This WS-Resource uses
the URI to map the request to a given process and the endpoint
in order to map it to a particular instance of the process.

Upon arrival of requests, the WS-Resource will directly use
the engine’s API to access the persistent storage in order to
store and retrieve information about the state of instances. With

this solution access to resources is synchronized on the lowest
possible level: only read and write access to the same resource
is synchronized by using thread-safe data structures.

1) Lifecycle management: When receiving a request to
create a resource, the WS-Resource reads the process name
out of the URI from the request received and instantiates a
process. The identifier of the process is returned as the ID
of the resource. Destruction, be it immediate or scheduled,
removes the accumulated state of the process instance and if
necessary also interrupts process execution.

2) Properties: Properties in the embedded implementation
are handled as follows: when a client requests to read a
property of a resource instance, the WS-Resource uses the
engine API to retrieve the value from the persistent storage.
In case of a write property request, the WS-Resource will
also use the engine’s API to write the value directly into the
persistent storage.

3) Notifications: Subscriptions to topics are also considered
to be resources according to the specification [14]. In the
embedded implementation this would mean to map them to
a process and to create a process instance every time a client
subscribes. Subscriptions however do not require the flexibility
provided by processes and it is therefore more efficient and
simpler to store them in a list located in the WS-Resource.
To be able to send out notifications once changes in the
state of the resource occur, we use a mechanism provided
by the JOpera execution engine. The WS-Resource registers
listeners with the engine and will receive notifications once
state changes occur. It will then match subscriptions with the
state changes and will send out the corresponding notifications.

VI. COMPARISON

The goal of this second set of measurements is to show
and compare the performance under heavy load induced by an
increasing number of clients concurrently accessing a resource
through the WS-Resource interface using the mirrored and the
embedded architecture. The same setup that has been used for
the initial measurements presented in Section IV-B has also
been used for these experiments.

A. WS-Resource Creation

Although resource creation is not specified in the WS-RF
set of specifications, it remains a very important operation in a
Grid infrastructure. In our case, it represents the submission of
a new computation to be started by the Grid workflow engine.
In a first series of experiments we have therefore measured the
response time and the throughput when a variable number of
clients simultaneously initiates the execution of a Grid process
instance by creating the corresponding resource.

Figure 6 shows the number of resources created per second
when using both architectures serving up to 100 clients at a
time. Each client creates 1000 resources as fast as possible.
The mirrored architecture reaches its peak throughput of 36
new resources/second with only 5 clients. We have investigated
this problem and presented our findings in Section IV-B. The
embedded architecture does not suffer from this limitation and

Embedded —— Mirrored -------
300 ——T—T—T T T T T T

250

200

150

100

50

Throughput (instantiations/s)

ol
0 10 20 30 40 50 60 70 80 90
Number of Clients

Fig. 6. Throughput of the create resource operation

it reaches a throughput of over 250 resources/second with 100
clients. In this case, we were not able to saturate the system.

Embedded —— Mirrored -------
200 T T T T T
g 2000 -
2
i= 1500
)
(2]
& 1000 |-
a
[} :
Q) H
@ 500 s
0 ———
0 10 20 30 40 50 60 70 80 90 100
Number of Clients
Fig. 7. Response time of the create resource operation

Figure 7 shows the response times for resource creation.
With an increasing number of clients concurrently creating
resources, the response time increases as is to be expected.
In case of the mirrored architecture, the response time grows
very high, to up to 2.4s in case of 100 concurrent clients.
This is because this implementation is only able to serve up
to 36 clients requests per second while additional requests
will have to wait. The response time in case of the embedded
architecture grows one order of magnitude less (0.25s), as the
system has enough capacity to deal with 100 clients.

B. WS-Properties

In these experiments an increasing number of clients reads
the property of a single resource 1000 times. The response
time for both architectures only grows slowly with an increas-
ing number of clients (Figure 8). The throughput increases
linearly when more clients read the properties in case of both
architectures.

In this case, the mirrored architecture outperforms the
embedded one. This can be explained by a caching effect. The

Embedded Mirrored -------
LA s B B B B . R
)
E
(]
£
|_
)
n
&
a 20 .
o H H H H H H H H H
o AO |t
0 I I I I I I I I I
0 10 20 30 40 50 60 70 80 90 100
Number of Clients
Fig. 8. Response time of the read property operation

Embedded
LA L S B S B 5

600
500
400
300
200

100 |7
0 I I I I I I I I I
0 10 20 30 40 50 60 70 80 90

Throughput (property reads/s)

100

Number of Clients

Fig. 9. Throughput for the read property operation

state of the resource is kept closer to the clients and is thus
faster to access. Given that all clients were reading from the
same resource, the cache in the ResourceHome is able to fulfill
all requests. In case of the embedded architecture, requests
of reading property values have to be mapped to queries to
the underlying engine API, which makes their execution path
about 10ms longer with 100 concurrent clients. Nevertheless,
this overhead seems acceptable in view of the advantages in
other performance measurements.

C. WS-Notification

In a next series of experiments we have measured the dif-
ferent implementations of WS-Notification. In the first exper-
iment we have measured the time it takes a client to subscribe
to a certain topic. To do so, an increasing number of clients
(1 to 100) subscribes to 1000 topics as fast as possible. We
have measured the throughput and the response time for both
architectures. In case of the mirrored architecture, we used
two configurations of WS-Core. The first stores subscriptions
in memory, the second one makes them persistent on disk.

The mirrored architecture relies on WS-Core to manage
its subscriptions. WS-Core follows the WS-N specification

Mirrored Mirrored
Embedded — (emory) T (disk)

600 — T 71T T T 1

BOO b
Vo A T T T T T s
300 [

100 |

0 e M A S WA W R
20 30 40 50 60 70 80 90 100
Number of Clients

Throughput (subscriptions/s)

Fig. 10. Throughput for the subscribe operation

and treats subscriptions as resources. Thus, it uses a Sub-
scriptionHome, which inherits the scalability problems of the
ResourceHome implementation. As our measurements indicate
(Figure 10), the throughput reaches a maximum at 50 subscrip-
tions/second. As expected, persistent subscriptions are more
expensive than volatile ones (Figure 11).

As previously described, the embedded implementation
relies on the engine’s API to maintain the client subscriptions
and only maps the WS-N topics to the addressing mechanism
used by the engine to identify each element of a process
execution state which may change. This greatly speeds up
subscribing to a topic, as we observed from the throughput
which grows linearly with the increasing number of concurrent
subscribers.

Embedded — ?ﬂg‘r’r{gﬁ’y) '(\giirsf)red -
2000 T T T T T T T T
1800 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
1600
1400
1200
1000
800
600
400
200 : : : : : : e
0 = e Ny I T A S
0 10 20 30 40 50 60 70 80 90

Number of Clients

Response Time[ms]

Fig. 11. Response time for subscribe operation

In the next experiment we measured the throughput of
the two architectures in terms of sending out notifications.
Although there are many combinations of the number of
subscribers, number of resources and number of subscriptions
to topics that could affect this performance metric, due to
space limitations we focus on one setup. Each client (from

1 to 100) subscribes to one topic of the same shared resource.
This resource goes through 100 state changes, which will be
reported to all subscribed clients by sending them 100 notifica-
tion messages. Thus, in the experiment, the Grid service sends
from 100 notifications (with 1 client) up to 10’000 notifications
(with 100 clients).

Mirrored Mirrored
Embedded — (memory) (disk)
600 T T T T T T T T T

500
400
300
200

100 |l

Throughput (notifications/s)

0
0 10 20 30 40 50 60 70 80 90 100
Number of Clients

Fig. 12. Throughput for matching events with subscriptions and sending
notifications

For both architectures, the throughput does not saturate with
100 clients. However, the mirrored architecture is only able
to send 180 notifications/second (with volatile subscriptions)
and 100 msg/s (persistent subscription). The embedded archi-
tecture sends out notifications at a higher rate (550 msg/s).
The reason for this performance improvement lies in the fact
that in the mirrored implementation the local copy of the state
needs to be updated whenever a notification from the engine
is received. Furthermore, this implementation relies on WS-
Core to call back subscribed clients, and it appears that each
notification is sent out sequentially. Instead, in case of the
embedded architecture this is not a limitation as clients are
notified in parallel.

VII. RELATED WORK

In addition to the one presented in this paper, there are
currently five more implementations of WS-RF and WS-N.
They differ mostly in the programming model as well as the
implementation language. The most prominent implementation
is the Java version of WS-Core which we used to implement
the mirrored architecture and is distributed with the Globus
Toolkit [6]. This code is also used in the two Apache projects
Hermes (WS-N) and Apollo (WS-RF). An additional imple-
mentation of the standards which is part of the Globus Toolkit
is implemented in C and lets one develop Grid services in
C. pyGridWare [20] is also part of the Globus Toolkit. It
allows the user to rapidly develop Grid services in Python.
Similarly, WSRENET [21] is used to develop Grid services
in any .NET language. With this implementation developing
Grid services is not much different than programming Web
services: the developer only needs to annotate what parts of

the service should be made persistent. Lastly there is also a
Perl implementation of the standards called WSREF::Lite [22].

These five implementations have been compared in terms
of functionality and performance in [19]. This comparison
however only focused on evaluating the performance of a
single client setup (both, distributed on two machines and
co-located). In our experiments we have used a setup with
increasing numbers of clients thereby showing how the system
copes with a larger number of concurrent requests.

VIII. CONCLUSION

In this paper we present and compare two different strategies
for implementing the WS-RF and WS-N standards for process
based systems. Our work extends the mapping presented
in [5], which defined how to bridge two different levels of
abstractions: the WS-Resource and the Grid workflow.

We first consider an architecture where this mapping is
implemented by mirroring the persistent state of the execution
of a Grid workflow as the state of the published resource.
This has the advantage, as our experimental results show, that
clients can directly access such resources without the overhead
of going through additional layers of the system. Furthermore,
wrapping the API of a Grid workflow engine within WS-Core
also reduces the development effort required to make the Grid
workflow engine standard compliant, as the Grid infrastructure
providing the implementation of such standards can be reused.
The disadvantage of this approach lies in the redundancy
introduced in the system, where the state of the resources is
duplicated across different components. This has the drawback
that concurrency control is performed early in the request
processing pipeline and the scalability of the system suffers
when facing a large number of concurrent clients.

As an alternative, we present a second architecture, where
the state of a resource is embedded into the underlying process
engine and the mapping involves a direct translation of the
client requests from the standardized WS-RF interface to the
engine API. Although with this solution all requests have to
be serviced through the engine, incurring in slightly higher
response time, the embedded architecture scales much better
as the concurrency control is performed on a more fine grained
level within the Grid workflow engine.

IX. FUTURE WORK

As part of future work we plan to implement WS-
BrokeredNotification [15] as well as security mechanisms
for client authentication (using X.509 signing of messages),
authorization and message encryption (using HTTPS).

REFERENCES

[1] K. Czajkowski, D. F. Ferguson, I. Foster, J. Frey, S. Graham, I. Se-
dukhin, D. Snelling, S. Tuecke, and W. Vambenepe, “The WS-Resource
Framework,” OASIS, June 2005, http://www.globus.org/wsrf/specs/ws-
wsrf.pdf.

[2] P. Nibblet and S. Graham, “Events and service-oriented architecture: The
OASIS Web Services Notification specifications,” IBM Systems Journal:
Service-Oriented Architecture, vol. 44, no. 4, pp. 869-886, 2005.

[3]

[4]

[5]

[6]

[7]
[8]

[9]

[10]

[11]

[12]

[13]

(14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi,
K. Blackburn, A. Lazzarini, A. Arbree, R. Cavanaugh, and S. Koranda,
“Mapping Abstarct Workflows onto Grid Environments,” Journal of Grid
Computing, vol. 1, no. 1, 2003.

J. Cao, S. A. Jarvis, S. Saini, and G. R. Nudd, “GridFlow: Workflow
Management for Grid Computing,” in CCGRID ’03: Proc. of the 3st
International Symposium on Cluster Computing and the Grid. Wash-
ington, DC, USA: IEEE Computer Society, 2003, p. 198.

T. Heinis, C. Pautasso, O. Deak, and G. Alonso, “Publishing Persistent
Grid Computations as WS Resources,” in Proceedings of the 1st IEEE
International Conference on e-Science and Grid Computing, Melbourne,
Australia, December 2005.

I. Foster and C. Kesselman, “Globus: A Metacomputing Infrastructure
Toolkit,” The International Journal of Supercomputer Applications and
High Performance Computing, vol. 11, no. 2, pp. 115-128, Summer
1997.

C. Pautasso, “JOpera: Process Support for more than Web services,”
http://www.jopera.org.

S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham,
C. Kesselman, T. Maguire, T. Sandholm, D. Snelling, and
P. Vanderbilt, “Open Grid Services Infrastructure (OGSI) Version
1.0.” 2003, http://www.globus.org/alliance/publications/papers/
Final_OGSI_Specification_V1.0.pdf.

K. Czajkowski, D. F. Ferguson, 1. Foster, J. Frey, S. Graham, T. Maguire,
D. Snelling, and S. Tuecke, “From Open Grid Services Infrastruc-
ture to WSResource Framework: Refactoring & Evolution,” 2002,
http://www.globus.org/wsrf/specs/ogsi_to_wsrf_1.0.pdf.

S. Graham, A. Karmarkar, J. Mischkinsky, I. Robinson, and 1. Sedukhin,
“Web Services Resource 1.2, OASIS, June 2005, http://docs.oasis-
open.org/wsrf/wsrf-ws_resource-1.2-spec-pr-01.pdf.

L. Srinivasan and T. Banks, “Web Services Resource Life-
time 1.2,” OASIS, June 2004, http://docs.oasis-open.org/wsrf/wsrf-
ws_resource_lifetime-1.2-spec-pr-01.pdf.

S. Graham and J. Treadwell, “Web Services Resource Proper-
ties 1.2, OASIS, June 2004, http://docs.oasis-open.org/wsrf/wsrf-
ws_resource_properties-1.2-spec-pr-01.pdf.

T. Maguire and D. Snelling, “Web Services Service Group 1.2,” OA-
SIS, June 2004, http://docs.oasis-open.org/wsrf/wsrf-ws_service_group-
1.2-spec-pr-01.pdf.

S. Graham and B. Murray, “Web Services Base Notification
1.2 OASIS, 2004, http://docs.oasis-open.org/wsn/2004/06/wsn-WS-
BaseNotification-1.2-draft-03.pdf.

D. Chappell and L. Liu, “Web
Notification 1.3 OASIS, 2005,
open.org/committees/download.php/13485/wsn-ws-
brokered_notification-1.3-spec-pr-01.pdf.

W. Vambenepe, “Web Services Base Topics 1.2,7 OASIS, June
2004, http://docs.oasis-open.org/wsn/2004/06/wsn-WS-Topics-1.2-draft-
01.pdf.

D. Box and F. Curbera, “Web Services Addressing (WS-Addressing),”
W3C, August 2004, http://www.w3.org/Submission/ws-addressing/.

C. Pautasso and G. Alonso, “The JOpera Visual Composition Language,”
Journal of Visual Languages and Computing, vol. 16, no. 1-2, pp. 119—
152, 2004.

M. Humphrey, G. Wasson, K. Jackson, J. Boverhof, M. Rodriguez,
J. Bester, J. Gawor, S. Lang, I. Foster, S. Meder, S. Pickles, and
M. McKewon, “State and Events for Web Services: A Comparison of
Five WS-Resource Framework and WS-Notification Implementations,”
in Proceedings of the IEEE International Symposium on High Perfor-
mance Distributed Computing (HPDC-14), Research Triangle Park, NC,
USA, 2005.

“pyGridWare: Python Web Services
http://dsd.Ibl.gov/gtg/projects/pyGridWare/.
M. Humphrey, G. Wasson, M. Morgan, and N. Beekwilder, “An Early
Evaluation of WSRF and WS-Notification via WSRENET,” in 2004
Grid Computing Workshop (associated with Supercomputing 2004),
Pittsburgh, PA, USA, 2004.

“WSREF::Lite - Perl
http://www.sve.man.ac.uk/Research/AtoZ/ILCT.

Services Brokered
http://www.oasis-

Resource Framework,”

Grid Services,”

