
Diss. ETH No. 15608

A Flexible System for
Visual Service Composition

A dissertation submitted to the
SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZURICH

for the degree of
Doctor of Technical Sciences

presented by

CESARE PAUTASSO
Laurea in Ingegneria Informatica - Politecnico di Milano

born December 9, 1975
citizen of Italy

accepted on the recommendation of

Prof. Dr. Gustavo Alonso, examiner
Prof. Dr. Stefano Ceri, co-examiner

2004

2

Acknowledgments

This dissertation would have never been finished without the help of many people,
to whom I would like to express my sincere gratitude.

First of all, Prof. Gustavo Alonso. He trusted my ability to complete this work
even before I had started it. I also thank him for his good advice keeping me focused
on such an interesting research topic. I was privileged to work in his international
research group, indeed one of the best possible working environments.

Many thanks also go to Prof. Stefano Ceri for accepting to be my co-referent
and for his flexibility in setting up the defense in “teledidattica”. I was also truly
honored for his invitation to go back to the Politecnico di Milano to present my
work and receive plenty of valuable feedback.

During the past four years I was lucky to collaborate with my friend Win Bausch,
who has a rare gift: everytime we would meet to discuss something we came away
from the sparkling conversation with new ideas. This dissertation is the result of
our teamwork.

I would also like to thank Amaia Lazcano for her feedback on the early devel-
opments of the visual language; Andrei Popovici for his suggestion about visual
comments; Biörn Biöernstad for his insight about messaging systems; Andreas Frei
for confirming the difference between time and space; Patrick Stuedi for testing
JOpera with his large scale simulations.

Credit should also be given to all of the students who completed their Semester-
and Diplomarbeits within the BioOpera and JOpera projects: Martin Grueter, Pe-
dro Pablo Gomez Portilla, Andi Hao Zhou, Reto Schaeppi, Christian Rupp, Markus
Haller, Antonio Caliano, Axel Wathne, and Jared Schirm. Particularly, Andreas
Bur, Nicholas Born, Philip Frey, and Patrick Moor were brave enough to attempt
to port the system to Eclipse in one semester.

I would also like to acknowledge an old school friend of mine for his honesty: he
was one of the very few people telling me upfront that he would not have enough
time to read the draft. Spero adesso la leggerai, Manu!

I dedicate this dissertation to my family. This is a very small achievement
compared with all of their love and support during my entire life as a student. A
special thank you goes to my brother, Marco, a most helpful bibliographer.

Finally, I am deeply thankful for the patience, trust and encouragement of the
Esperanza of my future. Te agradezco de veras, también para llegar un paso más
cerca cada año. If I could finish this, you will too!

Zurich, July 2004

i

ACKNOWLEDGMENTS

ii

Contents

Acknowledgments i

Abstract xi

Estratto xiii

1. Introduction 1
1.1. Motivation . 1
1.2. Contributions . 2
1.3. Structure . 3

2. Related Work 5
2.1. Visual Programming Languages . 5
2.2. Software Composition . 7

2.2.1. Web service composition . 8
2.3. Process Modeling Languages . 10

2.3.1. Business Process Modeling and Execution Language for Web
Services . 13

2.4. Process Management Systems . 15
2.4.1. About the JOpera project . 16

I. The JOpera Visual Composition Language 19

3. JOpera Visual Composition Language 21
3.1. Motivation . 21
3.2. Processes and Tasks . 23
3.3. Data Flow . 23

3.3.1. Bindings . 24
3.4. Control Flow . 25

3.4.1. Conditions . 25
3.4.2. Synchronization . 26
3.4.3. Exception Handling . 26

3.5. Iteration . 31
3.5.1. List-based Loops . 31
3.5.2. Control Flow Loops . 32

iii

Contents

3.5.3. Recursion . 33
3.6. Comments . 33
3.7. Reflection . 34

3.7.1. System Parameters . 35
3.7.2. System Services . 36

3.8. Discussion . 43

4. Component Types 45
4.1. Motivation . 45
4.2. Component Meta-Model . 47

4.2.1. Data Flow Mapping . 48
4.2.2. Abstract Service Types . 49

4.3. Web Services . 50
4.3.1. SOAP . 50
4.3.2. HTTP . 54

4.4. Shell Commands . 58
4.5. Java . 59

4.5.1. Java Scripts . 60
4.5.2. Local Java Method Calls . 60
4.5.3. Remote Method Invocations 61
4.5.4. External Java Programs . 61

4.6. Script Components . 62
4.6.1. Scripts . 63
4.6.2. SQL . 63

4.7. XML Data Manipulation . 65
4.7.1. XML Components . 66
4.7.2. XPath Queries . 67
4.7.3. Style Sheet Transformations 67

4.8. System Components . 73
4.8.1. Echo . 73
4.8.2. Process Invocation . 74

4.9. Cluster Computing . 75
4.9.1. PBS . 75
4.9.2. BioOpera . 76

4.10. Messaging Components . 79
4.10.1. Email . 80
4.10.2. JMS . 80

4.11. BPEL Basic Activities . 83
4.12. Workflow Tasks . 84
4.13. Discussion . 85

5. Opera Modeling Language 87
5.1. Meta-Meta Model . 87
5.2. Structure of the Opera Modeling Language 91
5.3. Elements of the Opera Modeling Language 94

iv

Contents

5.3.1. Root Element . 94
5.3.2. Abstract Elements . 95
5.3.3. Process Elements . 97
5.3.4. Data Flow Elements . 101
5.3.5. JOpera Visual Composition Language (JVCL) Elements . . . 105
5.3.6. Program Library Elements . 112
5.3.7. Component Type Modeling Elements 113

5.4. Discussion . 114

II. The JOpera System 117

6. Compiler 119
6.1. Motivation . 119
6.2. Compiler’s Architecture . 121
6.3. Mapping to OCR . 123

6.3.1. Data flow mapping . 123
6.4. BPEL Mapping . 125

6.4.1. Mapping to BPEL . 126
6.4.2. Mapping from BPEL . 128

6.5. Mapping to Java . 129
6.5.1. Process Navigation . 129
6.5.2. Process Instantiation . 130
6.5.3. Task State Diagram . 132
6.5.4. Process Template Plugin Interface 137

6.6. Discussion . 143

7. Architecture 147
7.1. Motivation . 147
7.2. Visual Development Environment . 148

7.2.1. Development cycle . 149
7.2.2. Visual scalability . 150
7.2.3. Architecture . 150

7.3. Process Execution Kernel . 154
7.3.1. Architecture . 154
7.3.2. Threading issues . 157
7.3.3. Deployment Scenarios . 160
7.3.4. Parallel Navigation . 162

7.4. Supporting Heterogeneous Services 163
7.4.1. Describing a task execution request 165
7.4.2. Dispatching a task execution request 167
7.4.3. Service invocation patterns . 168

7.5. API . 172
7.5.1. Process Control . 173
7.5.2. Program Library Management 175

v

List of Figures

7.6. Discussion . 176

8. Measurements 179
8.1. Service Invocation Overheads . 179

8.1.1. Results . 180
8.1.2. Discussion . 181

8.2. Visual Adaptation of Mismatching Interfaces 183
8.2.1. Results . 183
8.2.2. Discussion . 184

8.3. Scalability and Reliability . 184
8.3.1. Results . 186

8.4. Discussion . 193

9. Conclusion 195
9.1. Summary . 195
9.2. Outlook . 199

A. Opera Modeling Language Schema 201

B. JOpera Compiler Output 209

Bibliography 213

Index 227

Curriculum Vitae 229

List of Examples

3.1. Book Prices . 27
3.2. Late Binding . 36
3.3. Cluster Resource Reservation . 37
3.4. Reliable Service Invocation . 39
4.1. Stock Quote Currency Conversion . 55
4.2. Google Search . 67
4.3. Mismatching Services Adaptation . 69
4.4. Parallel Image Rendering . 77
4.5. Asynchronous Process Call . 81
6.1. Compiling the Stock Quote Currency Conversion Process 138

List of Figures

2.1. Summary of the process modeling languages presented in this disser-
tation . 11

2.2. Evolution of the BPEL4WS specification 14

vi

List of Figures

2.3. Evolution of the Opera system. 16

3.1. Syntax definition for the Activity and the SubProcess 23
3.2. Data flow graph syntax . 24
3.3. Control flow graph syntax . 25
3.4. Control flow with exception handler 27
3.5. Control flow graph of the BookPrices process 28
3.6. First data flow view of the BookPrices process 29
3.7. Second data flow view of the BookPrices process 30
3.8. Main data flow view of the QueryBookPrice process 30
3.9. Data flow syntax of the list-based loops 31
3.10. Data flow view of a process to compute the factorial of an integer value 33
3.11. Example of system parameters and properties 34
3.12. Data flow view of the late binding example 37
3.13. Data flow view of the cluster resource reservation example 38
3.14. Sequential invocation of alternative services 40
3.15. Parallel invocation of alternative services 41
3.16. Split/Merge Options . 42

4.1. Data flow interface of a component 48
4.2. Data flow mapping inside a component 48
4.3. Summary of the System Parameters of some the component types

modeled in this chapter . 52
4.4. Data flow view of the ConvertQuote process 55
4.5. Data flow view of the ConvertAmount process 56
4.6. Data flow view of the StockQuoteConvert process 57
4.7. Example of XML Processing with the JVCL and X-Path. 68
4.8. Example of XML Processing with the JVCL only 69
4.9. XML Schema definition for the Adresse type. 70
4.10. XML Schema definition for the Address type. 70
4.11. Visual mapping between two XML complex types 71
4.12. Equivalent XSL mapping . 72
4.13. Control flow view of the RenderImage process 77
4.14. Data flow view of the first part of the RenderImage process 77
4.15. Data flow view of the second part of the RenderImage process 78
4.16. Data flow view of the ClientProcess 82
4.17. Data flow view of the ServerProcess 82

5.1. Mapping UML to an XML document 88
5.2. Mapping UML to an XML schema 89
5.3. Summary of the aggregation relationships between OML elements . . 90
5.4. Summary of the inheritance relationships between OML elements . . 91
5.5. Summary of the reference relationships between OML elements 92
5.6. Complete UML class diagram of the OML elements 93
5.7. Basic structure of an OML document 94

vii

List of Figures

5.8. Abstract Elements: Object and Named Object 95
5.9. Structure of Processes and Tasks. 101
5.10. Structure of the data flow graph of a process. 102
5.11. Structure of the elements of the JOpera Visual Composition Language.105
5.12. Relationship between the Opera Modeling Language and the JOpera

Visual Composition Language. 108
5.13. Example on how a JVCL control flow view is stored in the underlying

OML model . 109
5.14. Structure of the Program and Component type library. 112
5.15. Simplified Task Model . 114

6.1. Alternative approaches to process execution. 120
6.2. Multi-stage architecture of the OML compiler 122
6.3. JVCL to OCR: data flow . 124
6.4. JVCL to BPEL: service invocation 126
6.5. JVCL to BPEL: control flow . 127
6.6. Process navigation actions . 130
6.7. Simplified state diagram of a task instance 133
6.8. Full state diagram of a task instance 135
6.9. Process Template Plugin Interface . 137

7.1. Overview of the JOpera Visual Development Environment and the
JOpera Kernel . 148

7.2. Architecture of the JOpera Visual Development Environment 151
7.3. Architecture of a Monolithic Process Execution Kernel 154
7.4. State Information Storage Implementations for the monolithic kernel 156
7.5. Main Process Execution Loop . 158
7.6. Architecture of a Distributed Kernel 160
7.7. The dispatcher as a container of task execution subsystem plugins . . 163
7.8. Interface definition of the task execution subsystem 164
7.9. Immediate service invocation . 168
7.10. Synchronous service invocation . 169
7.11. Asynchronous service invocation . 170
7.12. Scheduled synchronous service invocation 171
7.13. Scheduled asynchronous service invocation 171
7.14. Architecture of a Peer to Peer Process Execution Kernel 177

8.1. Service Invocation Overhead for different component types 181
8.2. Performance of a visual mapping . 183
8.3. Performance degradation of a centralized process support system un-

der increasingly large workloads . 186
8.4. Throughput degradation of a centralized process support system un-

der increasingly large workloads . 187
8.5. Scalability of the process instantiation 188
8.6. Memory requirements for process instantiation 189

viii

List of Tables

8.7. Scalable navigation: throughput . 191
8.8. Scalable navigation: event queue . 192
8.9. Scalable navigation: batch execution time 193

List of Tables

2.1. Workflow patterns supported by the Opera process Modeling Language 12

4.1. Component Types Summary . 51

6.1. Task State Transitions . 134
6.2. Process State Definition Rules . 136

7.1. Deployment Scenarios . 162
7.2. Design options to describe a task execution request. 166
7.3. Summary of the JOpera Process Control API 173
7.4. Summary of the JOpera Program Library Management API 176

8.1. Service Invocation Mechanisms to be compared 180
8.2. Workload Control Variables . 185

ix

List of Tables

x

Abstract

This dissertation brings together ideas of different research areas. First of all, we
propose the application of visual languages to service composition. In order to con-
nect basic services of various kinds into a larger system, their interactions along
the time dimension are defined with the JOpera Visual Composition Language. As
opposed to the textual or XML-based syntax of existing approaches, our language
features a very simple graphical notation. This visual syntax is used to specify
the data flow and control flow graphs linking the various service invocations. This
way, it becomes possible to rapidly build distributed applications out of a set of
reusable services by literally drawing the interactions between them. To achieve
this, we present how usability features such as automatic, incremental graph layout
and visual scalability features such as multiple views have been driving the design
of JOpera’s visual service composition environment. To provide support for realistic
application scenarios, we have also included recursion, iteration and reflection con-
structs with minimal changes to the syntax of the visual language. Supported by
the JOpera system, our visual language for service composition has been applied to
many scenarios, as documented by the examples shown throughout the dissertation.

Underneath the visual syntax, our approach to modeling service composition
is based on the concept of process. In this dissertation we borrow the notion of
business process so that it can be extended to model service oriented architectures.
Thus, the structure of a process defines the partial order of invocation of its services,
the data exchanges between them and the necessary failure handling behavior. In
this context, an important contribution of this dissertation is the idea that a com-
position language should be orthogonal with respect to the types of components
that are employed. More precisely, in our approach, composition is defined at the
level of service interfaces. Therefore, a process is completely independent from the
mechanisms and protocols used to access the implementation of its services. In other
words, we introduce a composition language which is not limited to describing how
components of a specific type (e.g., Web services) should be composed. Instead, in
our open component meta-model, we generalize the notion of service by abstracting
common features among a large set of different component types. This abstraction
has several important implications. By supporting a large and open set of types
of services, the composition language is simplified because many constructs (e.g.,
modeling synchronous or asynchronous service invocation) can be shifted from the
composition language to the component meta-model. Also, the service composer is
free to choose the most appropriate mechanism to access the functionality of an ex-
isting service. Thus, the runtime overhead of a service invocation can be minimized

xi

ABSTRACT

as it becomes possible to choose the most efficient access mechanism.
This optimization regarding the service access mechanism would not make much

of a difference regarding the overall system’s performance if the execution of the
visual language would incur in a high overhead, as typically process-based languages
are executed by an interpreter. On the contrary, in this dissertation we propose
to compile the visual specification of a process into executable code. One of the
challenges of doing so is that the resulting code should still support the concurrent
execution of multiple process instances. The choice of applying compilation to the
execution of processes brings the following benefits. In addition to the potential
for providing better performance through the optimization of the generated code,
compiling processes also helps to simplify the design of the corresponding runtime
system. As opposed to having a full-blown process interpreter, it is enough to design
and build a flexible container of compiled processes.

Following this approach, in the last part of the dissertation we present the design
of a flexible architecture for a process support system. Flexibility is an important
aspect of our design which, according to our experimental results, does not contradict
the goal of building an efficient system. First, flexibility enables JOpera to support
heterogeneous types of services. To do so, plug-ins are used to map the invocation
of a service to the corresponding protocol in the most efficient manner. Second, the
flexible architecture of JOpera’s kernel can be deployed in a variety of configurations.
This way, costly features such as reliable process execution can be added only if they
are truly needed. Likewise, the system shows good scalability when deployed in a
cluster-based configuration, as large workloads are shared among multiple cluster
nodes. Thanks to a wise choice of architectural abstractions, the code generated
by the compiler is kept independent of the actual configuration of the kernel into
which it is loaded. Third, flexibility is also a fundamental property for an autonomic
system, where the optimal configuration is determined automatically at runtime.

xii

Estratto

Questa dissertazione unisce argomenti di diverse aree di ricerca. Prima di tutto,
proponiamo l’applicazione dei linguaggi visuali alla composizione di servizi. Al fine
di connettere servizi di diversi tipi in un sistema di grandi dimensioni, le interazioni
temporali fra di essi vengono definite con il JOpera Visual Composition Language.
In confronto con la sintassi testuale (o basata su XML) dei sistemi esistenti, il lin-
guaggio proposto usa una sintassi grafica molto semplice. Questo linguaggio viene
usato per specificare il flusso di dati e di controllo che attraversa le varie chiamate
ai servizi. In questo modo, a partire da un insieme di servizi riutilizzabili è possibile
costruire rapidamente applicazioni distribuite attraverso il disegno delle loro inter-
azioni. Per ottenere ciò, presentiamo come caratteristiche quali la scalabilità visiva,
il posizionamento automatico degli elementi di un grafo, e multiple viste abbiano
influenzato il progetto dell’ambiente grafico per la composizione di servizi del sis-
tema JOpera. Per poter applicare il sistema a esempi realistici, il linguaggio è stato
completato con lievi modifiche aggiungendo costrutti quali ricorsione, iterazione e
riflessione. Grazie al sistema JOpera, il linguaggio visuale per la composizione di
servizi è stato applicato a molti ambiti, come documentato dagli esempi inclusi nella
dissertazione.

Il nostro metodo visuale per rappresentare la composizione di servizi è basato
sul concetto di processo. In questa dissertazione prendiamo a prestito la nozione
di processo di business per estenderla alla descrizione delle architetture orientate ai
servizi. Di conseguenza, la struttura di un processo definisce l’ordinamento parziale
delle chiamate ai suoi servizi, gli scambi di dati fra di essi e il comportamento
in caso di problemi o condizioni eccezionali. In questo contesto, un contributo
importante della dissertazione consiste nell’idea che un linguaggio di composizione
debba essere ortogonale rispetto ai tipi di componenti usati. Più precisamente,
nel sistema JOpera la composizione è definita al livello delle interfacce dei servizi.
Quindi un processo è completamente indipendente dai meccanismi e protocolli usati
per accedere all’implementazione dei suoi servizi. In altre parole, il nostro linguaggio
di composizione non è limitato a descrivere come componenti di un tipo particolare
(ad esempio, Web services) debbano essere composti. Invece, abbiamo generalizzato
il concetto di servizio astraendo le caratteristiche comuni a molti tipi diversi di
componenti in un meta-modello aperto. Questa astrazione ha diverse implicazioni
importanti. Con la possibilità di usare un insieme aperto e ampio di tipi diversi
di servizio, il linguaggio di composizione è più semplice perché molti costrutti (ad
esempio, la rappresentazione di una invocazione sincrona o asincrona) possono venire
spostati dal linguaggio di composizione al meta-modello dei componenti. Inoltre,

xiii

ESTRATTO

il compositore di servizi è libero di scegliere il meccanismo più appropriato per
accedere alla funzionalità di un servizio pre-esistente. Quindi, durante l’esecuzione,
il costo di accedere a un servizio puó venire minimizzato, in quanto diventa possibile
scegliere il meccanismo di accesso più efficiente.

Questa ottimizzazione sul costo di accesso ad un servizio non avrebbe un grosso
impatto sulle prestazioni globali del sistema se l’esecuzione del linguaggio visuale
fosse inefficiente, come accade tipicamente nel caso dell’esecuzione interpretata dei
linguaggi orientati ai processi. Al contrario, in questa dissertazione si propone di
compilare la specifica visuale di un processe in codice eseguibile. Una delle diffi-
coltà in questa soluzione consiste nell’ottenere del codice che permetta di gestire
l’esecuzione di più di una copia di un processo alla volta. Tuttavia, la scelta di ap-
plicare tecniche compilative all’esecuzione dei processi porta i seguenti benefici. In
aggiunta al potenziale di fornire prestazioni migliori attraverso l’ottimizzazione del
codice generato, la compilazione dei processi facilita la semplificazione della struttura
del sistema di esecuzione corrispondente. Invece di dover costruire un interprete, è
sufficiente preparare un contenitore flessibile di processi compilati.

Seguendo questa soluzione, nell’ultima parte della dissertazione si presenta il
progetto di una architettura flessible per un sistema di supporto ai processi. La
flessibilità è un aspetto importante del nostro sistema che, secondo i risultati sper-
imentali inclusi, non contrasta con l’obiettivo di costruire un sistema efficiente. La
flessibilità infatti permette a JOpera di usare un insieme eterogeneo di tipi di servizi.
Per fare ciò, dei plug-ins vengono utilizzati per trasformare nel modo più efficiente la
chiamata di un servizio nel protocollo corrispondente. Inoltre l’architettura flessibile
del sistema JOpera puó venire adattata a diverse configurazioni. In questo modo,
caratteristiche costose come l’esecuzione affidabile dei processi possono venire ag-
giunte solo se veramente necessarie. Allo stesso modo, il sistema presenta una
buona scalabilità quando viene distribuito su un cluster di computer, in quanto
grossi carichi di lavoro vengono condivisi dai diversi nodi del cluster. Grazie a una
buona scelta di astrazioni architetturali, il codice generato dal compilatore rimane
indipendente dalla configurazione del sistema in cui viene eseguito. Per finire, la
flessibilità è anche una proprietà fondamentale per un sistema autonomico, dove la
configurazione ottimale è determinata automaticamente e dinamicamente.

xiv

1. Introduction

1.1. Motivation

Composition is a well established standard engineering practice, whereby develop-
ment proceeds by recursively assembling a set of pieces designed to fit together.

Software systems are also increasingly built in a similar way, or at least they
should according to many sources (e.g., [214]). In fact, since the very early be-
ginnings of the information age, using components to build software systems was
deemed a promising idea, to be quickly followed by a blossoming software component
industry whose reusable pieces of software could seamlessly be integrated together
to build useful applications [154].

Along this direction, in the past forty years, a very large body of research on
software components, components models, component based software engineering
and the like has been produced. In practice, the component based frameworks
that have been developed (such as Delphi [128], COM, CORBA, EJB, and many
others) have also been quite successful as relatively well developed marketplaces
of reusable software components have been established within the boundaries of a
given component model [229].

Given the current level of development, where the Web service paradigm has been
recently introduced to address interoperability issues across heterogeneous compo-
nent models, in our work we have chosen not to describe yet another component
model to avoid that our approach to composition would be limited to that particular
component model.

Instead, we shift the focus from components to services, i.e., “software compo-
nents with no strings attached” [225]. Moreover, in this dissertation we develop a
language and a system for service composition, as we believe that component mod-
eling is only half of the work, and that composition, i.e., defining in an executable
way how services should be composed together, is equally important.

By keeping the definition of a service very general, we are able to propose a visual
composition language that can be applied to model and execute the composition of
many different types of services along the time dimension. To do so, the language is
based on the notion of process, which describes the interaction between service in-
terfaces in terms of data flow and control flow graphs. By relaxing the constraints on
the types of services that can be composed we have kept our composition language
both simple and general, as the complexity of modeling the invocation of hetero-
geneous component types has been pushed from the composition language to our

1

1. INTRODUCTION

flexible component meta-model. One benefit of this approach is that adding sup-
port for additional types of services does not affect the definition of the composition
language.

“A new language is not enough, unless there is also a compiler for it” [255].
Following this guideline, we have designed and built a whole set of tools to support
the execution of processes defined with the JOpera Visual Composition Language.
The JOpera system currently comprises a visual development and monitoring envi-
ronment, a compiler targeting multiple process execution platforms, and a flexible
runtime kernel that can be deployed in a variety of configurations.

Supported by the JOpera system, our language for service composition has been
applied to several different application scenarios, as documented by the examples
shown throughout the dissertation. Finally, we include a set of measurements to
motivate and validate our approach.

1.2. Contributions

This dissertation brings the following contributions to the field of process-based
service composition.

1. A visual language, as opposed to an XML syntax, should be used for program-
ming process-based service composition.

Software composition can be a great application domain of visual languages,
as a two dimensional syntax can represent quite well non linear interactions
between a set of services. In this dissertation we define a new visual lan-
guage, the JOpera Visual Composition Language, with a very simple syntax,
which is however powerful enough to be applied in realistic settings. Its main
innovations are:

� Processes are programmed mainly (but not only) by drawing a data flow
graph linking input and output parameters of service invocations.

� To address visual scalability issues, the control and data flow graphs of a
process are displayed and edited separately. Furthermore, multiple views
over the same data flow graph are supported.

� Service interface adaptations that require XML data manipulations can
be specified visually with the same syntax used to compose the mismatch-
ing services.

� Iteration is supported through list-based split/merge operators, explicit
control flow loops and recursion.

� Reflection, through system parameters and system services, is used to
model the interaction of a process with its environment and provides
support for dynamic adaptation of processes and late binding of service
interfaces to their implementation.

2

1.3. STRUCTURE

2. Composition and Components should be kept orthogonal.

The JOpera Visual Composition Language defines composition at the level of
service interfaces. The actual service invocation mechanism is intentionally
kept transparent, as far as the definition of the processes is concerned. Given
the wide range of existing component models and the corresponding service
invocation mechanisms, limiting composition to a particular type of component
is unnecessary, as the developer cannot choose the most appropriate one in
terms of performance, reliability, security, convenience and ease of use. In
other words, we believe that constraining composition to Web services only is
a big limitation, as there are many existing, alternative, and established types
of service access mechanisms that could be used, depending on the boundary
conditions.

3. Processes which define how services are composed should be compiled for ex-
ecution.

In most existing systems, process models are interpreted while they are exe-
cuted. We believe that visual, process based tools will not reach widespread
acceptance if they cannot deliver a level of performance which is compara-
ble to traditional programming languages. In JOpera, by defining a visual
composition language, we believe we offer an interesting alternative, as far as
the usability towards rapid composition is concerned. Furthermore, in order
to achieve efficient execution, the processes are compiled to Java executable
code. This code is dynamically loaded into JOpera’s runtime kernel and is
used to manage the execution of multiple concurrent instances of a process.

4. A highly flexible architecture for a process support system.

Flexibility is a key property of JOpera’s architecture both in order to support
the invocation of services of a heterogeneous set of component types and to
enable the deployment of JOpera in a wide variety of configurations. In these
two aspects, flexiblity would seem to reduce the efficiency of the system, one of
the reasons why we choose to compile processes. However, flexibility is useful
to support the choice of the most efficient invocation mechanism for each
component type. Furthermore, it also allows system administrators to create
a configuration of the system with only the necessary features. For example,
thanks to a flexible architecture, the user is empowered to make the most
appropriate trade off between reliability and performance. Likewise, flexibility
is an important characteristic of a dynamically reconfigurable system, where
the optimal configuration is determined autonomously based on the current
workload.

1.3. Structure

This dissertation is organized in two parts. In the first we define the visual language
and the underlying model for service composition; in the second part we present the

3

1. INTRODUCTION

system used to develop, compile and run the composite services.

Chapter 2 presents related work on various research areas (Visual Programming
Languages, Software Composition – including Web Service Composition – Pro-
cess Modeling Languages and Process Management Systems) touched by this
dissertation.

Chapter 3 defines the JOpera Visual Composition Language, a glue language to
draw connections between services and visually specify their interactions along
the time dimension. The language is very general as it makes very little
assumptions about the nature of the services to be composed and provides
a simple, graph-based visual syntax which complements quite well existing
XML-based approaches.

Chapter 4 is about the JOpera Component Meta-Model. After defining how to
model different types of services (e.g., Web services, UNIX applications, Java
classes, and so forth) we give many examples on how to use them as compo-
nents within a process.

Chapter 5 describes the Opera Modeling Language, our contribution related to pro-
cess modeling languages. This language, based on XML, is the internal storage
representation of the processes developed using the visual syntax defined in
Chapter 3.

Chapter 6 discusses how to execute the processes. As opposed to traditional ap-
proaches, where the process models are interpreted by an execution engine, in
JOpera we introduce a compiler which generates executable Java code which
uses the runtime facilities provided by the rest of the JOpera platform.

Chapter 7 presents the design of a radically new architecture for a process support
system. The design of the JOpera process execution kernel attempts to find an
optimal point between flexibility and efficiency as the system can be deployed
in a variety of configurations to fit with the given reliability and scalability
requirements.

Chapter 8 reports some interesting experimental results about the performance of
critical parts of the system.

Chapter 9 summarizes the contributions of the thesis and discusses future research
directions.

Note: in the first two chapters we have interleaved several examples on how to
apply the ideas presented in the surrounding text. Although they can be skimmed on
a first read, we believe that the exercise of creating a new language is not complete
without both showing how to apply it in realistic settings as well as building a set
of tools to support it [255].

4

2. Related Work

This dissertation brings together ideas of different research areas. Our work is related
to both visual languages and component based software engineering, since we are
interested in visually building applications and systems out of reusable and compos-
able parts [229]. However, instead of focusing on typical composition issues regarding
how the ”spatial” architecture of a software system can be specified in terms of com-
ponents and connectors [2, 156], we have focused the JOpera Visual Composition
Language on describing how services should be composed in ”time” [91].

In this chapter we will attempt to explain our views regarding the difference be-
tween services and traditional components and why when composing services it be-
comes important to model their interaction in the temporal dimension. To do so, in
our approach the notion of service composition is closely related to the one of process,
as it originally appeared in the workflow management community [83]. Very recently,
several business process modeling and enactment tools have evolved into mega-
programming [254] environments based on the service composition paradigm [42].

In this dissertation we have not only designed a visual, process-based, service
composition language, but we have also built a system supporting it, featuring both
a visual development and monitoring environment for rapid service composition as
well as a flexible process runtime execution kernel. In this aspect, our work also
improves the state of the art in process execution engines, as we present a flexible
architecture for a process management system, which can be tailored to different
levels of performance and which uses a compiler – as opposed to an interpreter – as
a mean to achieve efficient execution of the visual language.

2.1. Visual Programming Languages

Starting with the pioneering work of the SKETCHPAD system [223], visual lan-
guages and tools have been used with success for many different purposes (e.g.,
programming [126], user interaction [196] and visualization [231]). Visual languages
attempt to provide an effective, graphical, non-linear representation which has been
applied with success to modeling (e.g., UML [197]), parallel computing [25, 32],
laboratory simulation [242], image processing [226], workflow description [256], hy-
pertext design [45], and even object-oriented programming [53, 114]. It is now widely
recognized that a visual language is not better than a textual representation per-se,
but – as with every kind of tool – a graphical notation may be more (or less) use-
ful depending on the context [191]. Similar to [167], in this dissertation we show

5

2. RELATED WORK

that also software composition can be a good application domain for a graph-based,
visual notation.

In particular, we reuse the notion of data flow [62], as a representation of the
interactions between service invocations. For it provides a simple and intuitive nota-
tion, the data flow paradigm has been used by many existing visual languages [104].
However, this simple, side-effects free representation requires to be extended with
additional constructs to be applied in practical settings. In the past, there have been
many contributions concerning the problem of extending data flow languages with
iteration constructs. A survey can be found in [166], while an example of iteration
through vector operators and conditional switches is [17]. Similarly, reflection [151]
is an important feature of a composition language. With it, the visual syntax is
extended to model the interaction between a program and its environment (Sec-
tion 3.7). By using terms such as “higher order functions”, similar ideas have been
applied to data flow based visual languages in the past [79].

In addition to describing the data flow structure of the interaction between dif-
ferent services, in the JOpera Visual Composition language we have also included
a separate description of their control flow dependencies [187]. In the past, many
graphical formalism have also been developed in this area. Here we mention some
contributions that have been applied to workflow modeling. Examples include State
Charts [100], used in the the Mentor project [257] to achieve distributed execution
of the various workflow steps, or Petri Nets [190, 234] and variations such as Object
Coordination Nets (OCoN) [256]. These formalisms have a natural visual repre-
sentation, which provides the user with a good overview over the partial order of
invocation of the services.

Nevertheless, when applied to service composition, one of the limitations of a
visual language based only on control flow concerns the lack of a visual notation
for specifying adaptations between mismatching service interfaces [15]. To this end,
many different domain-specific visual tools and languages have been proposed. Map-
force [11] is a commercial data mapping tool for visual data integration between
heterogeneous XML and database sources, which can also generate Java, C#, C++
executable code and XSL transformations [243]. In [192], the Visual XML Trans-
former (VXT) language has been introduced, advocating the suitability of visual
programming techniques to simplify the specification of XML data transformations.
In it, a set of Visual Pattern-Matching Expressions are used to generate the cor-
responding XSL transformation. Likewise, in [268], a visual formalism has been
applied to the definition of the structure of an XML document and, augmented
with a graph rewriting mechanism, used to specify document transformations. An-
other form of data transformation is provided by visual query languages [43], which
have also been applied to XML documents (e.g., Xing [71], XML-GL [44]). Unlike
in JOpera, where the same visual language is used both for modeling the composi-
tion of services as well as for specifying the necessary adaptations, these languages
and tools are focused only on describing XML data transformations. Mismatching
service interfaces were already a problem in the pre-Web services era. In the context
of Electronic Data Interchange (EDI) systems, a visual language and environment

6

2.2. SOFTWARE COMPOSITION

for EDI message translation has been presented in [94]. Similar to JOpera, the
mappings, which are compiled to a different representation for execution, can still
be interactively debugged using the same visual notation.

2.2. Software Composition

The idea of developing large scale applications by composing coarse grained, reusable
software component modules has been pioneered by [154]. In [254] the term megapro-
gramming has been proposed to describe the construction of large scale software
systems by composition of – so called – megamodules [188]. It has also been widely
recognized that composability is a valuable property of a software system [158]. As
opposed to closed solutions, open, composable systems can foster network effects
thanks to their potential for reusability [48].

In the past, the idea of component based software engineering [101] has surfaced
many times as the next silver bullet [31], which would be expected to revolutionize
the software industry [52]. On the one hand, the full potential of component based
software engineering has not yet been reached. For example, concerning the quality,
or the lack thereof, of current software components, the notion of trusted components
has been recently brought forward [160]. On the other hand, several different com-
plementary (and competing) component-based frameworks have appeared targeting
specific programming languages, platforms and application domains [69] (such as
Delphi [128], CORBA [177], J2EE [56], COM [28] and many others [54, 180, 232]).

As listed in [224], in the literature there have been many definitions of the term
“software component”, each with its own architectural assumptions and the cor-
responding reusability constraints. In general, [16, 199] characterize and classify
software composition systems by their component model, composition technique
and composition language.

1. The component model defines how to describe components, and includes rules
for exchanging equivalent ones. Abstraction, modularity and information hid-
ing are all important features of a component model [184]. Furthermore,
standardization at the level of the component interfaces should enhance their
reusability and substitutability, while lowering the learning curve [149, 159].

2. The composition technique describes the mechanisms used for composing the
components, with the ability of defining parameter types and specific data
exchange protocols. Furthermore, to increase reuse, these techniques should
provide support for adaptation (to fit a component to a given interface) and
gluing (to mediate between different components) [195].

3. The Composition language influences the way composite systems are specified.
It defines how to describe the architecture of a system built out of components,
e.g., in terms of different styles [211]. In [82], it has been proposed that
composition (or “glue”) languages, should be separated from programming
languages, which are instead more useful for implementing the functionality of

7

2. RELATED WORK

the individual components [203]. A framework to classify and compare many
existing architecture description languages has been developed in [156]. These
languages with the appropriate supporting tools for active specification should
be the basis for a composition-based software construction process. Since
software systems tend to evolve and grow over time, the languages used to
describe them should support the corresponding evolution of their architecture.
Finally, a composition language should also lend itself to composition, i.e. by
providing modularity constructs.

In this context, [225] gives a modern perspective on the relationship between
component based software engineering and service oriented architectures. A service
can be seen as a kind of component, as individual services can and should be com-
posed into larger systems [183]. As opposed to traditional software components, the
reusability of services is greatly enhanced, because

a service is an instantiated configured system that is run by a providing
organization. That is, a service is fully grounded. Ultimately, it includes
the power supply to the server machines as well as the organization that
somehow manages to pay the power bill [225].

Therefore, when composing systems out of reusable services, the static, “spatial”
relationships between the component services become less important, due to the fact
that all of the dependencies of a service – by definition – have been taken care of by
the providing organization. Moreover, the interoperability between the services is
guaranteed by the standardization of the mechanisms and protocols used to interact
with them [5]. Instead, it is more useful to define composition in terms of the
dynamic interaction of services along the “time” dimension [91].

Following these ideas, with the abstraction of service, i.e., an interface linked to
a set of access mechanisms, in Chapter 4 we generalize the notion of component to
enable composition across heterogeneous component models, i.e., not limited to a
specific access mechanism, such as Web services [245, 246]. Likewise, composition
across heterogeneous component models has also been advocated in [174], where the
feasibility of integrating EJB with COM components has been demonstrated in the
Vienna component framework [175].

2.2.1. Web service composition

Although they may not solve all component integration problems [236], emerg-
ing Web service technologies show great promise in reducing the complexity of
interconnecting heterogeneous software components distributed across the Inter-
net [61, 73]. They provide standard protocols for invoking (SOAP [245]), describing
(WSDL [246]), and discovering (UDDI [173]) services in a platform and vendor in-
dependent manner [89]. Web services collaboration has been named the “Next Big
Thing” [269] because Web services can realize their full potential only through the
ability to compose complex services out of agglomerations of basic ones [42].

8

2.2. SOFTWARE COMPOSITION

More precisely, once it is possible to interact with individual services, the ability
to reuse, compose and describe relationships between basic services becomes impor-
tant [5]. Furthermore, a stateful Web service may export multiple operations, which
may need to be invoked following a certain interaction pattern. Another innovative
aspect of Web services consists in the flexible and dynamic means of assembling
different services. To do so, services advertise their capabilities so that they can be
automatically discovered by the clients composing them [65]. Considering that it is
not realistic to expect clients to be able to interact with arbitrary services, current
efforts focus on enabling alternative implementations of previously known services
to be located and invoked [110].

To denote these ideas various terms have been proposed: choreography [248], or-
chestration [112], automation [227], coordination [113], collaboration [66], and con-
versation [249]. In our case we prefer the term composition, since we are interested
in developing applications by composing existing and reusable building blocks [263].

Web service composition is a very active area, where many different projects
and many systems (e.g., [5, 34, 42, 47, 143, 165, 183]) are currently under develop-
ment spanning from the extension of traditional programming or scripting languages
(e.g., [12, 107, 121, 161, 221]) to new, ad-hoc languages (e.g., XL [74, 75]), including
XML-based process modeling languages [29, 66, 112] as well as visual programming
languages [167] and data-driven modeling languages [45].

Concerning the limitations of traditional programming languages when applied
to coarse-grained composition, already in [82] the case for a separate “glue” lan-
guage to coordinate the individual components was presented. Furthermore, re-
ferring to the old impedance mismatch problem between programming languages
and databases [51], it has been argued that a similar problem exists with Web
services [74]. Although more and more tools (e.g., [12, 107, 161, 221]) are being de-
veloped to address some of these issues, interacting with such coarse grained units
of compositions by exchanging complex XML documents is still cumbersome to do
with ordinary programming languages.

Our alternative approach towards a language for composition at a higher level of
abstraction originates from the workflow area [83], where process modeling languages
and related tools have been evolving to support the composition of Web services [141,
269]. In fact, both the emerging Business Process Execution Language for Web
Services (BPEL4WS [112]) and the competing Business Process Modeling Language
(BPML [29]) specifications use an XML-based syntax to represent how the Web
services are composed into executable processes.

It should be noted that some efforts are currently concentrated in automat-
ing some of the tasks involved in composing services residing at different location
and platforms by leveraging semantic annotations in their interface descriptions
(e.g., [155]). Hence, an XML syntax appears to be well suited for supporting auto-
matic service composition. Nevertheless, we would like to emphasize that no matter
whether a Web service composition has been manually constructed by a human pro-
grammer, or matching services have been connected automatically using additional
semantics, a visual surface language (such as the JOpera Visual Composition Lan-

9

2. RELATED WORK

guage), which can be used to give a complementary, visual representation of the
result, is of fundamental importance to enable its understanding.

2.3. Process Modeling Languages

As previously mentioned, our approach to modeling service composition is based
on the notion of process, which is related to the term workflow. The Workflow
Management Coalition (WfMC) originally defined workflow as

the automation of a business process, in whole or part, during which doc-
uments, information or tasks are passed from one participant to another
for action, according to a set of procedural rules [135].

Apparently, this definition restricts the scope of applicability of processes to
business automation scenarios. This assumption can be considered as a result of
the evolution of workflows from the groundbreaking work on office information sys-
tems [67, 270] and related studies on organizations [172]. Nowadays, Business Pro-
cess Management Systems (BPMS) are defined as

a generic software system that is driven by explicit process designs to
enact and manage operational business processes [239].

Still, we could remove the word “business” to have a more general definition
with a wider range of applications. In any case, such definition implies that a mod-
eling language is required to specify the processes to be enacted by the underlying
“process-aware” system. As opposed to hard-coding assumptions about a business
process into the architecture of a corporate information system, having an explicit
description of a process has several advantages:

1. Explicit workflow models enable actors to track the progress of active pro-
cesses and perform off-line analysis of the executions which can provide useful
feedback for improving the performance of the processes and contribute to
the efficiency of an organization. Thus, in addition to task coordination is-
sues, process models typically include a specification of non-functional aspects,
such as deadlines, priorities, as well as resource constraints.

2. A workflow model represents the high-level procedural aspect of a business
process. It can be used as documentation for business analysts and internal
auditors, but – as opposed to other modeling notations (e.g., UML [63, 256])
– still retains formal, executable semantics that can be automatically enforced
by a workflow engine.

3. Likewise, if the process of modeling is essential in creating shared understand-
ing in an organization, the modeling technique employed is meant to keep
discussions on the right track, and should be chosen accordingly [123].

10

2.3. PROCESS MODELING LANGUAGES

4. In addition to information and data, also business processes, i.e., the connec-
tion of tasks in a value chain, are valuable assets of an organization [209].
Thus, similar to database management systems, which are normally used for
the safekeeping and management of an organization’s data, also process man-
agement tools should be used to model, analyze, and execute its business
processes [215].

In the past ten years, a very large number of process modeling languages have
been proposed both from the industry and academia. (e.g., [26, 64, 83, 164, 233,
239]). Process modeling languages have been applied to several domains, includ-
ing business process modeling [146, 200], e-commerce [6, 202, 235], virtual labo-
ratories [4], DNA sequencing [157], scientific computing [153, 252], grid comput-
ing [22, 39], and software development [78, 181]. More recently, the notion of process-
based service composition has appeared [42, 147]. To address some of the require-
ments of these areas, it was suggested to extend such languages with features such as
flexibility [237], event-based interaction [41], and transactional properties [148, 206].

One of the contributions of [98] was the abstraction from the variety of existing
languages of a set of common constructs and features into a canonical representation
for processes. By defining mappings from different, domain-specific representations,
the same, generic process model can be used to execute processes belonging to
different application domains. In this dissertation we build on this idea, as we
have structured our process modeling language across different levels and defined
mappings across each of them. As shown in Figure 2.1, each level corresponds to a
particular function that determines the characteristics of the language.

� At the user-oriented level, processes are displayed using a visual notation
(Chapter 3). The same notation is used both at development and at de-
bugging, monitoring time.

� However, a tool-oriented XML-syntax is used for the internal storage of the
processes (Chapter 5). This facilitates the development of an open process
development toolchain, where a set of editors, model checkers, compilers share
a common representation optimized for efficient automatic processing.

Display Visual JVCL (Chapter 3)

OML (Chapter 5)

Java, BPEL, OCR (Chapter 6)

SyntaxFunction Language

XML

Platform-dependent

Storage

Execution

Figure 2.1.: Summary of the process modeling languages presented in this disser-
tation

11

2. RELATED WORK

Workflow pattern OML BPEL [258]

1 Sequence + +
2 Parallel split + +
3 Synchronization + +
4 Exclusive choice + +
5 Simple merge + +
6 Multichoice + +
7 Synchronizing merge + +
8 Multimerge - -
9 Discriminator + -

10 Arbitrary cycles + -
11 Implicit termination + +
12 Multiple instances (without synchronization) + +
13 Multiple instances (with a priori design

knowledge)
+ +

14 Multiple instances (with a priori runtime
knowledge)

+ -

15 Multiple instances (without a priori runtime
knowledge)

- -

16 Deferred choice +/- +
17 Interleaved parallel routing +/- +/-
18 Milestone + -
19 Cancel activity + +
20 Cancel case + +

Table 2.1.: Workflow patterns supported by the Opera process Modeling Language

� Before they can be executed, processes are compiled to other representations
such as OCR [98, 21], BPEL [112], and Java (Chapter 6). This approach is
very similar to emerging Model Driven Architecture (MDA [127]) techniques,
as a refined, executable representation of a process is generated automatically
from its higher-level design.

Incidentally, a similar approach is currently followed by most modeling tools,
where the visual UML representation is internally stored (and exchanged) using the
XML-based XMI language. This way, different UML editing tools not only share the
same visual language, but also achieve interoperability, as the diagrams produced
with one tools can be read by another one.

Alas, this level of interoperability has not yet been achieved by current pro-
cess modeling tools. In practice, given the number of process modeling languages
and tools on the market, issues such as runtime interoperability and portability of
process definitions become very important [60]. To address this technology lock-
in problem [158], several major players are currently proposing process modeling

12

2.3. PROCESS MODELING LANGUAGES

standards. Although the current leader is represented by the BPEL4WS specifica-
tion, which we briefly present in the following section, a consensus has not yet been
reached on a common process modeling language.

Different process modeling languages can be also compared in terms of their
expressive power. More precisely, an evaluation based on so-called workflow patterns
can be carried out [233]. To give an idea on how the Opera process Modeling
Language (Chapter 5) fares in this regard, in Table 2.1 we have listed what are the
control flow patterns that can be naturally expressed.

2.3.1. Business Process Modeling and Execution Language for
Web Services

The Business Process Execution Language for Web Services (BPEL4WS, or
BPEL [112]) is a process modeling language for Web service composition. It con-
tains abstract and executable processes. Abstract processes are used for describing
business protocols, while executable processes may be used to implement composite
services. Based on an XML-syntax, BPEL supports a fixed set of basic activities
(e.g., invoke, send, receive, assign) to represent the synchronous or asynchronous
invocation of services or data transfers between the global variables of a process.
Furthermore, it also includes complex activities (e.g., sequence, flow, while, pick)
which are used to define the structure of the process in terms of its control flow.

Although this specification represents the current state of the art in process-
based Web service composition, its standardization process has not yet completed
and further additions and modifications are being discussed at the time of writing.
Figure 2.2 attempts to put the evolution of this language into context. BPEL
originated from the fusion of two existing (and quite different) languages. Its graph-
based constructs (such as flow) have been inherited from the IBM’s Web Services
Flow Language [142]. The block-based constructs such as while or sequence come
from Microsoft’s XLANG [227].

The presence of alternative, overlapping and inconsistent constructs has made it
a challenge to add features such as exception handling [58]. Furthermore, although
the language originates from the fusion of two different ones, it provides limited
support for a large set of established workflow patterns [258] (Table 2.1). In practice,
the language makes it particularly difficult to compose services with mismatching
interfaces, as one of its underlying assumptions is that the services to be composed
have perfectly matching interfaces [116]. Lately, as some more limitations have
become apparent1, the proposal of extending the language with support for including
Java snippets was brought forward by IBM and BEA Systems [111]. Although the
need for such an extension is clear, one may argue that, as opposed to Java, a
.NET compliant language should be chosen instead. Thus, a technology which was
originally tied to platform neutral Web services, becomes once again tangled into
portability issues [216]. BPEL has also been criticized for lacking a clear formal
underpinning.

1See Section 4.1 for a discussion on the limitations of restricting composition to Web services.

13

2. RELATED WORK

FlowMarkBizTalk

WSFLXLANG

BPEL4WS BPML

BPEML?Java

BPELJ
March 2004

2004, in progress
1995

March 2001August
2002

May 2000 May 2001

199X199X

Figure 2.2.: Evolution of the BPEL4WS specification

Although there are well-established process-modeling techniques com-
bining expressiveness, simplicity, and formal semantics (such as Petri
nets [190] and process algebras [162]), the software industry has chosen
to ignore these techniques. So, the world is confronted with too many
standards, mainly driven by concrete products or commercial interests.
The only way to stop this is to ignore standardization proposals that are
not using well established process-modeling techniques. This will force
vendors to address the real problems rather than create new ones [236].

As we will show in the first part of the dissertation, the languages we developed
share with BPEL the notion of process-based composition. However, there are many
important differences that should be pointed out. First of all, simplicity was one
of the goals in defining JOpera’s process based language. Therefore, as opposed
to creating a language by accumulation of features from existing ones, we purpose-
fully kept the number of redundant (and arbitrary) constructs to a minimum. This
approach helped both to lower the language’s learning curve and to simplify the
design and significantly reduce the development effort of the supporting tools. Fur-
thermore, the JOpera Visual Composition Language does not use an XML-based
syntax (Chapter 3). As we will show in Example 4.3, in addition to service compo-
sition, the same visual syntax can be also applied to specify interface adaptations.
Furthermore, the process-based service composition language we have developed is
not tied to a particular service access technology. In other words, Web services are

14

2.4. PROCESS MANAGEMENT SYSTEMS

only one of the various types of components that can be composed into a JOpera
process (Chapter 4).

To the best of our knowledge, the BPEL4WS [112] specification is currently sup-
ported by three implementations. In all cases the execution engines are meant to
be deployed inside an application server. The Collaxa BPEL Server [49] is the most
advanced as it comes with a graphical process designer and debugger. The visual no-
tation employed has a very close mapping to the underlying BPEL document. This
has the advantage that a BPEL document doesn’t need to be edited at the XML
level. On the other hand, unlike the JVCL language, the notation is not abstract
enough to be applied to other process modeling paradigms. The second implemen-
tation is the Business Process Execution Language for Web Services Java Run Time
(BPWS4J [106]) from IBM, which also includes an editor with minimal visual sup-
port. The third system supporting the BPEL specification is OpenStorm’s Service
Orchestrator [179]. In addition to a two-way graphical/XML editor, it features a
runtime environment which can be deployed in both Java and .NET application
servers.

2.4. Process Management Systems

Although the exercise of defining a new process modeling language is not too dif-
ficult, more work is required to actually build a system for the execution of such
language. Thus, relatively less work can be found about distributed architectures
for scalable process execution [92]. More specifically, scalability has been a com-
mon goal to be achieved through different means: replication at the database layer,
distribution in the process execution engine and decoupled communication through
events notification. Only rarely all of these approaches have been followed within
the same system.

The idea of building a distributed workflow enactment system based on event
communication and event-condition-action rules has been also proposed, e.g., in
the EVE project [85] and the ORCHESTRA process support system [57]. The
exchange of event notifications plays an important role in our approach. However,
in our experience, ECA rules are only a useful intermediate representation to bridge
the gap between graph based models, which can be more readily understood by the
user designing the process, and the corresponding executable code (Chapter 6).

The theme of enhancing the system’s fault tolerance and scalability through
replication at the database layer has been pioneered by [124]. Also in the MOBILE
project [102], in order to replicate the process execution layer, a scalable strategy
for distributing the process data among separate databases has been proposed [208].
Although we compare the performance of a centralized, persistent repository with
a distributed, volatile implementation, in Chapter 7 we do not pursue replicated
storage any further.

Decentralization has been pursued by the MENTOR project [257], where process
definitions are analyzed and automatically partitioned among distributed execution
sites in order to avoid the bottleneck of a centralized engine [168]. This approach

15

2. RELATED WORK

OPERA

WISE

BioOpera

OSIRIS

JOpera

IvyFrame

2003-

1999-2004

1997-2001

1997

1996-1999

2002-

Figure 2.3.: Evolution of the Opera system.
The gray area groups the systems developed at the Information and Communication Systems

Research Group.

fits well with the requirements of workflows spanning across multiple organizations.
However, it is possible for one execution site to become a hot spot, when it is in-
volved in the execution of a large number of processes. To deal with this problem,
techniques such as meta-data replication based on publish/subscribe and the abil-
ity to partition process navigation among alternative service providers have been
employed by the OSIRIS project [207, 251].

Once a distributed process architecture has been designed, load balancing,
network congestion and quality of service guarantees become interesting options.
In [122] a cluster-based workflow management system has been presented focusing
on a quantitative comparison of two different load balancing strategies. In [20] sim-
ulations are used to study how different workloads influence the load of the network
and thus, the scalability of the workflow engines in the context of several distributed
architectures. In [95] extensive simulations are used to validate a composition model
with quality of service guarantees based on service overlay networks.

2.4.1. About the JOpera project

JOpera is the visual, process-based service composition system of the Information
and Communications Systems Research group at ETH Zurich [185] and corresponds
to the latest development step of a series of process support systems which were
prototyped in the past decade. To put this dissertation into a historical perspective,
in this section we briefly present the foundation on which we have built upon.

The original Opera system developed as part of [98] has since undergone several
generations and evolutionary branches, some of which are shown in Figure 2.3. In [9],
the idea of applying workflow management systems to an area wider than business
process modeling and enactment was first explored by arguing that such systems
could provide a platform for distributed processing over stand-alone systems and

16

2.4. PROCESS MANAGEMENT SYSTEMS

applications. Based on this approach, an example application scenario related to
geographical information systems was presented in [7]. Following these ideas, in
order to show the benefit of making workflow modeling languages more and more
similar to traditional programming languages, the introduction of features such as
exception handling [97] and inter-process communication [8] was proposed. As we
will present in Section 3.4.3, exception handling is also supported by the JOpera
system in a similar fashion. However, in Section 4.10 we will show a simpler solution
to model the asynchronous interactions of different process instances. Instead of
extending the process model with additional constructs, we included basic send and
receive primitives in JOpera’s component library.

Later on, the kernel of the Opera system was extended with transactional ca-
pabilities [206]. The result was the WISE system, a platform for creating virtual
enterprises, tailored to the business to business electronic-commerce area [6]. In this
project, a first visual representation of Opera’s textual process modeling language
was introduced by integrating a graphical modeling tool called IvyFrame [115]. Com-
pared to the JOpera Visual Composition Language, the visual notation of WISE –
used to represent only the control flow dependencies between the tasks of a process
– was based on Petri nets. As part of the project, the Ivyframe tool was extended
to support the whole lifecycle of a process with development, simulation and mon-
itoring features. The WISE system was applied with success within the maritime
industry [136].

Quite different from electronic commerce and virtual enterprises, bioinformatics
and virtual laboratories were the original application area of the BioOpera sys-
tem [4]. In it, a heavily refactored version of the original Opera kernel was aug-
mented with resource management and scheduling capabilities [186]. This allowed
us to show the feasibility of applying a process support system to cluster [23] and
grid [22] computing scenarios. More precisely, in BioOpera the notion of process
was applied to model complex distributed computations to be enacted over one or
more unreliable clusters of computers. Reliability was achieved through a persistent
implementation of the process execution kernel and through the ability of auto-
matically rescheduling failed task invocations. Given the complexity of managing
long-lived computations in such distributed environments, [21] showed the feasibility
of an approach based on autonomic computing principles [109].

17

2. RELATED WORK

18

Part I.

The JOpera Visual Composition
Language

19

3. JOpera Visual Composition
Language

This chapter introduces the syntax of the JOpera Visual Composition Language
(JVCL), describing the visual representation of processes and their data flow (Sec-
tion 3.3) and control flow (Section 3.4) structure as well as more advanced constructs
such as iteration (Section 3.5), visual comments (Section 3.6), and reflection (Sec-
tion 3.7).

3.1. Motivation

Why a new visual process modeling language? As we have seen in the previous
chapter, there have been already many contributions, both in the areas of visual
programming languages and visual process modeling.

Visual programming languages, however, have been mostly oriented towards pro-
gramming in the small, positioning themselves on a level of abstraction comparable
with traditional programming languages, such as C or Java [104]. In this domain,
it has become clear that two (or three) dimensional approaches suffer from visual
scalability problems [35], where the usability of such tools and languages decreases
as the size of the diagrams increases [191]. Only recently there have been some
attempts to shift the focus to programming in the large, where the composition of
coarse grained software components (or services) plays a more important role [167].

In this dissertation, we have designed a visual composition language, whose main
application domain lies in describing of how services are composed together [187].
We believe this is a more viable application area for a visual language, where a
non-linear, two dimensional syntax can be most appropriate. Furthermore, with our
language and tools we have also made an attempt to address the visual scalability
problem1.

Visual process modeling languages have been mostly based on adaptations and
variations of existing graphical notations and formalisms (e.g., Petri-Nets [190, 234]
or State Charts [100, 257]). Also within the UML community, business processes
have been usually modeled using Activity diagrams [256], for which the underlying
semantics has been upgraded to Petri Nets in the current UML 2.0 proposals [116].
The strong point of all of these approaches lies in the accurate description of the

1See Section 7.2.2 on page 150 for more information on the usability features of JOpera’s visual
development environment.

21

3. JOPERA VISUAL COMPOSITION LANGUAGE

control flow of a process, where a large number of constructs is devoted to describing
the partial order of invocation of the services composing the process, in order to
support various branching and synchronization patterns [233]. However, as these
notations are applied to service composition, some limitations become apparent:

� In order to provide an executable description of a process built out of in-
terconnected components, it is not enough to model its control flow, as the
components typically exchange some kind of information between their invo-
cations.

� Most existing visual process modeling languages do not use a visual syntax to
program the data flow, which describes how data is transferred across com-
ponent boundaries. As an example, in the syntax of the UML 2.0 activity
diagrams profile for Web service composition, the data flow transfers between
the activities representing service invocations are programmed with a textual
syntax inside comments associated to control flow edges [116].

� Very little can be done with a pure control flow approach, as far as the visual
modeling of the necessary adapters between mismatching service interfaces is
concerned.

� The control flow and, when supported, data flow aspects of a process model are
usually overlayed in a single diagram [63]. This approach leads to unnecessary
clutter and, given the complexity of real business processes [36], may hinder
the usability and the success of such visual languages and tools.

In the language we describe in this chapter, we attempt to address such lim-
itations by modeling processes primarily by their data flow structure. This way,
developers can define the composition of services by drawing connections between
their interfaces and, in realistic settings, also visually specify the required adapters2.
Nevertheless, the control flow structure of a process is still accessible, as it provides
a useful overview over the content of a process and the order of invocation of its
components, but it is not the primary (and only) feature of the language, as such
information can be partly derived automatically from the data flow graph.

Finally, one of the goals that influenced the design of the JOpera Visual Compo-
sition Language was to provide a simple, intuitive – and executable – visual notation
to support the rapid, user-friendly development of processes composed of reusable
services. To avoid misinterpretation problems [96] we reduced the number of ad hoc
constructs and extensions to a minimum, keeping the balance between the need for
expressive features and the constraints imposed on the underlying JOpera runtime
platform.

2See Example 4.3 on page 69 for an example on how to visually adapt mismatching service
interfaces

22

3.2. PROCESSES AND TASKS

3.2. Processes and Tasks

A process is composed of tasks, which can be either activities (simple tasks) or
subprocesses (complex tasks). Activities represent the invocation of a service, while
SubProcesses represent the invocation of another process. As shown in Figure 3.1,
in the JVCL language a task is drawn as a box with its name inside. An activity
box has a single border; boxes for subprocesses have a double border to indicate
nesting. Furthermore, the name of the service to be invoked or the process to be
called can also be displayed in the task box. If necessary, e.g., to reduce clutter, the
user can decide to hide this additional information. Given the abstract nature of
most services and to keep the notation as simple as possible, we have chosen not to
use icons in addition to names to illustrate the tasks’ operations [196].

The tasks of a process are linked by data flow (Figure 3.2) and control flow
(Figure 3.3) dependencies, therefore the structure of a process can be programmed
by drawing two directed graphs. The nodes of these graphs represent the tasks and
their data parameters. The edges represent control flow or data flow dependencies.

3.3. Data Flow

The data flow graph defines how the data is exchanged between the parameters of
the various tasks of the process. The nodes of the graph represent the process, its
tasks and their parameters. The edges represent data flow transfers.

More specifically, tasks are associated with a set of input and output data pa-
rameters. Input parameters are used to pass data to a task about to be started.
Output parameters contain the results returned from the task once its execution
has finished. This property is visually represented in the data flow graph syntax, as
the tasks are connected with incoming edges to their input parameters. Conversely,
outgoing edges connect tasks to their output parameters. It should be noted that
these edges are not removable, since there cannot exist a parameter box disconnected
from its task. To complement the parameter’s name, it is possible to show its type
inside the same box. The user may choose to display this additional information,
e.g., to resolve type mismatches.

Similar to tasks, also processes have input and output parameters. However, to
improve readability by giving a higher degree of freedom for the graph layout, the
parameters of a process are linked to two separate shapes representing the input
and output interface of the process.

ActivitySubProcess

Process

Activity

Service

SubProcess

Process

Process

Figure 3.1.: Syntax definition for the Activity and the SubProcess

23

3. JOPERA VISUAL COMPOSITION LANGUAGE

Process Input Parameter

Process Input

Process Output Parameter

Process Output

Activity Input Parameter

Activity Output Parameter

Activity Input Parameter (2)

Activity

SubProcess Input Parameter

SubProcess Output Parameter

SubProcess

Constant Value

Process - DataFlow

Figure 3.2.: Data flow graph syntax

3.3.1. Bindings

Data flow connections between parameters define how their content is transferred
between them: a data flow binding is represented as an edge going from an output
parameter box of a task to an input parameter box of another task. Furthermore,
as shown in Figure 3.2, also constant values can be connected to input parameters
of tasks.

The same parameter can be connected by multiple data bindings. For example,
to copy data produced by one task to multiple ones, one output parameter box can be
linked to multiple input boxes. Multiple incoming bindings are also allowed by using
a last writer wins semantic: the value of the input parameter will be overwritten
each time a task finishes and, at the end of the process, its value will be a copy of
the output parameter attached to the task finishing last. This rule has been chosen
considering that multiple incoming bindings are mostly used in loops or when the
control flow merges from two or more alternative execution paths.

The same rule is also applied to the output parameters of processes. More specif-
ically, if such a parameter is bound to a constant value or directly to a process input
parameter, this binding is evaluated first, as the process is started. The remain-
ing bindings are evaluated after their corresponding tasks have finished. Thus, the
value of the process output parameter will be overwritten only if these tasks will
have finished their execution, as specified by the conditions in the control flow graph.

24

3.4. CONTROL FLOW

Activity1

Program1

Activity2

Program2

Activity3

Program3
SubProcess1

Process2

SubProcess2

Process1

Activity4

Program2

Process - ControlFlow

?

?

Figure 3.3.: Control flow graph syntax
Task boxes contain the name of the task and the name of the program (or process)

to be invoked. Activity2 and Activity3 are marked with the condition icon.

3.4. Control Flow

The partial order of execution of the tasks inside a process is defined by its control
flow graph, with tasks as nodes and control flow dependencies as directed edges.
(Figure 3.3)

By definition, a data flow binding between two tasks implies a control flow de-
pendency. This is because it is not possible to transfer data from task A to task B
unless task A has successfully finished execution and B has not yet been started.
It follows that a subset of control flow dependencies can be automatically derived
from the data flow specification. Furthermore, extra control flow dependencies can
be directly added to the control flow graph to model constraints in the order of
execution of tasks that are not explicit in the data flow.

A control flow edge from node A to node B is used to show that task B cannot
start until task A has reached a certain execution state associated with the edge.
Examples of such states are: finished (by default), failed (when an error during the
execution of the task is detected), aborted (after an user has killed the task), or not
reachable (when the task has been skipped). The state is visually represented by
the color of the dot positioned at the tail of the control flow edge. This makes it
easy to follow, at runtime, whether a control flow dependency has been activated,
as this only happens if the color of the task box, representing its state, matches the
color on the edge.

3.4.1. Conditions

Start conditions, boolean expressions referencing parameter values, are associated to
each task and can be used to model alternative execution paths. A task can only be
started when all of its control flow dependencies are activated and its start condition
is satisfied. Otherwise, if the condition evaluates to false, the task is skipped. In this
case, to record this decision the state of the task is set to not reachable. Currently,
start conditions are specified only in textual form as one of the task properties.

25

3. JOPERA VISUAL COMPOSITION LANGUAGE

However, boxes of tasks with non-trivial conditions (e.g., TRUE) are marked with a
small question-mark icon.

3.4.2. Synchronization

If there is more than one incoming control flow edge to a node C, it must be de-
fined how the various dependencies are combined, as task C represents a potential
synchronization point in the process where multiple execution paths merge.

By default, the semantic is to and all dependencies. For example, if there is a
dependency coming from service A and another from B, task C cannot be started
until both tasks A and B have finished. One exception to this rule is when there
is a merge of alternative execution paths, in that case the semantic is to xor the
connections. Similarly, for incoming connectors part of a loop in the graph, the
semantic is to or the loop dependency with the others.

To provide a general way of modeling arbitrary synchronizations in the control
flow, in addition to a condition, a task is associated with an activator, a boolean
expression defining how to synchronize multiple incoming control flow edges. Such
expression, normally generated from the control flow graph, can be also edited in
textual form. In this case, the JOpera Visual Development Environment ensures
that the graph topology and the activator remain consistent.

3.4.3. Exception Handling

Modeling failure handling behavior is an important requirement for a composition
language, as exceptions are the rule when running processes in a distributed envi-
ronment. As opposed to introducing an ad-hoc language construct, e.g., block-based
exception handling, we extend the existing control flow graph construct as follows3.

As shown in Figure 3.4, failure handling behavior is specified in the control flow
graph by using connectors which fire on failure of a task. An exception handling
task may be added to a process by drawing such connections from one or more tasks
to it. Similarly, a compensation handler is added by connecting it to the task which
may require compensation with a control flow connector which fires after the task
is aborted. With start conditions applied to the output parameters of the failed
task, it is possible to discriminate between different types of failures and activate
the appropriate exception handler. By drawing an edge from the exception handler
back to the failed task it is possible to retry its execution after the exception handler
has finished. As an alternative, it is possible to resume the execution of the process
along an alternative execution path, triggered by the failure.

With the previously described solutions, it is possible to handle the failure of
individual tasks. Furthermore, in order to handle the failures of any tasks belonging
to a certain part of a process, the same exception handler should be triggered by
the failure of at least one task belonging to a certain set of tasks. To model this,

3It is possible to map a block surrounding a set of tasks to edges linking the tasks to the exception
handler corresponding to the block [58].

26

3.4. CONTROL FLOW

Activity1

Activity2

Activity3 ExceptionHandler

ProcessException - ControlFlow

finished

finished

finished failed

Figure 3.4.: Control flow with exception handler

it is possible to connect the various tasks to the same exception handler with the
appropriate failed dependency and to select an or synchronization type between all
of the dependencies. This way, the exception handler will be triggered by the failure
of at least one of the tasks.

Another possibility, similar to block-based exception handling, is to attach an
exception handler to a subprocess, so that it will be triggered by any failure occurring
inside the called process. This is particularly useful when the exception handler
cannot be added directly within the same process which contains the tasks that
may fail.

Example 3.1: Book Prices

As a first example, we show how to use the basic features of the JVCL language
in a Web service composition scenario where a process is used to compare the
prices of books sold at various Internet stores. This process receives as input
an ISBN number and returns as output an URL for a report containing the
price comparison for the book. Since stores at different countries return prices
in their own currency, the user may supply the currency to be used in the
report as optional input parameter. The process contains the necessary steps
to perform the currency conversion. The report also contains the book’s author
and title, retrieved from a library database, and a listing of the top 5 results
returned by a web search engine looking for the author and the title of the
book.

Process BookPrices

Figure 3.5 shows the control flow graph for the price comparison process. The
process is composed of three activities (Library, GoogleSearch, MergeReport)

27

3. JOPERA VISUAL COMPOSITION LANGUAGE

and one subprocess (QueryBookPrice). As its name suggests, QueryBookPrice
involves contacting a book store to inquire about the price of a certain book
identified by its ISBN. While this happens, the Library activity retrieves the
author and title of the book. When the library query finishes, the web search is
started and when all of the previous tasks are finished the report is generated.

Library

GoogleSearch MergeReport

QueryBookPrice

BookPrices - ControlFlow

Figure 3.5.: Control flow graph of the BookPrices process

The data flow graph of this Process has been partitioned into two differ-
ent views to enhance its readability. Figure 3.6 shows one view with data
parameters and bindings of the Library, GoogleSearch, and MergeReport ac-
tivities. While the second view in Figure 3.7 shows the data flowing through
the QueryBookPrice subprocess.

The first view (Figure 3.6) shows one of the input parameters of the pro-
cess (isbn) passed both to the Library and MergeReport activities. Given
the isbn as input parameter, the Library activity returns the corresponding
author and title. These two parameters are passed on to the GoogleSearch

activity, which will run a web search using them as keywords and return the
top 5 results. The MergeReport activity receives the title, the web search
results, the author and isbn of the book, it uses it to generate a report and
returns a url where it can be found. When the process is finished this value is
returned as the reporturl output parameter of the process.

The rest of the data flow is shown in the view of Figure 3.7, which shows
an example of the parallel split and merge iteration constructs presented in the
following Section 3.5. In the example, they are used to simplify the process,
because it can call in parallel four different services having the same inter-
face with only one subprocess. Both isbn and destination currency process
input parameters are passed to the processQuery subprocess, which also re-
ceives the identifier of the bookshop service to be called and the source

currency of the price returned by the service. At runtime, a parallel copy
of the processQuery subprocess will be executed for each element found in
these two input parameters. In the example, the service and source param-
eter are bound to constants with a list of four strings, which contain service
identifiers (BooksCH, AmazonCOM, AmazonDE, BNCOM) and the corresponding

28

3.4. CONTROL FLOW

currency identifiers (CHF, USD, EUR, USD). The prices returned by the par-
allel instances of the processQuery subprocess are merged into the prices

input parameter of the MergeReport activity. Both views show the same data
flow connection binding the output of the last activity with the output of the
process.

isbn

BookPrices Input

reporturl

BookPrices Output

isbn

authortitle

Library

isbnauthortitle

url

results

MergeReport

authortitle

results

GoogleSearch

BookPrices - DataFlow/Search

Figure 3.6.: First data flow view of the BookPrices process

Process QueryBookPrice

The QueryBookPrice process is called from within the BookPrices process.
It contacts two Web services in order to inquire for the book’s price and to
convert it to the desired currency. Figure 3.8 shows its data flow graph. This
process contains two activities: QueryBookPrice, CurrencyConvert. The in-
put and output parameters of the process match the ones of the processQuery
subprocess. The isbn of the book is passed to the QueryBookPrice activity.

29

3. JOPERA VISUAL COMPOSITION LANGUAGE

isbn currency

BookPrices Input

reporturl BookPrices Output

prices

url

services MergeReport

price

isbn dest

service

source

QueryBookPrice

BooksCH AmazonCOM AmazonDE BNCOM

CHF USD EUR USD

BookPrices - DataFlow/Query

Figure 3.7.: Second data flow view of the BookPrices process

isbndest source service

QueryBookPrice Input

price

QueryBookPrice Output

isbn

price

SYS.prog QueryBookPrice

amountsourcedest

amount

CurrencyConvert
?

QueryBookPrice - DataFlow

Figure 3.8.: Main data flow view of the QueryBookPrice process

In order to choose the services to call, the actual service name is assigned
to one of the activity’s system input parameters called SYS.prog, resulting in
the invocation of the corresponding service. After the query has completed, the

30

3.5. ITERATION

resulting price and the source and destination currencies are passed to the
CurrencyConvert service, which will return the corresponding amount. When
the process finishes, the converted price is returned to the caller. It should
be noted that the CurrencyConvert service is not invoked when the currencies
are the same, in this case the price is returned directly from the result of the
query.

3.5. Iteration

Supporting iteration in a language based on the data flow paradigm requires to
introduce some auxiliary construct [166]. In the JVCL we rely on three constructs
with a different degree of generality. First, we introduce two special data flow
connectors used to repeat the same operation on every element of a list. Second,
we have been experimenting with arbitrary loops in the control flow graph. Third,
recursive subprocess calls are also supported.

3.5.1. List-based Loops

List-based loops can be used to repeat the same operation on a given set of values.
When no data dependencies hold between the values, the operation can be performed
in parallel. Otherwise, the task must be applied sequentially on each value. To
achieve this, we introduce a pair of special data flow connectors, called split and
merge. As in other graph rewriting schemes [25], the overall effect of these operators
at runtime is to replicate a task node for each value of the input parameter list. This
construct has also been classified as a multi-instance based workflow pattern, where
the number of multiple instances of tasks is known in advance, before the first one
is started [233].

This pair of operators has been originally introduced to support the modeling of
data parallel computations, where a potentially very large workload can be subdi-
vided in a number of small, independent partitions to be executed in a distributed

list

value

Process Input result list

Process Output

element

result

value

Task

Process - DataFlow

Figure 3.9.: Data flow syntax of the list-based loops

31

3. JOPERA VISUAL COMPOSITION LANGUAGE

environment, such as a cluster of computers [4]. Especially if the amount of work
is known in advance, the list-based loops offer a straightforward way of connecting
the three steps of such computation: 1) the partitioning of the input data; 2) the
parallel processing of the pieces; 3) the aggregation of the results, once all pieces
have been completed.

Figure 3.9 shows how these operators are visually represented. In it, a Task is
invoked for each element of a list producing the corresponding result. Such split
operation is represented by the gray triangle on the data flow binding linking the
list to the element parameter. Although each task receives a different element of
the list, all tasks are invoked with the same value, as this parameter is connected
with a plain data flow binding. Upon completion of all invocations, the merge
connector is used to concatenate all results into the result list parameter.

By setting properties associated with the operators (Figure 3.16), the user can
control whether the invocation of the tasks happens sequentially or in parallel and
how the elements are extracted from the list. For example, JOpera can interpret a
string with multiple words separated by blanks as a list of words. Similarly, JOpera
can also split and merge arrays encoded in the SOAP protocol using XML tags as
element separators.

In case of the parallel invocation of the multiple task instances, it is possible
to control both how the failures that may occur during the processing of some
of the elements are aggregated and how the parallel tasks are synchronized. In
some scenarios, it may be useful to ignore some of the failures, as long as some
of the elements can be successfully processed. Similarly, only if the results of all
tasks need to be merged, it is necessary to wait for all parallel tasks to complete.
Finally, in the case of a sequential split connector, the appropriate control flow
dependencies between each task of the sequence are automatically inserted when
the loop is unrolled.

3.5.2. Control Flow Loops

Arbitrary cycles in the control flow graph are used to describe the repeated execution
of parts of a process. Each individual task found within the loop is automatically
restarted when its direct predecessors have finished, even if the task has already
completed its execution more than once. To avoid endless repetition, the user should
attach the appropriate conditions to enter and exit the loop. In order to begin
executing a loop, the appropriate control flow synchronization must be selected, i.e.,
the dependencies leading into it should be or’ed with the loop dependencies.

In case of loops spanning through all tasks of a process, the user should indicate
which of the tasks in the loop is started first. If only one of the tasks receives data
directly from the process input parameter, this task is chosen as the first task of
the loop. However, in the general case, the user may have to include an additional
task, external to the loop, with no incoming control flow dependencies. This task
is executed once at the beginning of the process and it is linked to the first task in
the loop with a control flow dependency.

32

3.6. COMMENTS

num

int

ProcessFactorial Input

factorial

int

ProcessFactorial Output

a

int

b

int

Decrement

b = a - 1;

b

int

a

int

c

int

Multiply

c = a * b;

num

int

factorial

int

RecursiveCall

ProcessFactorial

?

1

ProcessFactorial - DataFlow

Figure 3.10.: Data flow view of a process to compute the factorial of an integer
value

3.5.3. Recursion

Another possible way of modeling repeated behavior is through recursion. In the
simplest case, this can be achieved with a subprocess referring to its container pro-
cess. This way, the tasks composing the process will be repeated as long as the
condition associated to the subprocess making the recursive call holds true.

As an example, Figure 3.10 shows the data flow graph of a recursive process,
which computes the factorial of a number. In the example, two tasks computing
Java expressions to decrement one number and multiply two numbers are linked with
a subprocess which recursively calls its container process. The condition associated
with the subprocess stops the recursion and forces the process to return the constant
value of one.

3.6. Comments

In most programming languages, comments are very important to enter humanly
readable descriptions of parts of the code. Also with the JOpera Visual Compo-
sition Language the user may attach a description to each process, as well as to
each component service. This description complements an object’s name by further

33

3. JOPERA VISUAL COMPOSITION LANGUAGE

specifying what the process or the component is intended to do. As with most visual
editors, further user comments can also be visually inserted into any of the data or
control flow graphs by means of text boxes (rendered with a typical yellow post-it
note flavour).

Another typical usage of comments in ordinary programming languages, is the
temporary removal of program code, which is “commented out” so that it will be
ignored by the compiler, while it still remains visible to the user. Given the practical
importance of such way of using comments, also in the JOpera Visual Composition
Language we support this approach. By visually stretching a comment box so that
it overlaps with existing parts of a diagram, the user may temporarily disable the
compilation of such diagram elements so that they will be ignored by the compiler
and will not be part of the execution.

3.7. Reflection

In this section we present the reflection features of the JOpera Visual Composition
Language. Reflection is the ability of a computational system to represent and
modify information about itself [151]. In the JOpera Visual Composition Language,
reflection is used to access metadata both about the static structure of the process
and about its state of execution, as well as about its runtime environment.

Reflection is very important in a language intended for service composition, as
it uses a well defined syntax to expose and give controlled access to the system pa-
rameters of the specific type of services that are composed. Furthermore, through
the invocation of system services, it is possible to model within a process the inter-
action of a process with its environment. This can be used, for example, to access
JOpera’s directory services, in order to discover what are the available providers for
a given service interface and, as we will show in Example 3.2 on page 36, to model
the late binding of a service implementation to its interface. The combination of
reflection with the list-based loops is an useful technique to enhance the reliability
and decrease the response time of a service invocation, as we will discuss in Example
3.4 on page 39.

SYS.soapin

SYS.soapout

SOAPActivity

SYS.stdin

SYS.stdout SYS.stderrSYS.retval

UNIXActivity

SYS.ID

SYS.realtime

Task

(a) (b) (c)

Figure 3.11.: Example of system parameters and properties

34

3.7. REFLECTION

3.7.1. System Parameters

In addition to the data flow parameters defined by the user, each task is associated
with a set of system parameters and properties which can be used for a variety of
purposes. In general, they contain metadata about the execution of the process and
their values are updated automatically by the runtime environment. System input
parameters can be used to control the behavior of a task, e.g., setting its scheduling
priority, and can be connected with incoming data flow bindings like any other user
input parameter. System output parameters are used to read metadata about tasks,
e.g., their running time, and are connected with outgoing data flow bindings to
other system or user parameters. Similarly to user output parameters their value
is – by definition – available only after a task has completed its execution. One
exception to this rule are system properties which are also used to read metadata,
but their value can be read at any time, i.e., both before and after a task is executed.
Therefore, a data flow binding involving a system property does not imply a control
flow dependency.

The same visual syntax applies to both system and user data flow parameters,
with the only difference that the former are colored in gray and their name always
begins with the SYS prefix. System properties are linked to their task with an undi-
rected edge, symbolizing that their value can be read also before the corresponding
task has been executed.

The set of available system parameters depends on the type of component associ-
ated with the task, and changes for processes, subprocesses or activities4. Figure 3.11
shows the visual syntax of system parameters and properties with some examples.
In the case of activities representing Web service calls, the two system parameters
called soapin and soapout give direct access to the XML content of the SOAP
request and response messages (3.11.a). Similarly, for activities executing UNIX
programs, the stdin, stdout and stderr standard data streams are provided to-
gether with the retval parameter, which contains the exit code of the program as
it is returned by the operating system (3.11.b).

Each task is associated with a system property called ID, which can be used
to uniquely identify the task among all other tasks of the process and among all
instances of the task that have been executed by JOpera (Figure 3.11.c). This
property is typically used to generate unique filenames for storing the results of the
task, as it guarantees that they will not be overwritten by other instances of the
same task that are running concurrently.

For execution profiling purposes, JOpera measures the execution time of each
task of a process. This information is displayed to the user in JOpera’s process
monitoring environment. In addition, the same information can be accessed from
within a process, in the form of system parameters (cputime, realtime, walltime)
associated with each task (Figure 3.11.c).

4See Chapter 4 for more information on the relationship between system parameters and compo-
nent types.

35

3. JOPERA VISUAL COMPOSITION LANGUAGE

3.7.2. System Services

System services expose information about JOpera’s runtime environment and let a
process interact with it. They currently include: the program library API, the pro-
cess control API and the resource management and scheduling API. As opposed to
the system parameters, tasks invoking system services are not represented differently
from tasks calling other types of components.

The system services of the process control API are mainly used for controlling
the execution of a process from within the process itself. This enables, for example,
to cancel the execution of a process upon detection of a certain condition. Similarly,
it is possible to automatically suspend a running process upon reaching a certain
stage of the execution and have a user manually resume it when appropriate.

Examples on using the resource reservation service and the program library sys-
tem services for dynamic late binding are presented in the rest of the section. In
particular, we will show how to combine late binding and reflection with the list-
based loop operators to enhance the reliability of a service invocation, if multiple,
alternative service providers are available.

Example 3.2: Late Binding

Reflection can be applied to a Web service composition scenario, where typically
the services published on the Web have a variable degree of availability and
tend to evolve quickly, especially after the processes composing them have been
defined. Through late binding and the ability to gather information about the
available services, a process can be made more resilient to these changes as it
is dynamically adapted to the environment where it is running.

The example of Figure 3.12 illustrates how to use system parameters to
support late binding of tasks to services. The choice of which service (or process)
to invoke when executing a certain activity (or subprocess) is done dynamically
based on the value of the prog (or proc) system parameter. This value is
normally set at compile-time, but can also be changed at run-time, both by the
user and from within a process.

More in detail, the example data flow graph shows how to use the prog

system parameter to set the service that will be invoked by the CallService

activity. The name of the actual service is retrieved using the LookupService

system service, which attempts to locate a fitting service implementation given
the interface of the activity (identified by its ID system property) and the
additional constraint on the service’s name provided by the service process
input parameter.

36

3.7. REFLECTION

input service

Process Input

output

Process Output

input

output SYS.prog

SYS.ID

CallService

interface

service

name

LookupService

Process - DataFlow

Figure 3.12.: Data flow view of the late binding example

Example 3.3: Cluster Resource Reservation

In a cluster computing environment, it is useful to program computations in
a parametric way with respect to the available computing resources. These
computations are normally developed in a small testbed, while in production
settings they should scale to use a larger amount of computing power. To enable
process portability, it is important to keep the process model independent of the
characteristics of the environment in which should run and let the system to the
necessary adaptations at runtime. To do so, the ability to inquire at runtime
about the number of nodes that can be reserved to perform a parallel task can
be very important, e.g., to dynamically determine the optimal partitioning of
the data [4].

The example in Figure 3.13 shows how to use the ReserveResource system
service. Behind it, there could lie the API of a complex resource management
and scheduling system, which has been greatly simplified for the purposes of

37

3. JOPERA VISUAL COMPOSITION LANGUAGE

this example. This system service receives one parameter called size, which
contains the number of desired nodes and returns the identifier of the group of
nodes that has been reserved as well as its size, indicating how many nodes
could be reserved. The former is passed to the resources system parameter
of the Compute subprocess. This parameter has the effect of constraining the
execution of the content of the subprocess to the given group of resources. The
size output parameter is then passed to the DataPartition task which uses
it to prepare the list of work items to be computed.

datasizeparameter

Process Input

results

Process Output

list

datasize

DataPartition

size

group

sizeReserveResources

SYS.resources

result

elementparameter

Compute

Process - DataFlow

Figure 3.13.: Data flow view of the cluster resource reservation example

38

3.7. REFLECTION

Example 3.4: Reliable Service Invocation

Building applications out of composite Web services can lead to disastrous
results as soon as one of the services becomes unavailable at run-time. However,
the reliability of the composite service defined with JVCL can be increased
through redundancy. Assuming that a set of equivalent, alternative service
providers are available, with JOpera it is possible to use reflection together
with various exception handling and synchronization techniques to model the
invocation of a service chosen from alternative providers and control precisely
what happens in case of failures.

A Web service can become unavailable for many different reasons. The
connection across the Internet to the Web service provider can fail during a
SOAP message round. The Web service may have been taken offline temporar-
ily for maintenance. The Web service might have been renamed or moved to
a different server and, as a consequence, the binding information in its WSDL
description may be out-of-date.

Whatever the reason, from the point of view of the composite application, a
failure to contact a Web service can be very similar to dereferencing an invalid
pointer in traditional applications. If no corrective action is taken, it may lead
to the failure of the whole business process. To ensure a successful invocation,
failure handling actions can be taken at different levels in the communication
stack as well as at the process level itself.

Dealing with communication failures

To deal with problems at the communication layer, the SOAP message can be
transferred with an asynchronous messaging or queuing system, instead of using
a synchronous HTTP connection [267]. Although its latency may increase, the
communication becomes resilient to temporary communication problems, as
the messaging system can store and forward the message when an appropriate
path to the service provider can be found. A similar approach can also help
with temporary outages of the server itself.

If the location of a WSDL interface description is not changed, and the
interface of the service is not modified, changes to the binding (for example,
the server’s location has been moved to a different host), should remain trans-
parent to the process because the latest version of the WSDL can be fetched
before reattempting the call. If a WSDL contains multiple bindings, the SOAP
communication library may attempt to contact all of them before reporting a
failure of the invocation back to the application [110].

39

3. JOPERA VISUAL COMPOSITION LANGUAGE

Handling failures at the process level

All of the previous steps are usually taken inside a SOAP communication li-
brary and can be controlled by specifying the appropriate bindings in the WSDL
description of the Web service. Although these mechanisms can improve re-
liability in case of short, temporary outages, the service invocation will still
fail if the service cannot be contacted after a certain time. Therefore it is also
important to deal with such failures at the application level, assuming that
a suitable equivalent service implementation can be invoked at many alterna-
tive service providers. In JVCL there are a set of language constructs to deal
appropriately with irrecoverable failures of a certain service invocation. This
means that, when everything else fails, it is still possible to model explicitly, at
a high level, what to do, using both a form of retry on exception and, with some
restrictions, an advanced synchronization technique applied to a multi-instance
pattern [233], both of which we will illustrate in the rest of this section.

ServiceCall

ServiceCall_Alternate

ServiceCall_Backup

ServiceCall_Backup2

RobustServiceCall - ControlFlow

failed

failed

failed

Figure 3.14.: Sequential invocation of alternative services
This chain of four Service invocations is traversed as each call fails. JOpera

attempts to contact the four alternative, equivalent services in the order
specified by the control flow graph drawn by the developer.

Exception Handling The first approach is based on the basic exception han-
dling construct of JOpera. As shown in Figure 3.14, two service invocations
can be connected by a failed control flow dependency, which will be triggered
only if the first invocation fails, so that the second one can be tried in its place.
The example shows this pattern applied to four services, which are connected
in a failure-triggered chain. They are to be invoked sequentially, but only if the
previous service in the sequence fails.

This approach has the advantage that it is rather easy to program: in

40

3.7. REFLECTION

JOpera all that is required is to make a duplicate of a service invocation (includ-
ing existing data flow connections), substitute the target service to be invoked
with an equivalent one and connect the two invocations with the exception
handling control flow dependency. However, in our experience, this is an inflex-
ible solution, because both the set of services to be tried and the order of the
attempts is fixed and cannot be changed once the process is deployed. These
limitations are overcome by the next construct, which allows the usage of a
dynamic set of alternative services and does not constrain the order in which
they are contacted.

output

input

SYS.progService

ServiceCall,ServiceCall_Alternate,ServiceCall_Backup,ServiceCall_Backup2

serviceNames

matchName

getServiceList

ServiceCall*

output

input

SYS.progService

Figure 3.15.: Parallel invocation of alternative services
This data flow graph represents the parallel invocation of the same four

services of Figure 3.14. In the static implementation (left) the list of services
is hard-coded, while in the dynamic implementation (right) the list of services

is retrieved at runtime. The split operator can be configured so that the
invocation will complete as soon as one of the services will respond

successfully (Figure 3.16).

Parallel Invocation Not only the availability of the various services may
change at runtime, but also their response time may depend on the current
load at the different service providers and on the network congestion. The pre-
vious model captures the cascading retries that are performed if a service in
the sequence of alternative invocations doesn’t respond or fails. Now, although
the services are alternative and equivalent, their order in the sequence is fixed
at design-time and it is always the same for all executions of the process. In
some cases, it may be useful to use a different pattern. Instead of modeling
this behavior as a sequence of invocations, we use a set of invocations which
are all started at the same time. The result of the first one which successfully
completes is taken and all others (even if they don’t fail) are simply ignored (or
aborted). This way, the process is again resilient to failures of all but one of

41

3. JOPERA VISUAL COMPOSITION LANGUAGE

the Web service involved. Additionally, its performance is potentially better,
as the call completes as soon as one Web service responds. In case of failures,
the execution is not delayed by the calls that cannot be completed.

We can model this behavior in JOpera by using the parallel split operator
applied to a list of service names (Figure 3.15). This way, the invocation of
each alternative service in the list will be initiated in parallel. The synchro-
nization condition associated with the split operator can be set to make the
parallel invocation terminate as soon as one service returns without a failure
(Figure 3.16). With the appropriate settings, we can achieve both optimal re-
sponse time (as the result from the most responsive service is taken, while all
others are ignored) and we can choose to ignore the service invocations that
failed.

In Figure 3.15 (left) the list of services is still hardcoded in the process,
therefore the example does not yet solve the problem of modeling a dynamic
environment, where the set of Web services which can be used changes after
the process which composes them has been written. To support this scenario
we use another one of JOpera’s reflection features, which models the runtime
discovery of the available services matching a certain criteria (for example, the
name or the required input/output interface). As shown in Figure 3.15 (right)
the list of services to be invoked in parallel doesn’t need to be hardcoded, but
can be parametrized based on the results of a query to the system registry
service.

Figure 3.16.: Split/Merge Options
A screenshot of JOpera showing the options which control the behavior of the

Split/Merge operators. With them the developer can finely control if
alternative services should be invoked in parallel, or sequentially, and, in the

first case, if failures in invoking some of the services should be ignored.

42

3.8. DISCUSSION

Sequential Invocation This solution, based on the parallel invocation of al-
ternative services, is only applicable to stateless services we can afford to invoke
in such manner. In some cases, for example when ordering a book, it may be
necessary to try the various providers one at a time. To do so, we can select the
sequential split operator (Figure 3.16) and still keep the previously described
list-based patterns. The only difference being that the split operator is config-
ured to invoke each service sequentially, and only if the previous one in the list
fails.

Finally, by activating the Randomize partition order option, it is pos-
sible to conveniently shuffle the services in the list so that the sequence of
invocation is not fixed to any particular order and the load at the various al-
ternative providers is kept more balanced, as each execution of the process will
attempt to invoke the service providers in a different order. This feature has
been added for convenience only, as it is was already possible to explicitly add
to the data flow a task which randomly reorders the list of services used to
drive the parallel (or sequential) invocation.

3.8. Discussion

In this chapter we have presented the JOpera Visual Composition Language. This
language is intended to be used as a generic glue language [82] for coordinating
collections of software components, where the order of execution of services, the
data exchanges between them and the necessary failure handling behavior can all
be specified with a simple visual syntax. As we have shown with several examples,
the language is expressive enough to be applied to realistic settings.

In particular, we found it useful to include in the JVCL the visual representation
of both the data flow and the control flow graphs of a process. As we have discussed
in Section 3.4, it is possible to automatically derive the control flow graph from
the data flow. Like in data-driven data flow languages a task cannot be started
until all of its data dependencies are satisfied [104]. Unlike in traditional data flow
approaches we include an explicit description of the control flow of a process in
order to provide an overview of the order of execution of the tasks. Furthermore,
developers may use it to specify additional control dependencies that cannot be
derived from the data flow. It should be noted that the syntax used to specify the
control flow of the process has been intentionally left quite underdeveloped, as a
directed graph layed out in two dimensions is already a good visual representation
of the partial order of the execution of the tasks. With it, non-linear dependencies
modeling parallel execution, branches and synchronization points in the control flow
can be visualized in an intuitive way. Furthermore, the nodes of the graph can be
annotated with conditions to model alternative paths in the order of the invocation
of the services.

Nevertheless, the simple graph-based syntax of the control flow could be ex-

43

3. JOPERA VISUAL COMPOSITION LANGUAGE

tended in different directions. One possibility would be to add syntactical “sugar”
to model branches and synchronization points explicitly as nodes in the control flow
graph. In a similar way, the conditions associated to each task could be specified
visually. However, it remains open to discussion whether this would be a significant
improvement with respect to the current textual approach, where a condition is
entered as a boolean expression.

Another idea consists of improving the support for the visual specification of
properties shared among a set of tasks. For example, swimlanes [30, 99] could be used
to partition the diagram space in order to specify scheduling constraints associated
with a group of tasks. To do so, tasks are visually assigned to the resource (or the
actor, role, owner) responsible for executing them by positioning the tasks within
the corresponding region of the diagram. Currently, such properties can be specified
by using reflection with the assignment of the owner of a task to the appropriate
system parameter.

Similarly, a transactional view over the control flow graph could be added to
model ACID properties associated to subsets of tasks that should be executed atom-
ically or in isolation from other concurrent instances [206].

Given the large amount of existing contributions in these areas (formal mod-
els [162, 190, 234, 256], transactional properties [10, 148, 206], exception handling
and recovery [97], advanced control flow patterns [233]), we have chosen to use a
simple control flow syntax while focusing on an explicit and richer visual represen-
tation of the structure of the service composition in terms of its data flow [62, 104],
an aspect that has been overlooked by most process modeling efforts.

As a final remark, in our design of the visual language we made very few as-
sumptions about the actual type of services to be composed, attempting to keep the
visual composition language as general as possible while clearly separating composi-
tional aspects from the model of the individual component services [82]. In a JVCL
process, composition is defined at the level of service interfaces, mainly in terms
of the data flow bindings between their input and output parameters. As we will
present in the next chapter, this parameter based model of service interfaces can
be mapped to many different types of service invocation mechanism ranging from
coarse-grained Web service invocations to fine-grained scripts written in Java.

44

4. Component Types

In this chapter we describe JOpera’s open component meta-model. As JOpera is a
system for service composition, here we give some insight about what are the shared
properties of the services that JOpera uses as components.

First of all, it should be emphasized that JOpera provides extensive support for
many different types of components with the goal of providing the developer with a
flexible, convenient and extensible model without sacrificing efficiency (in terms of
low overhead) during service invocation.

It should also be noted that introducing a component model supporting a wide
variety of component types can be very useful in keeping the composition language
simple.

4.1. Motivation

In some of the existing process based systems for service composition (e.g. [29, 112]),
the services to be composed are all assumed to be of a single type: Web services.
It should be noted that when facing software integration problems at an Internet-
wide scale, Web services seem to be the most appropriate solution [89]. However,
for other kinds of deployment settings and service integration scenarios, other types
of components are still likely to be used. More specifically, in the context of the
JOpera Visual Composition Language presented in the previous chapter, it would
be an unnecessary restriction to assume that JOpera’s component services must all
be Web service compliant. In fact, there are many existing, well established service
access protocols that should not necessarily be considered as out of date, when
compared to Web services [3]. As stated by the jbpm.org project [18]:

BPEL4WS, BPML, WSCI are all ”workflow standards” based on web
services. While web-services are cool and a nice buzzword, we think it
is a big limitation to restrict a workflow engine to only Web services.
There are so many other nice protocols like HTTP, RMI, CORBA, EJB,
TCP/IP, UDP/IP, JMS, ... As a workflow engine is mostly used for
enterprise application integration, it seems ridiculous for an engine to
support only Web services and ignore all other protocols. In our opin-
ion, a workflow engine should communicate with each system in the
technology that is most appropriate and not force the development and
maintenance of Web service wrappers.

45

4. COMPONENT TYPES

We fully agree with such a view, and have also designed the JOpera system to
support components than can be accessed through a variety of protocols, includ-
ing, but not limited to Web service compliant ones. This way, the developer of a
composite application is not limited to use components accessible only through the
SOAP protocol and, in case of components supporting more protocols, the system
can use the most appropriate one in terms of performance, security and reliability.

The need for supporting a variety of service access protocols is also recognized in
the Web services community. To this end, the WSDL interface description standard
supports an open-ended set of transport protocols. Therefore, a Web service, whose
interface must be described using WSDL, does not necessarily need to be invoked
using the relatively slow SOAP protocol if the client understands other (non stan-
dard) protocols which may offer better performance. Currently, however, alternative
protocols are not yet widely supported and as long as they are not standardized,
using them would defeat the main point of the Web service vision, where everything
should be standardized in order to achieve widespread interoperability [5].

Moreover, even when following this approach, in order to bridge the gap between
the existing component heterogeneity and the uniform Web services standards, wrap-
pers and interface adapters are still required, to make the “legacy” types of com-
ponents and protocols fit with the new standards. This approach both introduces
additional, unnecessary execution overhead and shifts development and maintenance
costs from the infrastructure to the end user [174].

As we will present in this chapter, in JOpera we have chosen not to restrict the
types of component services to Web service compliant ones, described by a WSDL
document and accessible through SOAP (Section 4.3). Additionally, a JOpera com-
ponent can represent, for example, the execution of a UNIX or Windows command
line in the operating system shell (Section 4.4), a remote procedure call or method
invocation (Section 4.5), a job submitted to a batch scheduling system of a cluster
of computers (Section 4.9), an SQL query to be sent to a database (Section 4.6.2),
and an XSL style sheet transformation to be applied to some XML data packet
(Section 4.7.3). Furthermore, for modeling services built out of fine-grained oper-
ations, small scripts written in Java can be directly and efficiently embedded in a
process (Section 4.5.1). From these examples it can be seen that, with JOpera, the
developer may conveniently choose the most appropriate component type in terms
of the effort required to integrate it into a process and still be relatively sure that
the runtime overhead of accessing the service will be as small as possible.

Finally, as it would be impossible to provide out-of-the-box support for all pos-
sible kinds of components, we will also discuss how to extend JOpera’s open compo-
nent model. Considering the previous discussion, we believe it is less expensive to
build once a generic adapter to integrate a certain type of components into JOpera,
instead of having to setup a different Web service wrapper for each of the components
of that particular type that have to be called from within a process.

46

4.2. COMPONENT META-MODEL

4.2. Component Meta-Model

Before describing in detail the properties of each of the component types currently
supported by JOpera, we introduce JOpera’s component meta-model. This way,
we both motivate the flexibility and the extensibility of the component model and
summarize the information required to model and to access each type of component.

JOpera’s model of a component type mainly defines a set of attributes describing
how to invoke the component service’s functionality and how to structure the data
exchanged with it. More in detail, when adding a new component type to JOpera’s
model it is necessary to define and design:

1. What is the set of system parameters. Depending on the specific type of
component, a different set of system parameters may be used to control the
service invocation and to access related metadata. The values of these system
input parameters are set at design time, either when registering a new service
with the system’s component library or when composing the services with other
ones. In general, most of the system input parameters can contain placeholders
that are substituted with the values of the corresponding user-defined input
parameters at runtime. Finally, the system output parameters store the raw
result of the service invocation.

2. How to map control flow events. Basic control flow events include: the starting
of the service invocation and the corresponding notification that the service
invocation has completed. More sophisticated events may involve the interac-
tion with an ongoing service invocation, i.e., the ability to abort, suspend and
resume it.

3. How to schedule the invocation. A service can be invoked either synchronously
or asynchronously, with respect to JOpera’s internal threading model. A syn-
chronous invocation involves less overhead but can delay other concurrent
invocations. On the other hand, asynchronous invocations are queued1. Fur-
thermore, for asynchronous component types, JOpera may choose among a set
of alternative providers where the service should be invoked. For other compo-
nent types, this form of scheduling may not be an option, due to performance
or protocol restrictions.

4. How to map data flow. Input and output data needs to be transferred back
and forth between JOpera’s parameter-based representation and the service’s
own representation.

5. How to interpret failures. Not only do service invocations finish; sometimes
they fail. Depending on the type of component, failure detection may be based
on different assumptions.

1See chapter 7 for more information on the various service invocation mechanisms.

47

4. COMPONENT TYPES

User
Input

Parameters
Component

User
Output

Parameters

Figure 4.1.: Data flow interface of a component

User
Input

Parameters

System
Input

Parameters

Component

Service
Invocation

Input
Mapping

Output
Mapping

User
Output

Parameters

System
Output

Parameters

Figure 4.2.: Data flow mapping inside a component

4.2.1. Data Flow Mapping

From the point of view of transferring control, the invocation of a large number of
different component types is not so difficult to model, as this amounts to describing
the invocation of the service and the corresponding notification that the service’s
invocation has completed [209].

In our experience, however, a more difficult challenge lies in modeling the data
to be exchanged with the service and in how to map JOpera’s parameter based
representation (Figure 4.1) to the service’s internal one. For some component types
this can be relatively simple, at least from a syntactical perspective, where standards,
e.g., SOAP, define how to format the input data and how to interpret the output
data. In other cases, e.g., when integrating legacy UNIX applications, the problem
is much more difficult and there is no general solution, i.e., the ad-hoc development
of wrappers may be required.

In order to provide the necessary flexibility to integrate several different com-
ponent types, in JOpera we follow a two step approach to address the problem of
mapping user-level data parameters to the actual structure of the data understood
by the component type. At this point, it should be noted that user parameters are
application dependent and therefore have nothing to do with the system parame-
ters, which instead model the information required to access a particular type of
service. The mapping between user (application) parameters and system (compo-
nent type) parameters is specified once, when a new service component is registered
with JOpera. This mapping can be derived automatically, e.g., by reading the
WSDL description of a Web service.

The data flow mapping depicted in Figure 4.2 can be formally represented as a

48

4.2. COMPONENT META-MODEL

composition of two mappings (mi, mo) which are applied to fit the input and output
parameters of a certain service call C to the given interface S. More precisely,
the interface of a service contains a set of user-defined input ([I]) and output ([O])
parameters:

[O] = S([I])

Furthermore, a set of predefined service types Ct are available. These define the
representation of the corresponding access mechanisms and invocation protocols in
terms of input ([i]) and output ([o]) system parameters:

[o] = Ct([i])

In order to bind a service interface to an implementation of a given service type,
it is necessary to provide the corresponding input mi : [i] = mi([I]) and output
mo : [O] = mo([o]) mappings. At runtime, these mappings are composed with the
invocation of service of a given type as follows:

[O] = S([i]) = mo(Ct(mi(I))

Following such mapping, before a service can be invoked at runtime, the user in-
put parameters are translated to its system input parameters. The main mechanism
to model and perform this mapping (mi) consists of using parameter placeholders,
which identify one user input parameter and are replaced with its content when the
mapping is evaluated. These placeholders follow the simple convention of including
the name of a parameter between % characters [98, 144].

The service is then invoked and the results are placed in the system output
parameters corresponding to its type. The reverse mapping mo from the system
output parameters to the user-defined output parameters is applied. As opposed to
the input mapping, where a relatively large number of user parameters are assigned
to a small number of system parameters, in this case it is more complex to take
the content of a few parameters, e.g., the output of a program or a Web page, and
model how to extract the application dependent information. For data having a
relatively well defined syntax, e.g., XML, it is possible to follow the convention of
encoding parameter names as tags and insert their values between those tags [?]. In
general, ad-hoc wrappers can be plugged into JOpera with the purpose of scraping
the values of the output parameters from the arbitrarily formatted data produced
by the service.

4.2.2. Abstract Service Types

In order to emphasize the feasibility of the approach, in the rest of the chapter
we show how to apply the component meta-model proposed in this dissertation to
a large number of different component types. In some cases, there should be no
difficulty in recognizing the difference between the protocols and the mechanisms
required to access different types, e.g., Web services (Section 4.3) and UNIX com-
mand lines (Section 4.4). In other cases, although the underlying mechanism is

49

4. COMPONENT TYPES

fairly similar – e.g., UNIX command lines and Java virtual machines (Section 4.5.4)
– we made a distinction to show that the component model doesn’t have to strictly
follow a classification of service access mechanisms. Thus, we also show that it is
flexible enough to accommodate user-oriented distinctions, which facilitate the of
use of components of a certain type.

To summarize the current set of component types supported by JOpera’s compo-
nent model, we have listed their most important features regarding the mapping of
control, scheduling, input and output data and failures in Table 4.1. Furthermore,
to give an overview over the content of the chapter, in Figure 4.3 we also present the
inheritance relationships between some of the various types, as far as the definition
of the set of system parameters associated to a given component type is concerned.

As it can be seen in Figure 4.3, all component types inherit these common
system parameters, which will be omitted from the following descriptions.

In
p
u
t
S
ystem

P
a
ra

m
eters

timeout The timeout system input parameter controls the maximum al-
lowed execution time. If set, a service invocation will be automati-
cally interrupted and failed if it does not complete within the given
time.

wrapper This system parameter indicates the policy to be used in order to
extract the user-defined output parameters from the system pa-
rameters returned by the component type. This parameter pro-
vides the developer with the flexibility of defining custom mapping
policies in order to override the default XML-based one.

O
u
tp

u
t

state The state output system parameter is set to either Finished or
Failed to indicate the outcome of the service invocation.

realtime The realtime parameter measures the duration of the service invo-
cation in milliseconds.

4.3. Web Services

These components represent the invocation of a remote service published on the
Web. Currently, such services can be accessed in two ways:

1. (SOAP) The service’s interface is described in WSDL, and the service is acces-
sible through the SOAP protocol.

2. (HTTP) The service is accessible through HTTP only, and the retrieved infor-
mation is formatted using HTML.

4.3.1. SOAP

This first component type models the latest form of standard compliant Web ser-
vices, whose interface and location are described in a WSDL document [246].
Furthermore, these components are remotely accessible through the SOAP pro-
tocol [245]. Thanks to these standards, it is possible to automatically import the

50

4.3. WEB SERVICES 51

Component Type Controla Input and Output Data Failure

Web components
Web Service (SOAP) Synch/S SOAP SOAP SOAP Fault
Web Server (HTTP) Synch/S CGI/URL HTML HTTP Error

Local components
Shell Command (UNIX/NT) Synch CmdLine,

Stdin
Stdout ExitCode,

StdError

Java components
Java Program (JVM) Synch CmdLine,

Stdin
Stdout ExitCode,

StdError
Java Script (JS) Immediate Local Variables Exception
Java Method (JAVA) Synch Method Parameters Exception
Java Remote
Method

(RMI) Synch/S Method Parameters Exception

Script components
Script (SCRIPT) Synch CmdLine,

Stdin
Stdout ExitCode,

StdError
Database Query (SQL) Synch/S Parameters interesting

problem
JDBC Error

XML components
X-Path Query (XPATH) Synch XML XML X-Path Pro-

cessor Error
Style Sheet Trans-
formation

(XSL) Synch Parameters XML XSLT Pro-
cessor Error

System components
JOpera Echo (ECHO) Synch XML XML XML Parser

Error
JOpera Process (OPERA) Asynch/S Implicit Parameters and Failures
JOpera Reflection (JOP) Immediate Parameters XML JOpera Er-

ror

Cluster computing components
BioOpera (PEC) Asynch/S CmdLine Stdout ExitCode,

StdError
Portable Batch
System

(PBS) Asynch CmdLine Stdout N/A

Messaging components
eMail (EMAIL) Asynch/S Text Text eMail Server

Error
Java Message Std. (JMS) Asynch/S String String JMS Error

Business process modeling components
BPEL activity (BPEL) Synch Parameters None Throw
Workflow task (WF) Asynch/S Text Text User Error

aAs discussed in Section 7.4.2 on page 167, the invocation of the service can happen accord-
ing to different control flow patterns: Immediate (Figure 7.9); Synchronous (Figure 7.10);
Asynchronous (Figure 7.11); Synchronous/Scheduled (Figure 7.12); Asynchronous/Scheduled
(Figure 7.13)

Table 4.1.: Component Types Summary

52 4. COMPONENT TYPES

S
O
A
P

H
T
T
P

U
N
I
X
N
T

/

J
S

J
A
V
A

O
P
E
R
A

S
E
R
V
I
C
E

R
M
I

J
V
M

S
C
R
I
P
T

S
Q
L

E
M
A
I
L

J
M
S

X
M
L

X
P
A
T
H

X
S
L
T

W
S
D
L

s
e
r
v
i
c
e

o
p
e
r
a
t
i
o
n

p
o
r
t

s
o
a
p
i
n

s
o
a
p
o
u
t

w
r
a
p
p
e
r

s
t
a
t
u
s

e
r
r
o
r
m
s
g

t
i
m
e
o
u
t

s
t
a
t
e

r
e
a
l
t
i
m
e

U
R
L

m
e
t
h
o
d

h
e
a
d
i
n

b
o
d
y

h
e
a
d
o
u
t

p
a
g
e

c
o
m
m
a
n
d

s
h
e
l
l

s
t
d
i
n

r
e
s
o
u
r
c
e

s
t
d
o
u
t

s
t
d
e
r
r

r
e
t
v
a
l

s
c
r
i
p
t

e
x
c
e
p
t
i
o
n

c
l
a
s
s
p
a
t
h

c
l
a
s
s
n
a
m
e

m
e
t
h
o
d

s
t
a
t
i
c

e
x
c
e
p
t
i
o
n

p
r
o
c
n
a
m
e

s
p
a
w
n

n
u
m
i
n
s
t

l
o
o
k
u
p

p
r
i
o
r
i
t
y

r
e
s
o
u
r
c
e
s

d
e
l
e
t
e

e
x
c
e
p
t
i
o
n

r
m
i
r
e
g

j
v
m

o
p
t
i
o
n
s

c
l
a
s
s
p
a
t
h

c
l
a
s
s
n
a
m
e

a
r
g
s

l
a
n
g

e
m
b
e
d
d
e
d

s
c
r
i
p
t

s
c
r
i
p
t
r
e
f

a
r
g
s

d
b
t
y
p
e

s
e
r
v
e
r

p
o
r
t

u
s
e
r

p
a
s
s

d
a
t
a
b
a
s
e

s
c
r
i
p
t

p
r
e
p
a
r
e

d
a
t
a

s
e
r
v
e
r

c
o
m
m
a
n
d

p
r
o
t
o
c
o
l

u
s
e
r

p
a
s
s

i
d
f
r
o
m

t
o
/
c
c
/
b
c
c

h
e
a
d
e
r
s

s
u
b
j
e
c
t

b
o
d
y

a
t
t
a
c
h
m
e
n
t
s

se
rv

er
co

mm
an

d
de

st
in

at
io

n
re

pl
yt

o
me

ss
ag

ei
d

de
li

ve
ry

mo
de

he
ad

er
s

co
nt

en
t

x
m
l
i
n

x
m
l
o
u
t

s
c
r
i
p
t

e
m
b
e
d
d
e
d

s
c
r
i
p
t

s
c
r
i
p
t
r
e
f

Component Type

Legend:

Input
System

Parameters

e
x
te

n
d

s

Output
System

Parameters

E
C
H
O

i
n
p
u
t

o
u
t
p
u
t

Figure 4.3.: Summary of the System Parameters of some the component types
modeled in this chapter

4.3. WEB SERVICES

service’s WSDL description into JOpera’s component library and use it to generate
the corresponding component declarations, including the appropriate skeleton of the
SOAP request messages.

Web services offer the benefit of standard-based interoperability between hetero-
geneous programming languages and platforms. With this technology, the effort of
building systems composed out of services distributed across the Internet is greatly
reduced, at the price of a relative high runtime overhead due to the nature of the
protocols involved.

In the following examples of Figure 4.6 on page 57 and Figure 4.8 on page 69
we show how different Web services can be composed into a process together with
other kinds of services.

System Parameters A Web service component is described by the following
attributes:

In
p
u
t
S
ystem

P
a
ra

m
eters

WSDL This system input parameter contains the URL used to locate the
description of the service. The referred WSDL document contains
information about the service’s interface and its bindings to one
or more providers and transport protocols.

service the name of the service, selected from the ones described in the
WSDL document.

operation the name of the actual operation to be invoked.
port in case an operation is bound to multiple transport protocols, the

value of this parameter identifies the one to choose.
soapin the body of the SOAP request message to be sent when invoking

the service.

O
u
tp

u
t

soapout This system output parameter contains the SOAP response (or
fault) message as it is returned by the service.

status A status code which indicates whether an error occurred.
errormsg A description of the error, with debugging information.

Control and Scheduling The invocation of the service happens synchronously. In
case multiple bindings are defined in the service WSDL description, the choice of
the most optimal binding (and port) constitutes a form of scheduling.

Data The values of the user-provided input parameters are inserted in the SOAP
request message using the previously described placeholder mechanism. In most
cases, each input parameter corresponds to a SOAP message block. If necessary,
JOpera escapes the content of the parameters so that it conforms to the required
SOAP/XML encoding. The output parameters are filled by reading the SOAP
response (if any).

53

4. COMPONENT TYPES

Failures The invocation of a Web service may fail for one of the following reasons:

WSDL not found The URL of the WSDL description of the service could
not be dereferenced.

invalid WSDL The WSDL description was found, but could not be un-
derstood.

invalid SOAP request The SOAP message could not be sent because it contains
invalid data.

service not responding No response message from the service has been received
after a certain timeout has expired.

SOAP fault The service has responded with a soap fault message.

4.3.2. HTTP

In addition to standard compliant Web services, with JOpera it is also possible
to conveniently retrieve information from traditional Web-based services which are
accessible with HTTP only and typically format their content using HTML. Consid-
ering that there are many existing browser-based information sources and computa-
tional services available on the Web (see [19, 70, 87, 129, 139, 210] for some examples
related to Bioinformatics), it becomes important to streamline the integration into
a JOpera process of such type of services. It should be noted that such integration
could still be feasible through other means, i.e., by invoking external HTTP client
programs or by creating a WSDL/SOAP wrapper for each website involved. How-
ever, this approach would require more setup work by the user when building the
process and potentially entail a higher execution overhead at runtime.

System parameters The interaction with a Web server is controlled by the
following input and output system parameters.

In
p
u
t

URL the URL identifying the remote resource to access
method the HTTP Method (POST/GET/PUT/HEAD) to employ
headin the optional HTTP headers sent along with the request
body the optional body of the POST request message to be sent

O
u
tp

u
t

status the HTTP status code
errormsg the description of the error, if any.
headout the HTTP headers of the response message.
page the content of the response message.

Control and Scheduling The Web server is contacted synchronously. By extend-
ing this model with a more precise description of the URL input parameter, it would
be possible to introduce a form of client-side scheduling of HTTP requests among a
set of alternative mirrors of a certain Web site. This way, the address of the selected
mirror would be substituted into the URL before the request to the Web server is
sent.

54

4.3. WEB SERVICES

Data The user input parameters are encoded in the URL in case of a GET request
or in the body for POST requests. The resulting HTML page needs to be scraped
for filling the user’s output parameters with their content.

Failures The retrieval of a Web page can fail for several reasons:

unknown server The server address in the URL could not be resolved.
server not responding The Web server did not respond after a timeout expired.
HTTP error The HTTP status parameter is different than 200 (OK).

Example 4.1: Stock Quote Currency Conversion

In this example we present a process used to retrieve quotes in the desired
currency for a user-provided stock symbol. This process combines two Web
services, one quoting stock prices [262] and the other one performing currency
conversions [261]. Although it is a simple example, it shows an application of
the basic features of the language in the context of Web service composition
without too many unnecessary, application related details. Furthermore, in
this example we compare two different versions of the process, one emphasizing
reusability, the other performance achieved through parallelism.

symbol country

ConvertQuote Input

quote

ConvertQuote Output

country1country2amount

amount

ConvertAmount?

symbol

Result

getStockQuote usa

ConvertQuote - DataFlow

Figure 4.4.: Data flow view of the ConvertQuote process

The first version is the ConvertQuote process shown in Figure 4.4. This
process takes a stock symbol and a country as input parameters and returns
a quote for the given stock market symbol converted to the currency of the
given country. The symbol parameter is passed to the getStockQuote lookup

55

4. COMPONENT TYPES

service which returns the current price in its Result output parameter. This
value is then passed to the amount input parameter of the ConvertAmount sub-
process together with the two countries between which the value should be
converted. The country1 parameter is set to the usa constant value, as the
price returned by the getStockQuote service is in U.S. dollars. The country2

parameter is bound to the country process input parameter, and can be chosen
by the user when starting the process. The amount output parameter, result
of the ConvertAmount sub-process is copied to the quote output parameter of
the main process.

country1

String

country2

String

amount

float

ConvertAmount Input

amount

float

ConvertAmount Output

country1

xsd:string

country2

xsd:string

Result

xsd:float

getExchangeRate

CurrencyExchangePort_getRate
a

float

b

float

c

float

Multiply

c = a * b;

ConvertAmount - DataFlow

Figure 4.5.: Data flow view of the ConvertAmount process

The example also contains an optimization. Considering that there is no
need to perform a currency conversion between identical currencies, a condition
can be attached to the ConvertAmount sub-process to skip its execution if its
country1 and country2 input parameters contain the same value. In this case
the value of the quote output parameter of the process is taken directly from
the Result of the getStockQuote service.

The ConvertAmount sub-process calls the ConvertAmount process (Fig-
ure 4.5), which uses a currency exchange rate service (getExchangeRate) and
adapts its interface to perform the conversion of a given amount of currency.
To do so, two input parameters country1 and country2 are passed to the
getExchangeRate service, which returns the corresponding exchange rate in
its Result output parameter. This value is multiplied with the amount process
input parameter to compute the converted amount process output parameter.

56

4.3. WEB SERVICES

This process composes services of different granularity: the slow, coarse
grained invocation of a Web service (getExchangeRate) with the fine grained
Multiply task, which references a Java expression used to multiply two float-
ing point numbers. In this example, the Currency Exchange Rate service has
been wrapped inside a sub-process to emphasize the reusability of this interface
adaptation, which can be called from many processes.

symbol

String

country

String

StockQuoteConvert Input

quote

float

StockQuoteConvert Output

country1

xsd:string

country2

xsd:string

Result

xsd:float

getExchangeRate
?

symbol

xsd:string

Result

xsd:float

getStockQuote
a

float

b

float

c

float

Multiply

usa

StockQuoteConvert - DataFlow

Figure 4.6.: Data flow view of the StockQuoteConvert process

An alternative version of the same process ConvertStockQuote is shown
in Figure 4.6. Here all of the previously separated tasks are located within
the same process. This implementation can be automatically produced from
the previous example by letting JOpera expand the content of the sub-process
ConvertAmount inside the caller process.

We have included this additional example to show that by reducing the
modularity of the process it is possible to exploit the parallelism between the
getStockQuote lookup service and the getExchangeRate service. In the pre-
vious example they had to be invoked sequentially, as the latter was started
only after the invocation of the sub-process. In this example they are invoked
in parallel, as there are no data flow dependencies between them. The retrieved
Result parameters are merged through the previously described Multiply Java
expression to compute the converted stock price. The fact that this process
doesn’t contain any sub-process invocation also contributes to a reduction in
the runtime overhead, as the sub-process call is no longer necessary.

57

4. COMPONENT TYPES

4.4. Shell Commands

Another type of components, quite different from remote Web services, are com-
mands to be executed on a shell of the local operating system (UNIX, NT). A Shell
command is typically used to provide a generic mechanism of integrating entire
applications into a process. As long as these applications do not provide an ex-
plicit API, the command line may be the only viable mechanism to allow JOpera
to interact with such legacy applications and control their execution. Historically,
shell commands connected in a pipe and filter architectural style have been one of
the earliest successful form of reusable components, where complex systems can be
built out of simple combinations of subsystems [125]. Analogous to UNIX pipelines,
JOpera processes can be built by drawing data flow connections between individual
command invocations, with the option of specifying non linear topologies and the
possibility of executing the various pipeline stages on different machines.

In other words, the services provided by essentially any executable program,
which can be started by typing a command line at the prompt of the operating
system shell, can be accessed with this component type. We distinguish between
UNIX (Linux, Solaris, MacOS X, etc.) and NT (Windows) components to let the user
enter the shell command using the syntax appropriate for the environment where the
program will run, and also for catching errors, as it is not possible to run Windows
applications on UNIX (and in most cases, viceversa). In order to exchange data with
the external program, JOpera employs both the command line itself and pipe-based
interprocess communication mechanisms.

As we will show with the Java Program (Section 4.5.4) and Scripts (Section 4.6.1)
component types, the Shell Command component type can be extended to provide
the user with a more convenient, template-based model of the command line.

System Parameters To execute a shell command the following system parameters
are available:

In
p
u
t

command The command line to be sent to the operating system shell. It
contains both the path to the executable program as well as its
command line parameters.

shell The optional choice of the shell to use for interpreting the command.
stdin This parameter contains the data to be sent to the running program

on its standard input.

O
u
tp

u
t

stdout This output system parameter stores a copy of the output of the
program.

stderr This parameter buffers the error messages produced by the program.
retval This parameter contains the operating system exit code. Following

the UNIX convention, a value of 0 indicates a successful execution,
any other value is interpreted as an error.

Control and Scheduling The shell commands are invoked synchronously.

58

4.5. JAVA

Data The values of the user input parameters are transferred to the external pro-
gram both using its command line and can also be copied onto its stdin system input
parameter. By default, the standard output produced by the program is parsed fol-
lowing an XML syntax in order to extract the values of the output parameters,
although a user-provided plugin for parsing the application-dependent output can
override this behavior.

Failures The invocation of a shell command can fail for several reasons. JOpera
interprets the value of the retval system parameter, which contains the exit code
of the process as it is returned by the operating system, to distinguish between a
successful execution (0) and a failed execution (non-0). In both cases, it also stores
the program’s standard error into the stderr parameter so that the user can gather
useful debugging information.

4.5. Java

As JOpera’s runtime kernel is written in Java, this offers the interesting opportunity
to integrate various flavours of Java components into a process with different degrees
of granularity and overhead. JOpera can embed small Java scripts (JS) directly into
a process, or it can efficiently call local (JAVA) or remote (RMI) methods of Java
classes and also offers a convenient way to start external Java virtual machines
(JVM).

In an enterprise application integration scenario, where most of the business logic
has been developed with Enterprise Java Beans and related technologies, it is possi-
ble to access such distributed software components from a process by modeling and
invoking them as Web services. However, at runtime this would impose an excessive
overhead. Especially if the process runs locally, within the same environment where
most of the Java components have been deployed, the Web service interoperability
and firewall-tunneling properties would not be of advantage. Furthermore, at design
time, all of the beans to be integrated still need to be manually published as Web
services. Although there is a growing set of tools to provide automatic support for
this kind of operations, they still entail an additional development and maintenance
cost, which would be reduced if the services provided by the beans become directly
accessible from a process.

At the other end of the granularity scale, the Java programming language also
provides a convenient way to program very small computations to be called at a
certain point during the execution of a process. This way, parameter values can be
easily converted, or checked for correctness. Furthermore, multiple output values
can be quickly computed starting from a set of input parameters, minimizing the
overhead due to parameter passing. To perform similar computations remotely
using a Web service would be extremely inefficient [27]. Similarly, the values on
which conditions depend on (e.g., a loop counter) can be conveniently updated with
a small Java snippet, or script, as we will present in the following section.

59

4. COMPONENT TYPES

4.5.1. Java Scripts

This component type models the most efficient way of embedding Java code into a
process, where a small script written in Java can be executed with minimal overhead.
As suggested by the previous examples (Figure 3.10 on page 33, Figure 4.5 on
page 56), it can be very beneficial to use this kind of component to perform small
computations in a process. If the same computation would have to be invoked using
a different mechanism (e.g., Web services), the overhead of the protocols involved
would make it impractical to do so2.

System Parameters For this component type, there is only one system input
parameter which contains the script itself.

script The script (or Java method body) to be embedded into the process.

exception If an error occurs, this system output parameter contains the message
of the Java exception.

Control and Scheduling By design, the script is invoked immediately, i.e., within
the same thread that executes a process. This has a very small overhead. However,
if the script runs for too long it may delay the execution of other processes.

Data flow There is a one to one correspondence between user defined parameters
and the Java variables that can be implicitly used in the script. JOpera’s compiler
automatically declares Java variables for each input and output parameters. For
this reason, and for this component type only, it is not allowed to have input and
output parameters with the same name, as they would be mapped to the same Java
variable. After the script has completed, the values assigned to the Java variables
are copied into the corresponding output parameters.

Failures JOpera detects a failure if a Java exception is raised and it is not caught
during the execution of the script.

4.5.2. Local Java Method Calls

For more complex Java code that cannot be embedded into a process as a script
like in the previous case, JOpera provides the local method call component type.
More precisely, it is possible to invoke directly any static methods of a given class.
For other, non-static, methods, JOpera first creates an object of the class (assuming
that the class supports the empty constructor) and then calls the specified method
of the newly created object.

2This issue has also very recently surfaced within the BPEL4WS [112] community, where a
proposal called BPELJ is currently under discussion. Very briefly, it suggests to extend this
Web service composition language with a new “keyword” (or activity type) to incorporate
so-called Java snippets into a process [111].

60

4.5. JAVA

System Parameters The following system parameters are used to identify the
method and the class to be invoked:

classpath The Java class path where to find the class to be loaded.
classname The fully qualified name of the class.
method The method to invoke.

exception If an error occurs, this system output parameter contains the message
of the Java exception.

Control and Scheduling The dynamic loading of the class and the method invo-
cation happen synchronously within the same Java virtual machine which runs the
JOpera kernel.

Data flow JOpera’s input parameters correspond directly to the method’s param-
eters. There is only one output parameter which contains the value returned by the
method.

Failures Any uncaught exception raised during the method invocation will fail this
component type.

4.5.3. Remote Method Invocations

System Parameters In addition to the parameters of a local method invocation,
a remote method invocation requires the following system input parameter:

rmireg The address of the RMI registry to use when looking up the name of the
class to invoke.

The mappings for Control, Data and Failures are equivalent to the previously de-
scribed Local Method Invocation component type (Section 4.5.2).

4.5.4. External Java Programs

For convenience, it is possible to model external Java programs as a different compo-
nent type, altough the execution semantics are very similar to the Shell Command
component type. In fact, this is an example on how to conveniently extend the Shell
Command component type with a predefined command line. As opposed to the
previous Java related components, where parameters are passed on the stack of a
Java method call, in this case data is exchanged with the external JVM through the
same (and more expensive) mechanisms used with the Shell Command component
type.

61

4. COMPONENT TYPES

System Parameters To call an external Java program it is necessary to specify
the following system parameters, which are used to build the command line for
inoking an external JVM

In
p
u
t

jvm The optional choice of the Java virtual machine to use.
options The JVM options to use, if any.
classpath The Class Path where the external JVM searches for the class to

be loaded.
classname The name of the class to execute.
args The command line arguments passed to the main method of the

class.

The mappings for Control, Scheduling, Data, and Failures are equivalent to the
previously described Shell Command component type (Section 4.4).

4.6. Script Components

Scripts are components that involve the execution of an external program (or script)
written in traditional scripting languages, including but not limited to PERL [250],
Python [240], or domain-specific scripting languages, such as Darwin [86]. In this
category we also include database scripts written in SQL [38].

Scripting languages have been traditionally a very successful form of program-
ming glue code, as they enable developers to automate the interaction between a set
of applications, which are reused as coarse grained components [171, 203]. We have
included scripts in the JOpera component model for the following reasons.

First of all, it frequently occurs that the interaction between different applications
is initially automated using this kind of technology [182]. However, following this
bottom up approach, after such scripts reach a certain level of complexity, or if
there is a need of integrating scripts written in different languages and intended to
be run on different platforms, current scripting environments do not offer a viable
solution. By making it easy to invoke external scripts from within a process, it
becomes possible to build a process (or a visual meta-script), which defines how the
various scripts interact.

Furthermore, scripts are great for developing wrappers, where the interface of
“legacy” applications can be non invasively modified to fit with the rest of the
process. Once such wrapper is available, it should be as easy as possible to invoke
it from a process.

Finally, thanks to JOpera monitoring environment, it becomes possible to track
the progress of such processes built out of scripts, a task which usually requires
additional programming effort with traditional scripting languages.

62

4.6. SCRIPT COMPONENTS

4.6.1. Scripts

In order to execute a script, JOpera invokes the scripting language interpreter and
passes it a) the script and b) the input parameters. Similar to invoking an external
Java program, this component type is an extension of the Shell Command component
type. The script to be executed can be stored into an external file or can be also
embedded into the component description. In practice, in order to enhance the
portability of the service definitions, it can be quite useful to store such scripts,
especially if they are small, as part of the description of the component.

System parameters This component type inherits the parameters describing the
Shell Command component type. Additionally, the command parameter is replaced
by the following:

In
p
u
t

lang the scripting language interpreter to use.
embedded flag indicating whether the script is embedded or it is to be found

in an external file.
script the embedded script, it may also contain parameter placeholders

that will be expanded before the script is passed to the interpreter.
scriptref the filename where the script is stored. In this case the script

cannot contain any parameter placeholders as it can only receive
input data through the command line.

args the command line arguments to pass to the script.

The mappings for Control, Scheduling, Data, and Failures are equivalent to the ones
of the previously described Shell Command component type (Section 4.4).

4.6.2. SQL

A database query is also a useful component type for conveniently sending a set of
SQL statements to an external database and, if applicable, retrieve the results of
the query and store them in the output parameters.

With this component type, it becomes easy, for example, to write a process that
stores persistently into a database table the data produced by services belonging
to other component types. Conversely, a process can also be used to extract data
from a database and process it with the services provided by other component
types. This component type also provides the infrastructure to build a process to
integrate data coming from different sources, some of which can be SQL database
queries. As opposed to invoking external services or applications that interact with
a database, using this component type may provide a faster development option, as
the development of external database clients is not required. At runtime, to further
reduce the execution overhead, JOpera’s database adapter can pool shared database
connections among all of its concurrently running processes.

63

4. COMPONENT TYPES

System Parameters In order to describe an SQL script to be sent to a database
we use the following system parameters:

In
p
u
t
S
ystem

P
a
ra

m
eters

dbtype The database type. This information is needed to locate the
appropriate JDBC driver.

server The address of the database server.
port The port of the database server.
user, pass The authentication information used to connect to a certain

database.
database The name of the database to use.
script The script with the SQL statements to execute.
prepare An optimization flag indicating whether the statement should be

prepared.

O
u
tp

u
t

status The JDBC status after the query has been executed.
errormsg The JDBC error message, if any.
data The result of the query.

Control and Scheduling Given the client-server type of interaction, components
of this type are executed synchronously. Considering a database replication scenario
where a set of alternative database servers is available, the server address can be
chosen dynamically by a scheduler.

Data There are several approaches to exchanging data with a database server
through JDBC. With the usual placeholders mechanisms the values of the input
parameters can be replaced directly into the SQL script before this is sent to the
server. As an alternative, in case of prepared statements, the parameters of the
SQL statement are passed using a positional encoding to the server: the order in
which the input parameters are defined must correspond to the order in which the
parameters are referenced in the SQL statement.

Also for modeling the results of a query, so that they can be stored into user
output parameters, there are different approaches. Considering that it is possible
to refer to each field of a tuple by name, and assuming that the database schema is
known in advance, a simple approach is to name the user-defined output parame-
ters of SQL components with identifiers corresponding to the fields of the resulting
dataset. Nevertheless, how to efficiently encode the potentially large results of a
query so that they can be used in practice in the rest of the process remains an
interesting (and open) optimization problem.

Failures An SQL script may fail for various reasons, which are summarized by the
value of the JDBC status parameter. To simplify error recovery, it is assumed that
each SQL component is invoked within its own transaction.

64

4.7. XML DATA MANIPULATION

4.7. XML Data Manipulation

In practice, Web services of a realistic complexity expect to receive large data struc-
tures as input messages and may also produce complex XML documents as result.
Inside SOAP messages, such data structures are normally encoded in XML strings
conforming to an XML schema instance [247], which is referenced by the Web ser-
vice interface description. Messages returned from one service can only rarely be
forwarded directly to another [15]. Instead, some form of XML Data manipulation
is usually needed for transforming and adapting such message to a different data
model, which may have different syntax or semantics [212]. Similarly, complex re-
sults of a Web service may need to be partitioned so that they can be passed on to
many of the other services composing a process. Finally, XML data coming from
several sources may have to be consolidated into a single result document to be
returned to the user.

With JOpera there are two ways of approaching this problem:

1. It is always possible to leverage existing XML manipulation technologies, e.g.,
style sheet transformations (XSLT [243]) or the XML Path query language (X-
Path [244]). This way, users familiar with these languages can embed XSLT
transformation or X-Path expressions directly into a process by creating data
filtering tasks which can be applied to the XML data in transit.

2. However, for a certain class of transformations, the JOpera Visual Composition
Language can be used directly to model XML transformations in a visual way.
These operations concern the encoding and decoding of XML complex-types.
Furthermore, the split and merge operators for list-based iteration have been
extended to support lists encoded in XML.

Complex types A complex type is a record-like data structure which is com-
posed out of elements of a certain data type, which can be simple (e.g., integer,
boolean or string) or, again, complex [247]. For each complex type defined in
the data model of a certain service’s interface, we define two symmetric oper-
ations: pack and unpack. These operations are used to encode the XML rep-
resentation of a data packet of a certain complex type (pack) and, conversely,
to extract from its XML serialization each individual elements (unpack).

These pack and unpack operations are automatically created by JOpera when
importing the XML schema referenced by the Web service interface definition.
A pack operation, for a certain complex type, has multiple input parameters,
representing the elements of the complex type and one output parameter,
which contains the encoded complex type. An unpack operation receives one
input parameter, with the serialized complex type, and returns the values
of its element in separate output parameters. The parameter types of the
operations are copied from the original schema, allowing to statically check
whether the pack and unpack operations are connected correctly. Furthermore,
JOpera uses this type information to suggest the appropriate operation when

65

4. COMPONENT TYPES

the user selects a parameter of a Web service having a complex data type.
In case of data structures with nested complex types, we propose a modular,
composable construction, where each complex type is encoded individually.
The various packing operations can be then plugged together to form the final
XML serialization.

4.7.1. XML Components

This category groups components used to manipulate data conforming to the XML
format. Especially in the context of Web service composition, where XML data is the
accepted standard format for data representation, it becomes important to easily ac-
cess the XML transformation capabilities offered by these components types. In this
area, a great variety of standards and new languages have been recently proposed.
As representatives, we have chosen to model XPath queries and XSLT transforma-
tions, in order to show that it is possible to integrate such type of technologies within
JOpera’s component model. If necessary, it should not be too difficult to extend
this category with other examples.

Although some of the system parameters depend on the specific type of XML
component, there are some commonalities, concerning also the mapping of Control,
Data and Failures, which are described in the following paragraphs.

System Parameters In general, an XML Component uses the following system
parameters for processing an XML document:

xmlin This system input parameter contains the XML data to be processed.

xmlout The result XML data, if any.
status The code which identifies whether an error occurred.
errormsg The user readable information about the error.

Control and Scheduling XML Components are invoked synchronously, and no
form of scheduling is supported.

Data The XML document to be processed is copied from the user-defined input
parameters into the xmlin system parameter. The result is stored into the xmlout

parameter, and can be then mapped the user-defined output parameters depending
on the specific component type.

Failures XML Component can also fail. In general this may happen because the
XML input data is syntactically incorrect or because there was an error while per-
forming the actual operation. The status and errormsg system output parameters
can be used to detect and debug the problem.

66

4.7. XML DATA MANIPULATION

4.7.2. XPath Queries

An XPath expression is used to filter out of an XML document the required infor-
mation [244].

System Parameters In addition to the parameters common to all XML compo-
nents, the X-Path component type also uses the following one:

script The X-Path expression to be applied to the XML data.

4.7.3. Style Sheet Transformations

Extensible stylesheet language transformations (XSLT) define a set of rules that, for
example, are applied to an XML document to produce another XML document [243].

System Parameters In addition to the parameters common to all XML com-
ponents, the XSLT component type also uses the following system input parameters:

embedded flag indicating whether the style sheet is embedded or it is to be found
in an external file.

script the embedded style sheet.
scriptref the filename where the style sheet is stored.

Data This component type also uses the same xmlin and xmlout parameters for
transferring the input and output XML document. Furthermore, it is also possible
to use parametric style sheets, where the output of the transformation still depends
on the input XML document but it is controlled by the content of some additional
parameters. Given that the parameters from within the style sheet are accessed by
name it is possible to establish a one to one correspondence between the style sheet
parameters and the user-defined input parameters of the component.

Example 4.2: Google Search

As an example of XML Processing with the JOpera Visual Composition Lan-
guage and the XML components, we present how to retrieve a list of URLs from
the results of a Google search. Since this WWW search engine’s API has been
published as a Web service [88], it is possible to import its interface definition,
including its data model, into JOpera. In order to extract the required list of
URLs, in the first example (Figure 4.7) we present a compact solution using
X-Path queries. In the second example (Figure 4.8) we only use the JVCL’s
XML data manipulation features.

First of all, Google’s search results are returned as a single data structure
into the return output parameter. In Figure 4.7 we apply (in parallel) two data

67

4. COMPONENT TYPES

filtering tasks (FilterURLs and FilterCount) to Google’s return parameter.
These tasks take an xpath expression and apply it to the content of their xmlin
input parameter. The filtered data is returned in the xmlout parameters, which
are then copied into the process output parameters.

returnurls estimatedTotalResultsCount

ProcessGoogleSearchXPath Output

return

doGoogleSearch

GoogleSearchPort_doGoogleSearch

xmlin

xpath

xmlout

FilterURLs

XPATH

xmlin

xpath

xmlout

FilterCount

XPATH

//URL/text() //estimatedTotalResultsCount/text()

ProcessGoogleSearchXPath - DataFlow

Figure 4.7.: Example of XML Processing with the JVCL and X-Path.

As an alternative (Figure 4.8), the less compact JVCL notation can be used
to achieve the same result through different means. As opposed to modeling
the data transformation with a declarative approach, we define operationally
the data flow of the transformation.

More concretely, through the Unpack return operation, it is possible to ex-
tract the component elements of the complex type returned by Google. These
are, among others, the searchTime (indicating how long the query took),
the estimatedTotalResultCount (indicating the estimated number of page
hits) which is copied to the process ouput parameter with the same name, the
estimateIsExact boolean parameter (indicating whether such number is ex-
act) and, most important, the resultElements list. For simplicity, we have
hidden the rest of the data elements of this type. In order to extract the list of
URLs we iterate over this list with the split operator. For every element, con-
tained in the resultElements item parameter, the Unpack resultElements

operation returns the value of its content, including the desired URL. By apply-
ing the merge operator, the various values of the URL parameters can be now
collected into the urls process output parameter.

68

4.7. XML DATA MANIPULATION

key q start maxResults filter restrict safeSearch

GoogleSearchXSD Input

return

urls

estimatedTotalResultsCount GoogleSearchXSD Output

key q start maxResults filter restrict safeSearch

return

doGoogleSearch

return

estimatedTotalResultsCountresultElements

searchTime estimateIsExactUnpack_return

resultElements_item

URL

title
cachedSize

summary

snippet Unpack_resultElements

GoogleSearchXSD - DataFlow

Figure 4.8.: Example of XML Processing with the JVCL only
This process retrieves a list of the URLs returned by a Google search.

By comparing the two examples it should be noted that with JOpera it is
possible to perform basic XML manipulations with the approach most appro-
priate for the user’s level of experience. By choosing the X-Path based solution
(Figure 4.7), the advanced user can perform the data filtering with a a compact,
declarative notation. On the other hand, with the operational, pure JVCL ap-
proach (Figure 4.8), it is possible to leverage the compiler’s type checker to
guide the user in finding the correct visual solution.

Example 4.3: Mismatching Services Adaptation

In the previous example, we have shown how to extract some information out of
an XML document representing a complex data structure. Here, we would like
to continue with this type of scenario and show another example on how to use
the JOpera Visual Composition Language and the XML manipulation compo-
nents to program the mapping required to make two services with mismatching
interfaces fit with each other.

69

4. COMPONENT TYPES

This example illustrates how to convert postal addresses between a service
which returns them using a Swiss format (defined by the XML Schema [247]
snippet of Figure 4.9) to the US format (Figure 4.10) understood by another
service.

Both services have been built to manipulate postal addresses, both services
use an XML Schema to define their data model. The information is even
encoded in XML and transferred between the two services using the same SOAP
protocol. Unfortunately the two services cannot be interconnected directly,
because their data models are different and unless a mapping between the two
interface type definitions is designed and applied to the data in transit, the
second service will reject the addresses received from the first one due to both
syntactical and semantical incompatibilities [212].

<xsd:complexType name=" ">
<xsd:sequence>
<xsd:element name=" " type=" " />
<xsd:element name=" " type=" " />

</xsd:sequence>
</xsd:complexType>

Adresse

name xsd:string
nachname xsd:string

<xsd:element name=" " type=" " />
<xsd:element name=" " type=" " />
<xsd:element name=" " type=" " />
<xsd:element name=" " type=" " />

strasse xsd:string
plz xsd:int
ort xsd:string
kanton xsd:string

Figure 4.9.: XML Schema definition for the Adresse type.

<xsd:complexType name=" ">
<xsd:sequence>
<xsd:element name=" " type=" " />
<xsd:element name=" " type=" " />
<xsd:element name=" " type=" " />
<xsd:element name=" " type=" " />
<xsd:element name=" " type=" " />
<xsd:element name=" " type=" " />
<xsd:element name=" " type=" " />

</xsd:sequence>
</xsd:complexType>

Address

name xsd:string
street xsd:string
number xsd:int
town xsd:string
state xsd:string
zip xsd:string
country xsd:string

Figure 4.10.: XML Schema definition for the Address type.

As we can observe from Figures 4.9 and 4.10, the Adresse complex type
does not match the Address type. Although some of its fields (elements) store
equivalent information, e.g., the postal code, the fields are named differently
(plz vs. zip). We also have a data aggregation conflict in the way the person’s
name is stored: using two fields (name, nachname) to differentiate between first
name and last name, and only one field (name). In this case, the same field
name (name) is used to tag incompatible information, if the fields with the
same name would be considered to be matching, some information (the last
name) would be lost. Furthermore, the first service returns Swiss addresses
only, therefore there is no equivalent field to represent the country information,

70

4.7. XML DATA MANIPULATION

required by the second service. Finally, the information about the street is also
represented differently, using one field (strasse) in the Adresse type and two
fields (street, number).

Although, at first sight, it may seem quite difficult to solve all of these
problems, the data flow diagram with JOpera’s solution is not too complicated
(Figure 4.11) and all but the last incompatibility, concerning the street field,
can be solved in an intuitive manner.

<Adresse>
<name> </name>
<nachname> </nachname>
<strasse> </strasse>
<plz> </plz>
<ort> </ort>
<kanton> </kanton>

</Adresse>

Cesare
Pautasso

Hirschengraben 84
8072
Zurich

ZH

<Address>
<name> </name>
<street> </street>
<number> </number>
<town> </town>
<state> </state>

<country> </country>
</Address>

Cesare Pautasso
Hirschengraben
84

Zurich
ZH

Switzerland
<zip> </zip>8072

name street number ziptown state country

pack_Address

name nachname strasse plz ort kanton

unpack_Adresse

ab

a b

Concatenate

s n

a

Split Switzerland

Figure 4.11.: Visual mapping between two XML complex types
This visual mapping converts postal addresses from a Swiss (top)

to an American syntax (bottom).

The data flow graph of the mapping between the two complex types can be
followed from top to bottom. For some pairs of fields (e.g., plz to zip), where
we have a mismatch only at the description level, we can directly link the
equivalent fields with a data flow connection. The country field, for which an

71

4. COMPONENT TYPES

equivalent field is missing, can be bound to a constant value. The other fields
have incompatibile values, therefore it is not enough to redirect the values
to the appropriate field. Instead, the values need to be manipulated using
string handling operators, which can be used to concatenate the values of two
fields (name, nachname) into one (name), as well as to split the value of one
field (strasse) into two (street and number). Now, in general, determining
which part of a string value corresponds to a street name and which part
corresponds to a street number may be rather difficult. For this example,
and for the corresponding XSL transformation (Figure 4.12), we will assume a
street number to be always stored at the end of the string, following the Swiss
convention, and that it is separated from the street name by a blank character.

The example of JOpera’s visual mapping of Figure 4.11 can be compared
to the equivalent XSL transformation of Figure 4.12. Depending on the fa-
miliarity of the developer with this technology, using a visual mapping may
be a more or less productive approach, when compared with the XSL-based
solution. In principle, it is possible to take JOpera’s visual representation and
use it to generate the corresponding XSL code. For performance reasons we
chose an alternative approach, which should maximize both the users’ produc-
tivity (drawing a mapping can be faster than debugging XSL code) and the
runtime execution’s performance (JOpera’s compiler generates Java executable
code from the visual notation), as we will present in Section 8.2 on page 183.

<xsl:template match=" ">
<Address>
<name>

<xsl:value-of select=" "/>
<xsl:text> </xsl:text>
<xsl:value-of select=" "/>

</name>
<street>

<xsl:value-of select="substring-before(,' ')"/>
</street>
<number>

<xsl:value-of select="substring-after(,' ')"/>
</number>
<town>

<xsl:value-of select=" "/>
</town>
<state>

<xsl:value-of select=" "/>
</state>

<country>

</country>
</Address>

</xsl:template>

/Adresse

name

nachname

strasse

strasse

ort

kanton

<zip>
<xsl:value-of select=" "/>

</zip>

<xsl:text>Switzerland</xsl:text>

plz

input

Adresse

script

XSLT

output

Address

AdressetoAddress

XSLT Transform

Figure 4.12.: Equivalent XSL mapping
An alternative, equivalent representation based on XSL of the visual mapping

in Figure 4.11 (left). The style sheet can also be invoked from a JOpera
process (right).

72

4.8. SYSTEM COMPONENTS

Performance, however, should not be the only criteria for comparing the
two solutions. As indicated in Figure 4.11, it is possible to recognize in the
visual mapping the following three stages: 1) The unpack Adresse operator
extracts information from the original syntax of the source service. 2) A visual
mapping based on data flow arrows and operators is used to define the trans-
formation appied to such information. 3) The pack Address operator formats
the results according to the syntax of the destination service’s representation.
As discussed in [178], it is important to keep these aspects separated. This way,
the semantic-level mapping can be specified in terms which are independent of
the actual syntax-level formatting of the information. Since the XSL transfor-
mation of Figure 4.12 does not support such clear distinction, it remains more
difficult to understand and maintain.

4.8. System Components

These components represent basic facilities and services provided within the JOpera
system that can be invoked from a process without any external dependencies. They
include a testing mechanism for echoing back the same input data as output, the
internal mechanism used for calling sub-processes and a set of components exposing
part of the JOpera API (Section 7.5), so that it becomes accessible from within a
process.

4.8.1. Echo

The Echo system component type has been introduced for testing purposes, but can
also have useful applications. For example, the previously mentioned (Section 4.7
on page 65) pack and unpack operators used to encode and decode XML complex
data types are implemented using this system component.

Essentially, the components of this type repeat the received input data back as
output, and do not involve the interaction with any external service provider.

System Parameters This component type has one system parameter with two
manifestations:

input This input system parameter can be assigned with the value to be re-
turned.

output By definition, this output system parameter contains the same value as
the input parameter.

Control and Scheduling This type of components is executed synchronously.

73

4. COMPONENT TYPES

Data Considering that parameter placeholders can be used to build the input sys-
tem parameter and that the content of the output parameter is interpreted according
to the usual XML syntax, in practice it is possible to use this type of component to
model n to m simple data transfers where a set of n parameters is mapped onto a
different set of m parameters, where m ≤ n.

Failures Components of this type only fail if the output data parameter cannot
be parsed in order to extract the specified user output parameters.

4.8.2. Process Invocation

This type of system components is used behind the scenes to implement the sub-
process construct of the JOpera Visual Composition Language. Although syntac-
tically different, a sub-process is semantically equivalent to an activity referring to
this kind of component, which represents the invocation of a process.

System Parameters

In
p
u
t
S
ystem

P
a
ra

m
eters

procname This parameter contains the name of the process to be invoked.
In most cases its value is fixed at compile time. However, to
model a form of late binding, it is possible to dynamically replace
its value at runtime.

spawn This flag indicates whether the process should be started asyn-
chronously. In case of asynchronous process calls, the invocation
of the component completes as soon as the process has started.
By default, process invocations are synchronous, i.e., they com-
plete after the called process has terminated.

lookup This flag is used to ask JOpera to look for processes that have
already been run with the same input parameters so that their
results can be recycled and no new process needs to be started.

priority This parameter controls the scheduling priority of the process
numinstances This controls the number of instances of the process to be started.

By default only one instance of a process is started wth a sub-
process call. This parameter is used to perform scalability test-
ing.

resources This parameter constraints the scheduling of the tasks within the
invoked process to the specified set of resources.

delete If this flag is set, the process instance will be deleted automati-
cally after it has completed its execution.

O
u
tp

u
t

exception This system output parameter identifies the tasks that caused
the failure of the process.

procid This parameter contains the ID of the invoked process. In case
of asynchronous calls, it allows the caller to identify the process
which is running in the background in order to interact with it.

74

4.9. CLUSTER COMPUTING

Control and Scheduling Sub-processes are invoked asynchronously by queuing a
“start process” request which contains additional information identifying the caller
process. When the invoked process completes this information is used to notify the
caller that the sub-process has completed.

Data Both input and output data between the sub-process and the invoked process
are exchanged implicitly. By definition, a sub-process has the same user-defined
input and output parameters as the invoked process. Therefore, there is no need to
explicitly model this data transfer that happens automatically.

Failures The failure of the synchronously invoked process will always trigger the
failure of the calling sub-process. In this case, the exception system output param-
eter can be used to identify the tasks that first caused the problem. An asynchronous
process call will fail only if the process cannot be started, e.g., because its name is
invalid.

4.9. Cluster Computing

In our work in the context of the BioOpera project [23], we used the JVCL language
to model cluster (and grid) computations as processes, where the execution of each
task involved the scheduling of the corresponding service invocation, in order to
determine the optimal node of the cluster (or grid) to provide the computational
service. As a natural generalization of this approach, in this section we present
another type of components, related to cluster computing.

Cluster computing components model the ability to submit a computational
job to a cluster of computers, or more precisely to the resource management and
batch scheduling system which controls such cluster. Examples of these systems
include Condor [150], the Sun Grid Engine [222] or the Portable Batch System [24]
and BioOpera [23]. Mapping a service invocation to the submission of a job to
one of these systems opens up the interesting opportunity of building grid-oriented
processes that coordinate computations across heterogeneous cluster management
systems, spanning across multiple sites and organizations [22].

Although some details may vary depending on the actual system, in general,
such job submission involves the packaging of the computational job into a script
and the description of the requirements of the job in terms of computing and storage
resources in metadata associated with the job submission. As we have seen so far,
such information can be modeled with system input parameters in a straightforward
manner.

4.9.1. PBS

The Portable Batch System [24] is an example of a cluster resource management and
scheduling system used to optimize between the resource utilization of the cluster
and the turnaround time of the submitted jobs. Its interface is based on queues.

75

4. COMPONENT TYPES

Each queue accepts jobs in form of scripts that contain both metadata (attributes)
and the actual sequence of shell commands to be executed on one or more hosts of
the cluster. The output produced by PBS jobs is typically stored into temporary
files.

System Parameters This is the minimal number of system parameters that
describe a PBS job submission3.

queue The name of queue of the batch scheduling system to which the job should
be submitted.

script Script which contains the attributes controlling the job and the commands
to be executed as part of the job.

stdout This system output parameter contains the output produced by the job.
stderr The error messages printed by the job.
pbsid The PBS job id.

Control and Scheduling Jobs are submitted asynchronously to a PBS queue,
which is periodically polled to determine the state of the job. As an alternative, an
email notification can be sent when the job has completed.

Data Typically PBS jobs exchange data through external files, therefore the user-
defined input and output parameters contain the names of such files.

Failures As PBS only returns the completion notification for a job, it is not clear
how to determine its outcome in a general way. However, if a problem occurs during
the job submission, e.g., the selected queue is not available, this condition can be
detected immediately.

4.9.2. BioOpera

System Parameters The BioOpera component type extends the UNIX compo-
nent type with scheduling capabilities modeled by the following system parameters.

resource The name of the resource on which the command should be executed.

host The name of the host on which the actual execution has been scheduled.

3A more extensive model would explicitly include as system input parameters describing each
of the job attributes defined by PBS (e.g., priorities, file staging, resource requirements, etc.).
These attributes would be automatically encoded together with the command script into a job
submission.

76

4.9. CLUSTER COMPUTING

Example 4.4: Parallel Image Rendering

In this example we show how to use the JOpera Visual Composition Language
to program a parallel computation used to speed up the rendering of ray-traced
images with a cluster of computers. This computation has been built by com-
posing a set of Shell Commands that are run through the BioOpera scheduler.

The structure of the RenderImage process can be reused for other, similar
data parallel computations, where a large computational task is partitioned into
smaller, independent units (or chunks) that can be then executed in parallel
by submitting them to the cluster management system. Once all units have
completed their results are merged for further post-processing.

Partition Combine CleanupPovRay

RenderImage - ControlFlow

Figure 4.13.: Control flow view of the RenderImage process

As represented in Figure 4.13 the process is composed of four tasks, which
are executed in sequential order: Partition, PovRay, Combine, Cleanup. For
enhanced readability, the data flow graph is shown in two separate views Fig-
ures 4.14 and 4.15, the first covering the parameters of the first two tasks, and
showing the parallel computation. The second shows the data flow of the last
part of the process, where the results of the parallel computation are merged.

modelname datapath numChunksheightwidth

RenderImage Input

RenderImage Output

max numChunks

delta

rows

Partition

datapath

modelname

width

row

delta

height

PovRay

RenderImage - DataFlow/1

Figure 4.14.: Data flow view of the first part of the RenderImage process

The process receives the following input parameters: modelname and
datapath contain the name and the location of the scene to be rendered; width
and height contain the desired size of the resulting image. The numChunks pa-

77

4. COMPONENT TYPES

rameter is used to control the number of partitions. As shown in Figure 3.13,
the value of this parameter could be set automatically by JOpera’s resource
manager based on the current state of the cluster.

In this example the final image is partitioned into horizontal slices, each
of which can be rendered in parallel. Other partitioning strategies are also
possible, e.g., vertically or along a grid, but, considering the way image data
is stored (along horizontal scanlines), they would make the merging step more
difficult. The Partition task, invoked at the beginning of the process, uses the
height of the image to produce the rows parameter, which contains the list of
row indexes where each parallel rendering should start. The delta parameter
contains the number of rows that should be rendered for each partition.

After the image Partition task has finished preparing the work to be done
in the parallel part of the computation, for each row in the rows parameter,
a parallel execution of the PovRay application [189] is started, as indicated by
the split operator between the two parameters. This task receives as input the
datapath and modelname parameters, indicating where it should read the scene
description to be rendered. Furthermore, the size (width and height) of the
final image, as well as the size (delta) of the horizontal slice are also passed
to the task. The partially rendered images are written into the same datapath

directory so that they can later be merged by the Combine task, which also
receives the datapath and modelname input parameters (Figure 4.15) and uses
them to look for the various slices of the image.

modelname datapath

RenderImage Input

RenderImage Output

datapathmodelname suffix

Cleanup

_*.ppm *.log *.ini

datapathmodelname Combine

RenderImage - DataFlow/2

Figure 4.15.: Data flow view of the second part of the RenderImage process

Once the final image has been produced, a parallel instance of the Cleanup

task is started for every different type (*.ppm, *.log, *.ini) of temporary

78

4.10. MESSAGING COMPONENTS

file to be removed from the datapath directory. Given the typical number of
partitions used and the number of temporary files created during the parallel
rendering, it pays off to also perform the cleanup in parallel for each type of
file.

The RenderImage process is an example of a process with a partially implicit
data flow. First of all, the process does not model the transfer of image data
between the rendering (PovRay) and merging (Combine) tasks. Instead, it is
assumed that such data is exchanged through a file system shared among all
nodes of the cluster. Therefore, these tasks need to follow the same file naming
conventions, so that it is enough to give a directory path name in the common
datapath parameter to be able to reconstruct which files need to be merged
into the final result. As a consequence, the control flow diagram in Figure 4.13
cannot be automatically derived from the data flow of the process and the
additional constraints between the PovRay, Combine and Cleanup tasks have
been manually added.

4.10. Messaging Components

Message based interaction is the basis for building loosely coupled distributed sys-
tems out of services, which are invoked asynchronously. One of the interesting
results of applying JOpera component meta-model to this type of components is
that no extension to the composition language is required to distinguish between
the synchronous and asynchronous invocations of services. Furthermore, thanks to
this type of components it becomes possible to model the asynchronous cancellation
of the execution of a process. Likewise, processes, which are normally used to de-
scribe the asynchronous interaction with services, can use these components to also
implement such conversations.

In this context, we present two different types of components used for syn-
chronously sending and receiving messages. The first one uses the SMTP [193]
and the IMAP/POP [55, 169] protocols, collectively known as electronic mail. The
second type of messaging component is based on the Java Message Service (JMS)
specification [220].

In general, the model of these components has a similar structure, as it is neces-
sary to provide addressing information (identifying the source and destination of a
message, e.g., a queue), the content of the message and additional header information
including, e.g., the priority of a message or timestamps and further identification
information. In practice, we have chosen to classify these components in different
types in order to present the developer with a model closer to the one used in the
underlying messaging system.

79

4. COMPONENT TYPES

4.10.1. Email

This type of component is used for sending and receiving electronic mail messages.

System Parameters The first set of parameters are input parameters used to
identify the email server to use. Then, depending on the value of the command

parameter, the next set of parameters are used as input (to send a message) or as
output (to receive a message).

In
p
u
t

server The address of the email server.
protocol The protocol (SMTP, POP, IMAP).
user, pass If required by the protocol, the user authentication information

to access the email account
id Optional message identification information.
command Whether to send or receive a message.

In
pu

t
o
r

O
u
tpu

t

from This system input parameter contains the email address of the
sender of the message.

to, cc, bcc These parameters contains the email addresses of the recipients.
headers This parameter contains additional headers for the message,

which specify, for example, the priority of the message or
whether a return receipt is expected.

subject The subject of the message.
body The main text of the message.
attachments A list of attachments.

Control and Scheduling A message is sent or received asynchronously. When
receiving a message, the invocation of this component returns after either a message
has been received or the given timeout has expired.

Data The user defined input (or output) parameters can be mapped to both the
body and the attachments of the message being sent (or received).

Failures Failures that prevent the message from being sent are detected from the
corresponding SMTP status codes. Similarly, the status output parameter indicates
whether a message has been successfully received within the given timeout.

4.10.2. JMS

This component type models the messaging services of the Java Message Standard
specification [220].

The mappings for Control, Scheduling, Data, and Failures are very similar to
the ones of the previously described EMail component type (Section 4.10.1).

80

4.10. MESSAGING COMPONENTS

System Parameters Like the previous example, some system parameters are used
as input or as output depending on the value of the command parameter.

In
p
u
t

server The JNDI name of the JMS connection factory used to access
the messaging system.

command Whether to send or receive a message.

In
pu

t
o
r

O
u
tpu

t

destination This parameters contains the queue or topic name used to
identify the recipient of the message.

replyto This system input parameter is used to identify the sender of
the message.

messageid Optional message identification information.
deliverymode This optional parameter specifies the reliability guarantees for

the message, i.e., whether the message is sent best-effort or it
is stored persistently.

headers This parameter contains additional headers and properties for
the message.

content The content of the message, string encoded.

Example 4.5: Asynchronous Process Call

In this simple example we show how to use the messaging components to model
the asynchronous interaction between two processes. The example is equivalent
to a synchronous (i.e., blocking) sub-process call, however the two processes
exchange data by sending messages and the sub-process construct is not used.
Furthermore, the example can be easily generalized to model arbitrary multi-
party interactions using different message queues.

Figure 4.16 shows the data flow of the ClientProcess. This process sends
the value of its input parameter c as data on an input queue. At the same
time, as there is no control flow dependency between the Send and Receive

tasks, it waits to receive a message on the output queue. Once the data

arrives, it is copied to its output parameter f, before the process finishes.
It should be noted that after the input message has been sent, there is no

particular constraint that limits what the process may do. In fact, other tasks
can be added to be executed independently of whether an output message has
been received. Furthermore, in this simple example no correlation betweeen the
input and output messages is enforced. If the output queue already contains
messages before the ClientProcess is started, one of such messages could be
received even before one is sent on the input queue. By using additional
parameters of the messaging components in combination with reflection, is
possible to associate the ID of the process to the messages in transit. Thus,
only the messages related to a particular process instance will be processed by
such instance.

81

4. COMPONENT TYPES

c

ClientProcess Input

f

ClientProcess Output

data q

Send

q

data

Receive

input queue output queue

ClientProcess - DataFlow

Figure 4.16.: Data flow view of the ClientProcess

Figure 4.17 shows what happens on the other end of the two message queues.
Symmetrically, in the ServerProcess, messages are received from the input

queue, processed and the results sent on the output queue. During execution,
the ReceiveRequest task waits for an incoming message on the input queue.
Once a message has been accepted, its data is passed to the c input parameter
of the Compute task, which transforms it into the f parameter. Its value is
copied into the data parameter of the SendResult task, which sends it in a
message on the output queue. At this point the execution of one instance of
the ServerProcess completes.

ServerProcess Input

ServerProcess Output

q

data

ReceiveRequest

c

f

Compute

data q

SendResult

input queue output queue

ServerProcess - DataFlow

Figure 4.17.: Data flow view of the ServerProcess

82

4.11. BPEL BASIC ACTIVITIES

4.11. BPEL Basic Activities

In this section we present how some of the basic activities defined as part of the
BPEL4WS [112] specification can be modeled by a particular JOpera component
type. This way, the functionality provided by these activities can be accessed from
within a process without having to extend the JVCL language with new constructs.
Out of the various BPEL basic activities we only need to model three ones (wait,
throw, and empty) for the others (assign, reply, receive, and invoke) have an
equivalent mapping to either a JVCL constructs (data flow bindings) or other com-
ponent types (Messaging or Web services)4.

System Parameters The three BPEL basic activities we are interested in model-
ing do not produce any data as output, therefore only one input system parameter
will suffice:

bpel BPEL representation of the basic activity to be executed.

Control, Data, Failures Depending on the content of the bpel parameter, differ-
ent actions are carried out synchronously (without scheduling). Where applicable,
input data can be inserted in the BPEL representation through the usual parameter
placeholder mechanism.

<throw faultName faultVariable/>

The invocation of this component will always fail. The faultVariable attributes
indicates from which user-defined input parameter the additional information about
the fault should be taken.

<wait (for|until)/>

The invocation of this component will return after the given relative or absolute
timeout has expired.

<empty/>

The invocation of this component will return immediately without any effect.

4This decision is explained in the presentation of the mapping of BPEL4WS to JOpera’s process
model in Section 6.4 on page 125.

83

4. COMPONENT TYPES

4.12. Workflow Tasks

This type of component models human-oriented tasks that are usually assigned to
a person for being taken care of. Traditional business process models included this
component type as the only basic form of activity to be composed into a workflow. In
JOpera, without including these component types, the interaction between a process
and the user running it normally happens only when the process starts, as the user
supplies the input parameters of a process. By using the debugging environment,
a user can always interact with a running process to resolve unexpected situations.
However, in some cases, it is useful to explicitly model in a process a point in the
execution where the interaction with the user is always required. For example, a
human operator may have to check the partial results of a process and use them to
make a decision on how the rest of the execution should proceed. Likewise, exception
handling tasks may correspond to the invocations of the services provided by human
troubleshooters.

System Parameters As the user-defined input and output parameters are also
visible to the person handling the workflow task, the system parameters are used
for describing what needs to be done and controlling who should do it.

task This input system parameter contains a textual description of what
needs to be done as part as the workflow task.

role This parameter identifies the set of people within a certain organiza-
tional unit that can and should handle the workflow task.

errormsg This output system parameter contains the user-provided description
of what caused the failure in the execution of the task.

operator The operator to whom the task has been assigned.

Control and Scheduling Workflow tasks are executed asynchronously through a
so-called Worklist handler which uses the role parameter to schedule the execution
of the task among the available human resources.

Data When the task needs to be executed, within the active worklist item, in
addition to its basic description, the user can also directly read the value of the
input parameters and fill in the values for the output parameters.

Failures Similar to other component types, also workflow tasks can fail either
because nobody has executed them within a certain time or because during their
execution a problem occurred.

84

4.13. DISCUSSION

4.13. Discussion

With all of the examples of different component types presented in this chapter, we
have attempted to show the flexibility of JOpera’s component model, which pro-
vides the developer with a choice of several different mechanisms for describing and
accessing the services to be visually composed into a process. More specifically,
thanks to our simple component meta-model, from the perspective of the developer,
the heterogeneity of the available component types does not sacrifice the unity of
interface principle, where the same user interface should be used for the same task,
regardless of how it is implemented behind the scenes [266]. In our case, regardless
on what is the actual mechanism used to invoke a service, its representation within
a process, both in terms of its visual syntax and of its parameter based interface, re-
mains the same for all types of components. In Chapter 7, while presenting JOpera’s
architecture, we will show how the support for heterogeneous component types has
been designed taking into account the trade-off between efficiency and flexibility, i.e.,
between keeping the service invocation overhead small and conveniently providing
support for a wide range of component types.

On a different level, it should be also noted that, in general, we have been model-
ing services as components which are readily available, ignoring their dependencies.
On the one hand, it is the job of the service provider to ensure the satisfaction of such
internal dependencies, which may go from solving installation and deployment is-
sues all the way to the management of the underlying hardware infrastructure [225].
Therefore, as opposed to traditional component based software engineering, the
client should only be interested in modeling what the services provide and may
disregard their requirements when composing them.

On the other hand, from JOpera’s point of view, component definitions introduce
an external dependency between the definition of the component itself and the ex-
ternal service providing the actual functionality. This can have repercussions when
process definitions and the included component definitions are moved to a different
process execution environment, i.e., processes become unusable because the services
they require are missing in the new environment.

First of all, in JOpera, the clear separation between processes and their compo-
nent service definitions helps to make the process descriptions themselves indepen-
dent of such changes, as the processes are defined in terms of service interfaces only.
The required adaptation work is thus limited to the component definitions only.

More in detail, for component types modeling globally accessible services with
a remote implementation, e.g., Web services, this dependency is quite small as it
amounts to the given URL of the WSDL document and to the interface definition
of the service contained in such document. As long as both of these pieces of
information do not change, it is still possible to modify the service’s implementation
or move the location of its provider, without invalidating the component definition.

For other component types, e.g., UNIX applications, the bond between the com-
ponent definiton and the external application is stronger. If, for example, the process
and the included component definitions are ported to a different execution environ-
ment, it must be ensured that the referred applications are locally accessible and

85

4. COMPONENT TYPES

that all of their dependencies (e.g., in terms of file naming conventions) are satisfied.
Depending on the application, this may amount to a simple reinstallation or it may
entail more difficult configuration work.

In case of components such as Java scripts or other component types that support
the embedding of the service’s implementation within the component definition, such
dependencies to external artifacts are minimized. As long as the required version
of the scripting language interpreter can be found, the scripts can be immediately
executed in the new environment.

To address these process portability issues, thanks to the information contained
in JOpera’s component model, when deploying a process into a new execution en-
vironment, it is possible (up to a certain extent) to actively check that all of its
dependencies are satisfied and that all of the required services are available and
accessible.

As a final note we would like to emphasize that, relaxing the constraints on
the type of components that can be composed can contribute to the generality
and simplicity of the composition language. Since all JOpera component types
have the same parameter-based interface, no ad-hoc language construct is needed to
discriminate between the invocation of services of different types (for example, it is
not necessary to distinguish with different language constructs between synchronous
invocation or asynchronous, message based interaction). If it becomes necessary to
access information dependent on the specific component type, reflection through the
use of system parameters can be applied5. Still, also this mechanism is based on a
consistent visual syntax, uniform across all component types.

All in all, we believe that the possibility of choosing (wisely) between the use of
Web Services or other kinds of services can be of great value, as the most appropriate
component type in terms of performance, security, reliability and convenience of use
can be chosen.

5See Section 3.7 on page 34 for more information and some examples on using system parameters
with reflection in the JVCL language.

86

5. Opera Modeling Language

In this chapter we present the definition of the the Opera Modeling Language
(OML), the process modeling language used by the JOpera system. The Opera
Modeling Language is a natural evolution of the Opera Canonical Representation
(OCR) first described in [98]. As opposed to the text-oriented syntax of OCR,
the Opera Modeling Language uses a syntax based on XML and it includes several
additional features.

First of all, OML is the foundation for the JOpera Visual Composition Language
(JVCL), the visual process modeling language of the JOpera system described in
Chapter 3 and first presented in [187]. All of the visual elements of the JVCL
language and the corresponding non-visual elements (processes, tasks, parameters,
and so on) are stored in XML documents with the format defined by OML.

Second, an OML document stores separately the processes, which define the
composition, from the programs, which defines the components. With this, a library
of program definitions can be built and reused within multiple processes. Further-
more, an OML document also contain the model of the component types that can
be invoked from JOpera, as presented in the previous chapter.

Finally, we will show in the next chapter that OML also defines an executable
process model, as processes written in OML can be compiled to several executable
representations.

5.1. Meta-Meta Model

In order to improve the understandability of the following description of the Opera
Modeling Language (OML) in this section we would like to briefly introduce our
notation and describe the modeling techniques used in the rest of the chapter. An
OML document is an XML document, therefore it can be formally described using
a Document Type Definition or an equivalent XML Schema [247]. Although such
XML Schema is readily available in Appendix A, in this chapter we would like to
present the Opera Modeling Language in a clear, more readable form. Furthermore,
at the time OML was first designed, XML Schema had not yet come into existence
and we had to follow our own (very simple) data modeling approach based on the
following ideas.

First of all, the overall structure of an OML document and the relationships
between its elements can be represented using a UML class diagram [176], where
each class corresponds to an element and each attribute of a class corresponds to an

87

5. OPERA MODELING LANGUAGE

Element

RefElement

AbstractElement

ChildElement
Attribute2

Attribute1

Attribute3

Attribute4

Attribute5

Aggregation1Reference1

...
< Attribute1=”” Attribute2=”” Reference1=” ”>

< >
< Attribute3=”” Attribute4=””/>

</ >
</ >
< key=” ” Attribute5=””/>

Element
Aggregation1

ChildElement

Aggregation1
Element

RefElement

key1

key1

< Attribute3=”” Attribute4=””/>

< Attribute1=”” Attribute2=”” Reference1=” ”/>
...

ChildElement

Element key1

Figure 5.1.: Mapping UML to an XML document. Example of the relationship
between the syntax of a UML class diagram (above) and the corresponding XML
document structure (below) as it is defined in our Meta-Meta model. For clarity, the
values of most attributes have been omitted.

element’s attribute (Figure 5.1). Moreover, in the UML class diagram we use three
relationships: inheritance, aggregation and reference. The mapping between these
class relationships to the structure of the XML document is defined as follows:

� We use inheritance for improving the clarity of the UML diagrams, as the com-
mon attributes and the reference and aggregation relationships shared among
multiple classes can be abstracted into one. Thus, we can avoid describing the
same relationships and attributes more than once. In the actual document only
the concrete classes are instantiated into the corresponding elements, where
all the attributes and relationships of the ancestor elements have been moved
downwards along the hierarchy and inherited by the leaf elements.

� Aggregation, representing 1 → N relationships between XML document ele-
ments, corresponds to the nesting of such elements inside one another. Fur-
thermore, the nesting of elements happens through a single container node,
which is a child of the element corresponding to the container class and con-

88

5.1. META-META MODEL

<xs:schema>

<xs: name=” ”>
<xs:complexType>
<xs: base=” ”>
<xs: name=” ”/>

<xs:all>
<xs: name=” ” minOccurs=”0” maxOccurs=”1”>
<xs:sequence>

</xs:element>
</xs:all>

</xs:extension>
</xs:complexType>

</xs:element>

</xs:schema>

<xs: name=” ”>
<xs:complexType>
<xs: name=” ”/>

</xs:complexType>
</xs:element>

<xs: name=” ” type=” ”/>

<xs: ref=” ” minOccurs=”0” maxOccurs=”unbounded”>
</xs:sequence>

<xs: name=” ”>
<xs:complexType>
<xs: name=” ”/>
<xs: name=” ”/>

</xs:complexType>
</xs:element>
<xs: name=” ”>
<xs:complexType>
<xs: name=” ” type=” ”/>
<xs: name=” ”/>

</xs:complexType>
</xs:element>

element AbstractElement

attribute Attribute1

attribute Reference1 xs:IDREF

element ChildElement

element ChildElement

attribute Attribute3
attribute Attribute4

element RefElement

attribute key xs:ID
attribute Attribute5

element Element

extension AbstractElement
attribute Attribute2

element Aggregation1

Figure 5.2.: Mapping UML to an XML schema. XML Schema corresponding to
the example UML class diagram of Figure 5.1.

tains all aggregated elements as children. This way, it is possible to efficiently
navigate the document structure and discriminate between elements of differ-
ent types nested inside the same parent element. The name of the container
element corresponds to the name of the aggregation relationship.

� References are simply used for modeling M → 1 relationships, where the nest-
ing of document elements would not be satisfactory. Thus, an element e can
reference another element f , which can be found anywhere in the document,
by storing the unique identifier of f in one of its attributes. The name of such
attribute corresponds to the name of the UML reference relationship. The
type of this attribute is denoted with “ref:f” to indicate that the value of the
attribute is restricted to the keys identifing elements of the referenced type f .

As an example of how the previous rules can be applied, Figure 5.1 shows an
XML snippet, whose structure satisfies the UML class diagram above it. The XML
Schema corresponding to the UML class diagram is also shown in Figure 5.2.

89

5. OPERA MODELING LANGUAGE

Task

Activity

SubProcess

Box

TextBox

RefBox

Boxes

OCR

Process

Processe
s

Program
Programs

ComponentType

ComponentTypes

Task
s

Parameter

C
on

st
an

ts

View
Views

Binding

Dataflow

AccessMethod

Access Methods

Interface
Inbox

Outbox

Boxes

Arrow

Arrows

GroupBox

Groups

Figure 5.3.: Summary of the aggregation relationships between OML elements. For
clarity also selected inheritance relationships to concrete classes have been included.
This UML class diagram gives a good overview over the structure of an OML doc-
ument. Starting from the Root (OCR) element, it shows where the other elements
are located with respect to each other.

First of all, it should be observed that all of the nodes in the XML document
have tags matching the names of the UML classes. Also in the corresponding XML
Schema, the set of declared elements matches the UML classes. In the case of
the AbstractElement class, there is no corresponding document node shown in
the example. Although it would be possible to extend the meta-meta model with
constraints that limit which UML classes can generate document nodes, for the
purposes of describing the Opera Modeling Language we just imply that not nec-
essarily all of the UML classes in the model will correspond to XML nodes, but
all of the leaf classes in the inheritance tree will. More concretely, in the example
the Element class inherits the first Attribute1 from its ancestor AbstractElement.
The Aggregation1 relationship between the Element and the ChildElement classes
corresponds to having one or more ChildElement nodes nested inside the same
Aggregation1 node, which is found inside the first Element node of the example.
As specified in the XML Schema of Figure 5.2, for each aggregation relationship
there can be only up to one of such container elements. The Reference1 attribute
of the Element nodes corresponds to the Reference1 relationship in the class dia-
gram. The value of this attribute (key1) is used to establish a unidirectional link
between the two Element nodes and the RefElement one. As opposed to aggrega-
tion, where multiple children nodes can be nested into the same parent, by using
this reference-based mechanism together with keys that uniquely identify nodes, it
is possible to have many nodes referencing the same node from different locations
in the document.

90

5.2. STRUCTURE OF THE OPERA MODELING LANGUAGE

NamedObject

Interface Task Parameter View

Object

Binding ViewObject

Process Program AccessMethod ComponentType Activity SubProcess

GroupBox Box Arrow

RefBox TextBox

Figure 5.4.: Summary of the inheritance relationships between OML elements.
This UML class diagram illustrates how the common attributes and the shared ref-
erence and aggregation relationships of the document elements have been structured
in a single-inheritance tree. The Object, NamedObject, ViewObject, Box, Task and
Interface elements are abstract and do not appear in an OML document.

5.2. Structure of the Opera Modeling Language

Following the meta modeling approach discussed in the previous section, the over-
all structure1 of an OML document can be formally illustrated with the UML class
diagrams in Figures 5.3 (Aggregation relationships), 5.4 (Inheritance tree), 5.5 (Ref-
erence graph) and 5.6 (All relationships together). It can also be described as follows.

The root element (OCR) of an OML document can contain a set of Process, Pro-
gram and ComponentType definitions (Figures 5.3 and 5.7). In practice, the pro-
gram definitions and the required component types declarations are usually defined
once and included from separate OML documents.

The external Interface of a Process is defined by a set of input and output
parameters. Internally, a process contains the list of its component tasks (Activities
and SubProcesses), the data flow (Parameters and Bindings) and control flow graphs,
as well as their visual representation (Views). The data flow graph is stored as a
set of bindings between parameters or constant values. As the JVCL supports
multiple, overlapping views over the same data flow graph, the data flow graph is
also explicitly aggregated in the list of bindings of the process for efficiency reasons.
On the contrary, only one view over the control flow graph of a process is allowed.
Therefore, it is not necessary to store the control flow graph separately from the
view representing it.

In an OML document, nested inside Processes, the data flow and control flow
Views are represented as annotated graphs, i.e., they are composed of nodes (Boxes)
and edges (Arrows) linking pairs of nodes. In addition to the graph’s topology, the
View elements include additional layout information to store the two dimensional
position and size of the graph objects. Moreover, it is possible to group together
some elements of a view (ViewObjects) in order to constrain the automatic layout
algorithms that can be applied to the graph. The purpose of the most important

1Each OML element will be described in detail in the following section

91

5. OPERA MODELING LANGUAGE

Parameter

SubProcess

Task

Process ProcessID

ActivityProgram
ProgramID

AccessMethod

ComponentType

ComponentType

AccessMethods

Extends

Binding
SourceParam

DestParam
GroupBox

ViewObject

Elements

RefBox ReferenceArrow

Reference

Source

Destination

Figure 5.5.: Summary of the reference relationships between OML elements. This
UML class diagram shows how the OML elements refer to one another. In par-
ticular, the visual elements (Arrow and RefBox) refer to the model elements they
visually represent. Moreover, references are also used to model the edges of the con-
trol and data flow graphs. Each edge is modeled with a pair of references, linking,
for example, Arrows to the pair of RefBoxes between which a connection should be
drawn. Reference are also used to model the relationship between the Activity and
the Program to be invoked and, similarly, between the SubProcess and the Process to
be called.

elements of a View (RefBox and Arrow) is to visually represent other elements of
the process. More precisely, a box may represent, the container process, a task
or one of their parameters. Similarly, in a data flow View, an arrow linking two
boxes represents a data flow binding between the two parameters represented by
the boxes, and so on. As multiple elements of a view can represent the same process
element, we use a Reference relationship in the UML class diagram to model the
relationship between an element of the process model and its corresponding visual
representation. As previously explained, in the OML document this amounts to
storing the identifier of the referenced process element into the Reference attribute
of the visual element (Figure 5.5).

The Program elements store the set of available component services that can be
invoked with an Activity of a Process. Similar to Processes, also the Interface of pro-
grams is composed of a set of input and output parameters. Furthermore, a program
can contain multiple Access Methods which define different, alternative ways to in-
voke the functionality provided by the service. Access methods also have input and
output parameters, conforming to the template defined in the referenced Compo-
nentType. By definition, the input and output parameters of an access method and
the ones belonging to the corresponding component type are considered as system
parameters.

92

5.2. STRUCTURE OF THE OPERA MODELING LANGUAGE 93

O
C

R

P
ro

ce
ss

P
ro

ce
ss

es

P
ro

gr
am

Programs

C
om

po
ne

nt
T

yp
e

C
o
m

p
o
n
en

tT
y
p
es

O
bj

ec
t

N
am

ed
O

bj
ec

t

B
in

di
ng

V
ie

w
O

bj
ec

t
P

ar
am

et
er

C
o
n
st

an
ts

V
ie

w

V
ie

w
s

D
at

af
lo

w

T
as

k

T
as

k
s

S
ub

P
ro

ce
ss

P
ro

ce
ss

ID

R
ef

B
ox

Reference

A
ct

iv
ity

P
ro

g
ra

m
ID

A
cc

es
sM

et
ho

d

A
cc

es
s

M
et

ho
ds

E
x
te

n
d
s

C
o
m

p
o
n
en

tT
y
p
e

In
te

rf
ac

e In
b
o
x

O
u
tb

o
x

Sou
rc

eP
ar

am

Des
tP

ar
am

A
rr

ow

A
rr

o
w

s

B
ox

Boxes

G
ro

up
B

ox

G
ro

up
s

R
ef

er
en

ce

T
ex

tB
ox

Elements

S
o
u
rc

e

D
es

ti
n
at

io
n

B
o
x
es

Figure 5.6.: Complete UML class diagram of the OML elements. For completeness,
we include also this UML class diagram with all relationships between all elements
of an OML document.

5. OPERA MODELING LANGUAGE

Root

Version

NextObjectID

Processes

Programs

ComponentTypes

Program

ComponentType

Process

Figure 5.7.: Basic structure of an OML document. An OML document is com-
posed of Processes, Programs and Component Type definitions.

5.3. Elements of the Opera Modeling Language

After giving an overview over the structure of an OML document based on UML class
diagrams, in this section we continue with a more detailed description of each element
of an OML document. This description includes, as a reference, the list of all attribute
of each element, as well as all aggregation relationships for a certain element, i.e., the
definition of what are the allowed children of a certain element and how they are grouped
together. Sometimes, for attributes having a limited set of values, we also include the
enumeration of the possible values. In addition to the basic description of the document
elements and attributes, we have attempted to add a more precise explanation, which
should motivate the design decisions that have been taken.

5.3.1. Root Element

The Root (OCR) element of an OML document (Figure 5.7).

Attributes of the Root element:
Name (Tag) Type Description

Version (VER) String The Version of the OML Format used in the file.
NextObjectID
(MAXID)

Integer As previously discussed, each document element should
be uniquely identified, so that it can be referenced by
other elements. To generate the necessary key values,
we have chosen a simple strategy based on incremental
numbering. For efficiency reasons, the root document
element stores the global counter for determining the OID
of the next element which is about to be added to the
document.

94

5.3. ELEMENTS OF THE OPERA MODELING LANGUAGE

Object

NamedObject
ObjectID

CompilerState

Name

Description

Figure 5.8.: Abstract Elements: Object and Named Object. All OML Elements
inherit their basic attributes from these two elements.

Content of the Root element:
Name (Tag) Element Description

Processes (PROCS) Process Container for the processes defined
in the document.

Programs (PROGRAMS) Program Container for the programs defined
in the document.

ComponentTypes (COMPS) ComponentType Container for the component types
defined in the document.

5.3.2. Abstract Elements

In order to avoid repetitions, the abstract elements are used to list the attributes and
the aggregation and reference relationships which are common to the rest of the elements
(Figure 5.8).

The Object element – Any object with an ID. If not specified, all other elements extend
this basic one, as every element in an OML document must be uniquely identifiable.

Attributes of the Object element:
Name (Tag) Type Description

ObjectID
(OID)

ID The document-wide, unique identifier of the object.
Typically a string formed by appending an integer
counter to the element’s tag. This is the key at-
tribute, whose value can be referenced by other doc-
ument elements.

CompilerState
(CS)

CompilerState The state of this object with respect to the com-
piler, i.e. whether the object is commented out and
should be ignored or whether some error regarding
the object has been found after checking the OML
document for consistency.

95

5. OPERA MODELING LANGUAGE

Values of the CompilerState attribute of type CompilerState:

Value Description

Ok By default, the information of the element of the model is correct.
Comment This element should be ignored by the compiler as it has been com-

mented out by the user.
Error An inconsistency that prevents successful compilation has been detected

by the model checker, the specific type of inconsistency depends on the
actual element. For example: at least two elements inside the same con-
tainer have been given the same name or an activity does not reference
any valid program.

Warning The model checker has found some condition that can potentially lead
to execution errors at runtime. For example, a parameter was not con-
nected in the data flow graph.

The NamedObject element extends the Object element – It represents any element with
a name and an optional description.

Attributes of the NamedObject element:
Name (Tag) Type Description

Name
(NAME)

String The name of the element, as it is shown to the user. In order
to have a consistent document, the name should also uniquely
identify the object within the enclosing container element. In
case of duplicate names it is not always possible to compile
the OML document into executable form, e.g., as duplicate
names may lead to ambiguities in the control flow graph.
However, considering that internally only the OID attribute
only is used to store references between elements, having du-
plicate names does not affect the internal consistency of the
OML document.

Description
(DESC)

String Optional description of the element. It can be used to store
user provided comments associated to the element.

96

5.3. ELEMENTS OF THE OPERA MODELING LANGUAGE

The Interface element extends the NamedObject element – This element represents the
interface of any process element which can exchange data. The interface of a Process
or a Program consists of input and output lists of user-defined parameters. In case of
ComponentTypes and AccessMethods, such parameter lists are used for defining system
parameters.

Attributes of the Interface element:
Name (Tag) Type Description

Author
(AUTHOR)

String The name of the user who has written the interface defi-
nition. As interfaces represent the smallest language ele-
ment (a Process definition or a Program and Component
declaration) that could be written by a certain developer,
this common attribute is listed in this abstract element,
as opposed to the NamedObject element.

Content of the Interface element:
Name (Tag) Element Description

Inbox
(INBOX)

Parameter Container for the input parameters.

Outbox
(OUTBOX)

Parameter Container for the output parameters.

5.3.3. Process Elements

This section describes the properties of a Process and its components: the Tasks, which
can be either Activities or SubProcesses (Figure 5.9).

The Process (PROC) element extends the Interface element – A Process contains a
number of tasks connected by data and control flow graphs, which are defined visually. In
JOpera, a process is the smallest executable unit of composition. It describes how a set of
service invocations are composed together. Through the SubProcess construct, processes
can also be directly reused as components within other processes. Similarly, processes can
be published as Web services for external reuse. To model and control its level of reuse, a
process has the following attributes.

The Task element extends the NamedObject element – A task represent any compo-
nent of a process: a basic step in the computation modeled by a process. The description
of how such steps depend on each other is also part of the content of a task. More precisely,
its Activator and Condition attributes model the basic control flow dependencies linking a
task to its predecessors. The remaining attributes2 are used for describing more advanced
scheduling and synchronization options, in case the task belongs to a list-based loop, i.e., it
is found within a pair of split and merge operators. The concrete forms of a task are either
the Activity or the Sub-Process elements, which contain additional information modeling
the actual service to be invoked as part of the task execution.

2The model could be extended in a similar way to add transactional properties to each task, as
discussed in [98].

97

5. OPERA MODELING LANGUAGE

Attributes of the Process element:
Name (Tag) Type Description

Published
(PUBLISHED)

Boolean Whether the process should be published as a Web ser-
vice by default. The published state of a process can be
changed anytime, also after a process has been compiled
and deployed.

SubProcess
(SUBPROC)

Boolean Whether the process can only be used as part of another
process. If this flag is set, the user will not be able to
start the process directly but only through other pro-
cesses that invoke it. However, any process can be called
from within any other process regardless of the value of
this attribute.

Abstract
(ABSTRACT)

Boolean If this flag is set, the process is abstract: it is an empty
process whose interface can be implemented by other
processes. Apart from the interface, the rest of the con-
tent of an abstract process is ignored and will not be
used to generate an executable process during compila-
tion. Abstract processes can be used in conjunction with
late bindinga, where only the interface of the Process to
be called must be known at compile time.

Content of the Process element:
Name (Tag) Element Description

Views
(VIEWS)

View Container for the views over the data and control flow
graphs of the process.

Dataflow
(DATAFLOW)

Binding Container for the global data flow graph of the process.
The graph is stored as a set of bindings (directed edges)
referencing pairs of parameters.

Constants
(CONSTS)

Parameter Container for the constant pool of the process. Constant
values are modeled with Parameters, as this element al-
ready has all the attributes (Type and Value) required.

Tasks
(TASKS)

Task Container listing the tasks (Activites or SubProcesses)
composing the process. A process which is not abstract
cannot be empty, as it must contain at least one task.

aSee Section 2 on page 36 for an example

98

5.3. ELEMENTS OF THE OPERA MODELING LANGUAGE

Attributes of the Task element:
Name (Tag) Type Description

Activator
(ACT)

String The Activator is a boolean expression over
the state of the tasks of the process, which
determines when the task is ready to be
activated. In most cases, the value for this
attribute is automatically generated from
the control flow graph, but it can also be
changed by the user to specify more com-
plex expressions.

Condition
(COND)

String The Condition is a boolean expression over
the data flow of the process, which (for per-
formance reasons) is evaluated only once
when the task’s activator fires. If both the
condition and the activator are true, the
task will be executed. Otherwise if the ac-
tivator is true, but the condition is false,
the state of the task will be set to unreach-
able.

Priority
(PRIORITY)

Integer Optional scheduling priority hint for the
task. With this attribute, tasks found on
the critical path of the process’ control flow
graph can get a priority boost.

Dependency
(DEP)

DependencyType Optional attribute used only for tasks part
of a list-based loop, this specifies the type
of dependency between the multiple in-
stances of the task that are dynamically
created for each list element.

Synchronization
(SYNCH)

SynchType Optional attribute used only if a task is
part of a list-based loop with the Depen-
dency attribute set to ’None’. This at-
tribute specifies how to synchronize the
various multiple instances running in par-
allel.

FailureHandling
(FAILH)

FailureHandlingType Optional attribute used in conjunction
with parallel list-based loops. This at-
tribute is used to control how failures of
the multiple task instances affect the out-
come of the list-based loop.

99

5. OPERA MODELING LANGUAGE

Values of the Dependency attribute of type DependencyType:

Value Description

Finished The tasks are executed sequentially, but only if the previous one
in the sequence completed successfully.

Failed Also sequential execution, but only if the previous task in the se-
quence has failed. This is useful for modeling a chain of alternative
service invocations that should be tried only if a failure occurs.

FinishOrFailed The tasks are executed sequentially, no matter what happens.
Aborted Tasks are executed sequentially, but with the constraint that a task

is started only if the previous one has been manually aborted by
the user.

None The multiple instances of the tasks are executed in parallel as there
are no dependencies between them.

Values of the Synchronization attribute of type SynchType:

Value Description

WaitForAll Wait for all multiple instances to finish their parallel execution and
merge the results of all instances.

WaitForOne Finish as soon as one of the multiple instance finishes and ignore the
rest, i.e. the results will not be merged.

Values of the FailureHandling attribute of type FailureHandlingType:

Value Description

FailForOne Fail as soon as one of the task instances has failed.
FailForAll Fail only if all task instances have failed.
FailForPercent Ignore up to a certain number of failed task instances.

The Activity (ACTIVITY) element extends the Task element – An Activity is a task which
references a program.

Attributes of the Activity element:
Name (Tag) Type Description

ProgramID
(PROGRAMID)

ref:Program The OID of the program used to execute the activity.

100

5.3. ELEMENTS OF THE OPERA MODELING LANGUAGE

Interface Parameter

Process

SubProcessActivity

Task

Author Type

Value

Published

SubProcess

Abstract

Activator

Condition

Priority

Dependency

Synchronization

FailureHandling

NamedObject

Binding

ViewProgram

Inbox

Outbox

Constants

Dataflow

Views

ProgramID ProcessID

Tasks

Figure 5.9.: Structure of Processes and Tasks.

The SubProcess (SUBPROC) element extends the Task element – A SubProcess is a task
which references a process. In order to guarantee the extensibility of the model, the
attributes which give more control on the process call (e.g. whether it should happen
asynchronously) are not included in the SubProcess element. Instead, they are listed as
system parameters, as specified in Section 4.8.2 on page 74.

Attributes of the SubProcess element:
Name (Tag) Type Description

ProcessID
(PROCESSID)

ref:Process The OID of the process which will be started while the
sub-process is executed.

5.3.4. Data Flow Elements

The Parameter and Binding elements are used to model the data flow graph of a process
(Figure 5.10). As previously mentioned, in most existing process modeling languages, the
data flow between the various tasks of the process is left implicit [233]. In some languages,
in order to connect two tasks and model the exchange of data between them, it is necessary
to resort to global variables and assignment activities [29, 112]. In other cases, the input
and output data exchanged by a task is modeled as a single (structured) parameter [144].

In our approach we found that a more detailed model of the data flow of a process,
which includes multiple parameters for a task and avoids global variables, gives the fol-
lowing benefits:

101

5. OPERA MODELING LANGUAGE

Binding

SourceType

DestType

ActionType

ActionData

SourceParam

DestParam

Parameter

Type

Value

NamedObject

Figure 5.10.: Structure of the data flow graph of a process.

� Abstraction. As the data flow is modeled explicitly and visually as a graph where
the bindings are drawn as arrows linking the source to the destination parameter,
it is not necessary to manually schedule the data flow transfers between tasks by
inserting assignment activities in the control flow of the process, so that the data
flow transfers are carried out the correct time. A graph of the data flow is easier to
program as it presents the developer with a higher level view over the data exchanges
between the tasks of the process. If necessary, these can be automatically mapped
to the correct assignment activities by a compiler. Thus, the possibility of making
errors is reduced.

� Clarity. Global variables have been considered harmful for a long time [260] and,
therefore, if they should be used sparingly in traditional programming languages,
they are also not a good solution for meta-programming languages, such as service
composition languages. One of the reasons is that the use of global variables adds
unnecessary complexity to the model, as a data transfer between two service invo-
cations must be modeled indirectly, i.e., through an intermediate global variable.
A side-effects free model such as a data flow graph [104], where data is exchanged
directly between the parameter of tasks, is much more clear to visualize, program,
understand, debug and maintain.

� Automatic control flow derivation. If two tasks are linked with a data flow binding,
this implies that there also is a control flow dependency, as the second task cannot
start before its data is ready and data is ready when the first task has finished. Thus,
it becomes possible to automatically derive the control flow dependencies between
the tasks from the data flow graph.

� Type checking. If the data transfers between a set of service invocations must be
explicitly modeled, type checking can be applied to ensure that only parameters
with compatible data types are connected. Furthermore, the direct interconnection
of incompatible service interfaces is detected and prevented. As we have shown in
Example 4.3 on page 69, the data flow approach can also be useful to provide the
necessary adapter and model the required transformation rules between mismatching
data representations.

102

5.3. ELEMENTS OF THE OPERA MODELING LANGUAGE

The Parameter (PARAM) element extends the NamedObject element – A Parameter mod-
els a data container that can be attached to a Process, a Program, an AccessMethod and
a ComponentType.
An important decision taken during the design of the Opera Modeling Language was
whether to include explicit data types or not. Given the benefits of static type checking, it
would seem an easy choice. However, considering that the language is applied to the service
composition domain, type safety may be quite difficult to achieve given the heterogeneity
of the components involved. In fact, almost each different type of component that can be
composed with OML comes with his own type system: Web services use XML Schema;
Java components use the Java object oriented type system; UNIX applications interact at
the level of textual data streams, which may be relatively unstructured and difficult to fit
in a type system.
Although it may be difficult, but feasible to define and enforce mappings between different
type systems [175], in JOpera we took the following approach. At compile-time, the
optional type information associated with Parameters is used to warn the user about
potential syntactical incompatibilities and conflicts. At runtime, the data to be produced
and consumed by the services is stored within Parameters formatted as String. Where
possible, this typeless solution (i.e., everything is a String) is complemented by applying
the appropriate constraint checking operators to the data in transit. This way, at runtime,
the consistency of the data can still be ensured.

Attributes of the Parameter element:
Name (Tag) Type Description

Type
(TYPE)

String Optional parameter type. Although all parameter values are
stored internally using a string representation, types can be
used to perform static type checking where data flow con-
nections are allowed only between parameters of matching
types.

Value
(VALUE)

String Optional default value. This is the initial value of the pa-
rameter, which may be overwritten during the execution of
the process with data coming from other parameters or with
the results returned by a task invocation.

103

5. OPERA MODELING LANGUAGE

The Binding (BIND) element extends the Object element – A data flow Binding is an
edge linking a source and a destination parameter in the data flow graph of the Process.
Parameters can belong to a process (including constants), or a task. For tasks, the pa-
rameters are defined in the referenced program/process. By default, a binding models
a data transfer between a pair of parameters. Additionally, using the ActionType and
ActionData attributes, it is possible to specify the application of a split or merge oper-
ator to the data in transit. As shown in Section 3.5 on page 31, this part of the model
corresponds to the list-based loops, where the value of the source parameter is split into
a list of values, and each of the values is assigned to a replica of the destination param-
eter. The ActionData attribute, in this case, encodes how the data is split (and later
merged). The synchronization and failure handling of the multiple tasks are controlled by
attributes stored within the task, as there can be multiple incoming (and outgoing) data
flow bindings for the same task.

Attributes of the Binding element:
Name (Tag) Type Description

SourceType
(SOURCETYPE)

BindRefType The type of source container referenced by the
SOURCETID attribute. It can be a normal param-
eter, a system parameter or a constant source.

SourceParam
(SOURCEPID)

ref:Parameter This attribute contains the OID of the source Pa-
rameter where the data is copied from.

DestType
(DESTTYPE)

BindRefType The type of Destination container referenced by
the DESTTID attribute. It can be a normal param-
eter, a system parameter. It cannot be a constant,
as they are immutable.

DestParam
(DESTPID)

ref:Parameter This attribute contains the OID of the destina-
tion Parameter and specifies where the data of
the source parameter is written to.

ActionType
(ACTION)

ActionType Optional attribute, indicating the type of action
to be performed when copying the data across the
bound parameters..

ActionData
(ACTIONDATA)

String Optional attribute, with the parameters control-
ling the action to be performed. Currently it is
used with the Split action to store the regular ex-
pression for splitting the incoming string and pro-
ducing the resulting list of elements. By default
the data is split based on a whitespace pattern.
In the case of a Merge action, this attribute is
used for storing how the elements of the list to be
merged are concatenated together.

104

5.3. ELEMENTS OF THE OPERA MODELING LANGUAGE

View

ViewObject

Box
RefBox

GroupBox

Arrow

TextBox

ViewType

PaperSize

(X,Y)

Width

Height

ReferenceType

ControlPoints

ReferenceType

Text

Activity

SubProcess

Process

Parameter

Binding

Arrows

GroupsBoxes

Boxes

DestinationSource

Reference

Reference

Elements

Figure 5.11.: Structure of the elements of the JOpera Visual Composition Lan-
guage.

Values of the SourceType, DestType attributes of type BindRefType:

Value Description

Normal By default, the source (or destination) parameter referenced by the bind-
ing is a user-defined parameter.

System The source (or destination) parameter is a system parameter.
Constant The source parameter is a constant.

Values of the ActionType attribute of type ActionType:

Value Description

Copy The default binding action is to copy data across from the source parameter
to the destination parameter.

Split Split the content of the source parameter into a list and instantiate the task
receiving the destination parameter for every element of the list.

Merge Merge the multiple source parameters that have been created after a split
into a single destination parameter.

5.3.5. JOpera Visual Composition Language (JVCL) Elements

This part of the meta-model (Figure 5.11) describes how the diagrams with the data and
control flow graphs of a process (depicted using the JOpera Visual Composition Language)
are serialized into an OML document. More precisely, there is a close relationship between
the OML elements described in this section and their corresponding visual representation
in JVCL. In practice, as shown in Figure 5.12, JVCL can be considered as the result
of the graphical rendering of part of an OML document. The rendering operation is

105

5. OPERA MODELING LANGUAGE

controlled by the visual syntax rules defined in Chapter 3, which determine whether the
graph stored in the OML document is displayed as a control flow or as a data flow graph.
Furthermore, by selecting some additional options, the user may fine tune the appearance
of the resulting diagram (e.g. parameter types may be shown or left hidden). To illustrate
how the rendering of JVCL starting from an OML document works, Figure 5.13 shows
an example. As it can be observed from the figure, the format, the size and the text
displayed within each visual object of the JVCL language are controlled by the attributes
of the corresponding OML elements..

The View (VIEW) element extends the NamedObject element – A view is a visual rep-
resentation of the control flow or data flow graphs of the enclosing process element. A
graph is modeled both in terms of its topology (edges linking nodes) as well as its two
dimensional layout (nodes are displayed as rectangles located at certain coordinates, while
edges can be routed following a set of control points).

Attributes of the View element:
Name (Tag) Type Description

ViewType
(VTYPE)

ViewType Indicates the type of view, determining the visual syn-
tax to be used. Only one control flow view is allowed
inside each process, but multiple, partial, overlapping
views over the same data flow graph are allowed. If ad-
ditional views over the tasks of a process become nec-
essary (e.g. a transactional view), it would be possible
to extend the process model by adding values to this
attribute.

PaperSize
(PAPER)

String The default size of an empty view.

Content of the View element:
Name (Tag) Element Description

Arrows
(ARROWS)

Arrow Container for the edges (arrows) of the graph.

Boxes
(BOXES)

Box Container for the nodes (boxes) of the graph.

Groups
(GROUPS)

GroupBox Container for the groups of graph elements.

Values of the ViewType attribute of type ViewType:

Value Description

Controlflow The view uses the control flow syntax: boxes represent tasks and edges
their control flow dependencies.

Dataflow Views of this type conform to the data flow syntax: boxes represent
both tasks and parameters, while edges represent data flow bindings.

106

5.3. ELEMENTS OF THE OPERA MODELING LANGUAGE

The ViewObject element extends the Object element – Any element inside a View ele-
ment should extend this one. In the case of Arrows and RefBoxes, it represents a visible
object which references an element in the rest of the process model. For example: in
order for a box to represent a task, the OID of the task visualized by the box is stored in
the Reference attribute of the corresponding RefBox element. Considering that the same
element can appear in multiple views, there is clear separation between the elements of
the process model and their visual representation.

The Arrow (ARROW) element extends the ViewObject element – An arrow is a directed
edge linking two boxes. Depending on the type of the container View element, it represents
a control flow dependency between two task boxes, or a data flow binding between a pair
of parameters. An arrow cannot exist without both of the boxes which it links.

Attributes of the Arrow element:
Name (Tag) Type Description

Source
(ID1)

ref:RefBox The source box, from which the arrow begins.

Destination
(ID2)

ref:RefBox The destination box, pointed to by the arrow.

ControlPoints
(CONTROLPOINTS)

String Optional list of control points coordinates. Although the
simplest arrow directly connects the source with the des-
tination box, it may be necessary to reroute the arrow
through a set of intermediate points for improving the
layout of the graph.

Reference
(REF)

ref:Binding Optional attribute used only for arrows of data flow views.
In this case, this attribute contains the OID of the data
flow binding element represented visually by the arrow.

ReferenceType
(REFTYPE)

ARefType This attribute controls the semantic of the arrow. Its
values also depend on the type of the enclosing View.
For arrows representing data flow bindings, this attributes
caches the binding’s ActionType attribute and is used
to determine whether the split (or merge) icons should
be displayed together with the arrow. In case of control
flow dependencies, this attributes determines the actual
type of dependency used, as discussed in Section 3.4 on
page 25.

107

5. OPERA MODELING LANGUAGE

JVCL

OML

visual syntax options
Rendering

Engine

Figure 5.12.: Relationship between the Opera Modeling Language and the JOpera
Visual Composition Language.

Values of the ReferenceType attribute of type ARefType:

Value Description

Copy (Dataflow) The default data flow arrow. It represents the copying of
data from the source parameter box to the destination.

Split (Dataflow) This arrow represents a split operation. The parameters
controlling such operations are stored in the referenced binding.

Merge (Dataflow) This arrow represents a merge operation.
Finished (Controlflow) The default control flow arrow, it models the following

dependency: the destination task is started only after the source task
has finished.

Failed (Controlflow) This arrow can be used for exception handling: the
destination task is started only after the source task has finished.

FinishOrFail (Controlflow) This arrow models a dependency independent on the
outcome of the source task, as long as it was executed.

Aborted (Controlflow) The destination task should be started only if the user
aborts the source task.

Unreachable (Controlflow) The destination task should be started only if the
source task becomes unreachable.

The GroupBox (GROUPBOX) element extends the ViewObject element – A Group is a
semantically transparent grouping of visual objects used to constrain the automatic layout
algorithms.

Attributes of the GroupBox element:
Name (Tag) Type Description

Elements
(ELEMENTS)

ref:ViewObject List of the OID attributes of the grouped objects. It
can also contain references to other groups, as long
as no cycle is introduced.

108

5.3. ELEMENTS OF THE OPERA MODELING LANGUAGE

Activity1

Program1

SubProcess1

Process1

Process1 - ControlFlow

<OCR>
<PROCS>
<PROC OID="PROC0" NAME=" ">
<VIEWS>
<VIEW OID="VIEW0" NAME=" " VTYPE="0">
<BOXES>

OID="RBOX38" REF="SUBPROC37" TYPE="1" X="-0.366" Y="-3.566" DX="3.366" DY="0.933"/>

</BOXES>
<ARROWS>

OID="ARROW60" ID1="RBOX36" ID2="RBOX38" ARROWTYPE="0"/>
</ARROWS>

</VIEW>
</VIEWS>
<TASKS>
<SUBPROC OID="SUBPROC37" COND=" ” NAME=" " PROCESSID="PROC0"/>

</TASKS>
[...]

</PROC>
</PROCS>
<PROGRAMS>
<PROGRAM OID="PROGRAM39" NAME=" ">

[...]
</PROGRAM>

</PROGRAMS>
</OCR>

Process1

ControlFlow

TRUE SubProcess1

Program1

<RBOX
OID="RBOX36" REF="ACTIVITY35" TYPE="0" X="0.099" Y="-0.933" DX="2.4" DY="0.933"/>

ACT=" "
<ACTIVITY OID="ACTIVITY35" COND=" " ACT=" " NAME=" " PROGRAMID="PROGRAM39"/>

finished(Activity1)
TRUE initial(STARTUP) Activity1

<RBOX

<ARROW

Figure 5.13.: Example on how a JVCL control flow view is stored in the underlying
OML model. Each visual object (the Process, the Activity, the Sub-Process and
the Control flow dependency between them) corresponds to an element of the OML
document. The text shown inside the boxes is stored in the corresponding document
elements. The RefBox elements are linked to the referenced task elements, as it is
possible to display the same task in multiple views.

The Box element extends the ViewObject element – A box is any rectangle displayed
in a view, it is further specialized by the TextBox and RefBox concrete elements. All
coordinates of the graphic elements are stored using floating point values. Although the
origin of the coordinate system should be mapped to the center of the screen, no explicit
assumption is made about the direction of the X and Y axis.

Attributes of the Box element:
Name (Tag) Type Description

X (X) Float The X coordinate of the center of the box.
Y (Y) Float The Y coordinate of the center of the box.
Width (DX) Float The horizontal width of the box.
Height (DY) Float The vertical height of the box.

109

5. OPERA MODELING LANGUAGE

The TextBox (TEXTBOX) element extends the Box element – A TextBox is used to display
textual comments inside a view. If a text box overlaps with any other ViewObjects, such
objects appear as commented out and the corresponding process elements are ignored by
the compiler.

Attributes of the TextBox element:
Name (Tag) Type Description

Text (TEXT) String The text of the comment entered by the user.

The RefBox (RBOX) element extends the Box element – A RefBox is a node of the graph,
which represents a task, a parameter or the process itself. The text shown inside the
RefBox is extracted from the referred document element. Depending on the configuration
of the rendering engine, as shown in Figure 3.1, a task box may display both the name of
the task and the name of its referenced program (or process). In case of data flow views,
the box representing a parameter may show both its name and its type (or even part of its
value, at runtime). These boxes are automatically resized to fit with the displayed text.

Attributes of the RefBox element:
Name (Tag) Type Description

Reference
(REF)

ref:Task
ref:Process
ref:Parameter

Reference to the task, process or parameter element
which is visually represented by this box element.

ReferenceType
(REFTYPE)

BRefType The type of the referenced object. This attribute con-
trols the visual syntax used to display the box and is
also used to indicate the expected location within the
OML document of the referenced element.

Content of the RefBox element:
Name (Tag) Element Description

Boxes
(BOXES)

RefBox In case of data flow views, for efficiency reasons, the
boxes representing parameters are stored nested inside
the box representing the task (or the process) to which
the parameters are attached to. This nesting is visually
represented by drawing (implicit) arrows between the
container box and its children, representing parameters.
As defined in Section 3.3 on page 23, data flow param-
eters cannot be displayed without the task (or process)
they belong to. Storing parameter boxes inside the con-
tainer element has the additional benefit, that if the box
representing a task is deleted, all of its children boxes
representing the parameters are also deleted with it.

110

5.3. ELEMENTS OF THE OPERA MODELING LANGUAGE

Values of the ReferenceType attribute of type BRefType:

Value Description

Activity

Activity

(Control and Dataflow) The element is a box which represents an
Activity. The Reference attribute contains the OID of an Activity
listed in the container process.

SubProcess
SubProcess

(Control and Dataflow) The element is a box which represents
a SubProcess. The Reference attribute contains the OID of a
SubProcess of the container process.

DataInBox
input

(Dataflow) These boxes can only be used as arrow destinations
in data flow views. If a box representing an Activity/SubProcess
contains a DataInBox, such DataInBox represents an input pa-
rameter of the Program/Process referenced by the task. As an
exception, if a DataInbox is found inside a ProcessOutput box,
then it represents the output parameter of the container process.
The Reference attribute contains the OID of a Parameter.

DataOutBox
output

(Dataflow) These boxes can only be used as arrow sources in
data flow views. If a box representing an Activity/SubProcess
contains a DataOutBox, such DataOutBox represents an output
parameter of the Program/Process referenced by the task. As an
exception, if a DataOutbox is found inside a ProcessInput box,
then it represents the input parameter of the container process.
The Reference attribute contains the OID of a Parameter.

ProcessInput

Process Input

(Dataflow) Placeholder for the input interface of the process. The
input parameters of the process are stored inside this element.
The Reference attribute contains the OID of the process element.

ProcessOutput

Process Output

(Dataflow) Placeholder representing the output interface of the
process. The output parameters of the process are stored inside
this element. The Reference attribute contains the OID of the
process element.

Const
Constant

(Dataflow) This box represents a constant value. The Refer-
ence attribute contains the OID of a Parameter element inside
the constant pool of the process. Unlike Parameter boxes, boxes
representing constants are stored directly inside a View element.

SysInBox

SYS.input

(Dataflow) This box represents a system input parameter, which
can be used only as destination of data flow arrows. The Ref-
erence attribute contains the OID of a Parameter element inside
the input parameters of an AccessMethod element.

SysOutBox

SYS.output

(Dataflow) This box represents a system output parameter, which
can be used only as source of data flow arrows. The Reference at-
tribute contains the OID of a Parameter element inside the output
parameters of an AccessMethod element.

111

5. OPERA MODELING LANGUAGE

Program AccessMethod ComponentType

Size

Restart

Interface Parameter

AccessMethods
ComponentType

Extends

Inbox

Outbox

Figure 5.14.: Structure of the Program and Component type library.

5.3.6. Program Library Elements

These elements are used to model the program library (Figure 5.14). By design, in the
Opera Modeling Language there is a clear separation between the processes, which define
the composition, from the programs, which define the components. Thus, a library of
reusable program definitions can be built and shared among multiple processes composing
them in different ways.

The Program (PROGRAM) element extends the Interface element – A Program is a
component referred by the activities of a process and represents the invocation of a service
belonging to one of the types described in Chapter 4. Program definitions can be entered
manually or automatically imported from other Interface Description Languages, such as
WSDL. Similar to WSDL, a Program both includes information on the interface of a
service, as well as multiple AccessMethod elements which refer to the actual component
type to be used while accessing the service..

Attributes of the Program element:
Name (Tag) Type Description

Size (SIZE) Integer Scheduling hint to classify the program in terms of its exe-
cution cost (expected duration and resource requirements).
The scheduler may use this hint to implement a smallest-
job-first heuristic [133].

Restart
(RESTART)

Integer Maximum number of automatic restarts on failure (-1 means
unlimited). In case of a Program containing multiple Ac-
cessMethods, the invocation of the service will be retried
using a different one each time.

Content of the Program element:
Name (Tag) Element Description

Access
Methods
(ACCESS)

AccessMethod In order to be executable, a Program must contain
at least one access method. Multiple access methods
are treated as alternative, equivalent paths to invoke
the same service.

112

5.3. ELEMENTS OF THE OPERA MODELING LANGUAGE

The AccessMethod (METHOD) element extends the Interface element – An access method
contains the system parameters that control how to access the services provided by the
specified component type. It also defines a mapping between the program input param-
eters – which are application dependent and defined by the user – to the system input
parameters of the ComponentType, which depend on the mechanisms and the protocols
used to perform the service invocation.

Attributes of the AccessMethod element:
Name (Tag) Type Description

ComponentType
(COMP)

ref:ComponentType The type of component that should be used
as a template to define the set of system
parameters of this access method.

5.3.7. Component Type Modeling Elements

This part of an OML document describes the component types that are used as templates
for the program’s access methods and corresponds to the description of the various types
of components that can be used with JOpera presented in Chapter 4. In practice, this part
of the model is defined in a separate document, which is part of the JOpera configuration
and should be included by the program definitions used by the processes. The set of
available component types should correspond to the configuration of the JOpera kernel.
At runtime, in order to perform the service invocation, the set of system parameters of each
component type is passed to the corresponding service invocation adapter as described in
Section 7.4 on page 163.

The ComponentType (COMP) element extends the Interface element – A Component
Type is a template for an AccessMethod, it defines a set of input and output system
parameters that are used to generate the ones of the access method referencing it.

Attributes of the ComponentType element:
Name (Tag) Type Description

Extends
(PARENT)

ref:ComponentType Refers to another component type which is ex-
tended by the current one. All of the system
parameters defined in the parent component
type are inherited by the current one.

Abstract
(ABSTRACT)

Boolean This flag indicates whether the component
type can be directly used as a template for gen-
erating Access Methods.

113

5. OPERA MODELING LANGUAGE

AccessMethod

AccessMethod

Process

Process

SubProcessActivity

Task

Task

Program

Program
Program

Program

Process

Process

AccessMethods

AccessMethods

Tasks

Tasks

Figure 5.15.: Simplified Task Model. Comparison between the original OML model
(left), which includes the Activity and SubProcess elements, with the simplified model
(right), where there are only Tasks.

5.4. Discussion

Although the description of the Opera Modeling Language in this chapter presents 20
different elements (including the document root element), we have tried to keep OML
as simple as possible3. First of all, as it can be seen from Figure 5.4, six elements are
abstract: Object, NamedObject, Interface, Task, ViewObject, and Box. They are
very useful in shortening the description by factoring out commonalities, but they
will never appear in a concrete OML document. Furthermore, within the visual
elements, the TextBox and GroupBox are used to provide convenience features such
as layout constraints and visual comments, but are not strictly necessary to store the
information defining the process model. Out of the remaining 11 elements, forming
the core of the language, we distinguish two groups. On the one hand, the Process,
Activity and SubProcess elements model the content of a process, while its structure
in terms of data flow and control flow is modeled by the Parameter, Binding, View,
Box and Arrow elements. On the other hand, the remaining three OML elements
(Program, AccessMethod, and ComponentType) are not part of the process model
itself, but form the model of the services that can be used as process components.

In this discussion, also with the aim of keeping the process model as simple as
possible, the option of having Activity and SubProcess as separate elements should
be compared with a smaller model where only Tasks are used to represent both con-
structs (Figure 5.15). As we already anticipated in Section 4.8.2 on page 74, during
compilation SubProcess elements are mapped to a special type of component, mod-
eling the internal invocation of a Process within the JOpera system. Therefore, in-
stead of hiding such transformation inside the compiler, it could be possible to make
it explicit in the original process model. Thus, the different Activity and SubPro-
cess elements would blend into a single element called Task, which would reference
a Program, and in the case of SubProcesses it would contain one AccessMethod of

3Other process modeling languages are much more complex: BPEL4WS [112], for example, has
44 elements, BPML [29] has 47.

114

5.4. DISCUSSION

type ”Process Invocation”, with system parameters matching the attributes of the
original SubProcess element, and referencing – as indicated by the dotted arrow in
Figure 5.15 (right) – the Process to be called.

With this approach, the model would be slightly simpler, and closer to what
the compiler does in terms of preparing a process for execution. However, saving a
transformation at compilation time will require additional complexity at design time,
as we believe that – from the user perspective – the distinction between Activity
and SubProcess remains useful. As first discussed in [21], it is important to make,
at least at the syntactical level, a difference between basic and complex tasks. This
way, by looking at the visual syntax of tasks within a control and data flow graph
(Figure 3.1), the developer may easily distinguish Activities, representing an atomic
step in the process execution, from SubProcesses, grouping together multiple steps.

Another important point should be mentioned regarding the way OML is in-
tended to be used to program process-based service composition. Although OML
defines the information that needs to be provided in order to define a proces, thanks
to the JOpera visual development environment, the XML-based syntax of an OML
document remains hidden from the developer at all times, as processes are built by
literally drawing them, according to the syntax of the JOpera Visual Composition
Language.

This approach explains the presence of some of the features of the OML meta-
model, such as the heavy use of key-based references between elements and the
storage of model checking status information within a process model itself. On the
one hand, these features make it quite difficult to write an OML document manually,
i.e., by entering XML code directly. On the other hand, OML leverages an XML-
based syntax and contains the necessary features to facilitate the building of the
appropriate editing and validation tools, so that the processes can be developed
visually, at a higher level of abstraction.

115

5. OPERA MODELING LANGUAGE

116

Part II.

The JOpera System

117

6. Compiler

This chapter, in which we introduce JOpera’s compiler, links the description of the
language to the description of the system for executing it. Before we give a detailed
presentation of JOpera’s architecture (Chapter 7), which provides a flexible platform
for the execution of the processes modeled with the Opera Modeling Language, in
this chapter we describe how to transform (or compile) such process models into
other representations, which are more suitable for execution.

6.1. Motivation

Once a process has been defined using the JOpera Visual Composition Language
(Chapter 3) based on the underlying Opera Modeling Language (Chapter 5), there
are two main alternative options to be considered in order to achieve its automatic
execution by a process management system, as depicted in Figure 6.1:

� One solution is to directly interpret a process description. In the simplest
case, the process description as it is specified by the user is directly executed
by a process engine, which uses it both to generate new process instances and
to interpret the associated state information (usually stored in a database) in
order to invoke the various tasks of the process in the correct order.

� A similar solution – followed by most existing systems (e.g. [83, 92, 98, 124,
168, 201, 253]) – involves the transformation of the process description into
an intermediate representation, e.g., in form of a database schema. Using an
intermediate representation has the advantage that process descriptions can
be stored in a form optimized for interpreted execution, which is still indepen-
dent of the underlying operating system/hardware platform. Furthermore,
if the intermediate representation is stored in a database, the generation of
new process instances can be implemented using internal mechanisms of the
database.

� Another solution (and one of the main contributions of this dissertation) con-
sists of the idea that process descriptions produced by the user can (and
should) be compiled into executable code to achieve a more efficient execution.
By using Java as a target language and platform, such code still maintains
useful portability properties. Additionally, it is possible to repurpose a Java
virtual machine as a “process interpreter”, as we will present in Section 6.5.

119

6. COMPILER

Compiler

Interpreter

Process
Description

Process
Description

Process
Plugin Services

Services

Process
Instances

Process
Instances

Figure 6.1.: Alternative approaches to process execution.
In order to execute them, process descriptions can be either interpreted (left) or

compiled (right).

In JOpera, the information defining the processes is structured in a way to
emphasize its understandability by human developers (JVCL) and ease of editing
with automated tools (OML), while leaving concerns about efficient execution in
the background. To illustrate this, as an example among many possible ones, we
consider the data flow graph of a process, which is stored as a list of edges linking
input and output parameters in an OML document1. This approach makes it easy to
edit the graph by adding and removing individual data flow connections. However,
at runtime, when the data flow transfers need to be carried out, it is more efficient to
represent the same data flow graph as a set of assignment rules, grouping together
the data flow connections that have to be triggered before the invocation of each task.
As it can be seen from this simple example, it is quite difficult to define a generally
optimal process model. Thus, in our approach we have chosen to use several models,
each optimized for a different goal. More specifically, we distinguish between a
design-time model, and two run-time models, one targeting process execution and
the other intended for process monitoring purposes.

To go from the design-time model to the corresponding run-time representa-
tion, a process undergoes several transformations in order to prepare it for efficient
execution. We refer to these transformations as a whole with the term compila-
tion. Similar to traditional programming languages where the original source code
is compiled into executable object code for a target platform, also the JOpera Vi-
sual Composition Language can be mapped onto various executable representations
suitable for several different process execution engines. In this chapter we describe
the main properties of a compiler for the following three execution environments:

1See Section 5.3.4 on page 101 for more information on the structure of a OML document, the
underlying data representation of the JOpera Visual Composition Language

120

6.2. COMPILER’S ARCHITECTURE

1. When targeting the BioOpera process support system [21], the required OCR
textual representation of the processes is automatically generated from the
OML model. As BioOpera was the original target execution environment for
the Opera Modeling Language, the OCR and OML models share most of
the basic concepts and assumptions, therefore the mapping between the two
representations is quite straightforward.

2. Similarly, under some conditions, a representation in the form of the Busi-
ness Process Execution Language for Web Services (BPEL4WS [112]) can be
automatically produced. In order to achieve full compatibility, the JOpera
Visual Composition Language processes should be built out of a restricted set
of component types.

3. The third execution environment for which we have designed a compiler is
the JOpera system itself. This particular compiler does not produce as out-
put another executable process model to be instantiated and interpreted by
the execution environment. Instead, the processes written in JOpera Visual
Composition Language are compiled into Java executable code which is then
compiled one more time so that the resulting bytecode is dynamically loaded
into JOpera’s runtime kernel for managing the concurrent execution of multi-
ple process instances. Thanks to this approach, the internal structure of the
JOpera’s kernel is greatly simplified, as most of the complexity required at
runtime to interpret the process models is shifted into the compiler, which can
perform several optimizations and leverage many features of the existing Java
language compiler.

6.2. Compiler’s Architecture

Before presenting the most important aspects of the mapping of OML processes to
OCR, BPEL and Java, in this section we give a brief overview over the compiler’s
architecture, as it is shared by all mappings. This way, we explain how the mappings
can be applied to the original model to transform it into an executable representation
for a given runtime platform.

The compiler has a layered architecture (Figure 6.2), where different parts of the
process model are analyzed separately. The results of the analysis are then merged
by the code emitter to produce the process representation in the target language
(Java, BPEL or OCR). As in most modern compilers [50], a multi stage approach
allows to separate model checking and analysis features from the back-end layer,
which is responsible for generating the actual code in the target language.

Starting from the process model which contains the control flow and data flow
graphs as well as the descriptions of the required components, the analysis layer uses
different intermediate representations:

� For the control flow graph, a set of ECA rules is produced to describe the
dependencies associated to each task. In Java, these are mapped to conditional

121

6. COMPILER

control flow graph data flow graph component descriptions

Validating Parser

ECA rules

graph

Control Flow
Graph Analysis

data transfers

graph

parameter list invocation

component

Component
Compiler

ECA rules data transfers invocationinstantiation

Code Emitter

Data Flow
Graph Analysis

Java OCR BPEL

OML Process Description

Figure 6.2.: Multi-stage architecture of the OML compiler

statements within the navigation code. In OCR and BPEL these rules are used
to produce the correct dependencies and conditions associated with the tasks.

� The data flow graph analyzer extracts a schedule for the data transfers that
should be executed before and after the invocation of each task. In Java,
this is used to produce the corresponding data transfer code. In BPEL, these
data transfers are mapped to assign activities, while in OCR the incoming and
outgoing bindings are associated to each task2.

Furthermore, the data flow analysis also produces a set of parameter lists,
which are used to shape the image of the process instance at runtime. In Java,
this amounts to generating the corresponding instantiation code. In BPEL,
this information can be used to produce the list of global variables, while in

2See Section 6.3.1 on page 123 for a description of the algorithm used to do this.

122

6.3. MAPPING TO OCR

the OCR emitter it is used to define the input/output interfaces of processes
and programs.

� The component descriptions are translated to the code for setting up the actual
service invocation. This gives a certain flexibility in providing support for
different component types. Depending on the target language (e.g., BPEL
vs. OCR), not all component types may be supported. Nevertheless, the
code emitter can check this and ensure that only the appropriate component
types are used. Depending on the component type, some optimizations can
be performed in order to leverage the specific characteristics of the component
type. In the case of Java scripts3, these can directly be embedded within the
generated Java code.

Finally, the code emitter gathers the various parts of the intermediate represen-
tation of the process and uses it to produce the corresponding OCR, BPEL, and
Java code, as we will discuss in the rest of the chapter.

6.3. Mapping to OCR

The Opera Canonical Representation (OCR) is the process modeling language first
defined in [98] with the intent of providing a “common assembly language” for
process modeling. By design, it contains features shared among many process mod-
eling languages in order to facilitate their mapping onto it. Extended with resource
modeling features, OCR is also the process modeling language for the BioOpera
system [21] for which the first version of the JVCL/OML compiler was developed.

Given the very close ties between the OCR and OML process models, most of the
compilation amounts to translating the process model from XML to OCR’s textual
syntax. For most of the OML elements, there is a similar OCR tag describing the
processes and their component tasks, as well as the programs4. However, OML is a
superset of OCR as it includes the serialization of the JVCL visual process definition.
This part of the OML model is lost when performing the translation to OCR, which
can thus be considered a one-way transformation between the two process models.
Furthermore, there are also some differences regarding the structure of the program
library and the representation of the data flow, which we will cover in the rest of
this section.

6.3.1. Data flow mapping

In order to produce a suitable OCR representation, the data flow graph of an OML
process must be analyzed and transformed according to the following algorithm.
An example of the results of the algorithm applied to a simple data flow graph are
shown in Figure 6.3.

3This particular type of component is described in Section 4.5.1 on page 60.
4For more information on the actual OCR syntax we refer the reader to the original definition

in [21] and [98].

123

6. COMPILER

PROCESS "Process1" ("pi1", "pi2", "pi3")
RETURNS ("po1", "po2", "po3", "po4")
WHITEBOARD (" ", "pi1", "pi2", "pi3",

" ", " ", " ", " "),
RESTART NOT-RESTARTABLE

TASKS
PROGRAM "Activity1" : "_Program1"

(,)
STORE (,)

(
ACT initial(STARTUP),
COND PROC.pi2 < 0

);
PROGRAM "Activity2" : "_Program2"

()
STORE ()

(
ACT finished(Activity1) and finished(Activity3),
COND TRUE

);
PROGRAM "Activity3" : "_Program3"

(,)
STORE (,)

(
ACT initial(STARTUP),
COND PROC.pi2 > 0

);
PROGRAM "Activity4" : "_Program4"

(,)
STORE (,)

(
ACT finished(Activity2),
COND TRUE

);

END TASKS
META

NOTEXEC
AUTHOR "Cesare Pautasso"

END META
END PROCESS

po1 po2 po3 po4

a1o1 > po1

a2o2 > po1

a3o1 > po4

a4o1 > po2 SYS.realtime > po3

Activity2_a2i1

a1o2 > Activity2_a2i1

a2i1 = WB.Activity2_a2i1

a3o1 > Activity2_a2i1

a1i1 = PROC.pi1 a1i2 = PROC.pi2

a3i1 = PROC.pi2 a3i2 = PROC.pi3

a4i1 = Activity2.a2o1 a4i2 = "Constant"

pi1 pi2 pi3

Process1 Input

po1 po2 po3 po4

Process1 Output

a1o1 a1o2

a1i1 a1i2

Activity1
?

a2o1

a2i1

a2o2

Activity2

a3o1

a3i1 a3i2

Activity3
?

Constant

a4o1

a4i1 a4i2

SYS.realtime

Activity4

Process1 - DataFlow

Figure 6.3.: Example showing a mapping from the JVCL visual syntax to the OCR
textual syntax of a simple data flow graph of a process. (The intermediate OML
representation is not shown)

1. First of all, the original OML data flow bindings are grouped according to the
task to which the binding’s destination parameter belongs to. Since in OCR
the source of each input parameter of a task must be specified together with
the invocation of such task, this grouping allows the compiler to generate such
OCR binding lists for each task.

2. Then, some special cases must be addressed, as it is possible to have input
parameters with multiple incoming bindings that link them to different source
parameters. In the OCR model only one source for each input binding is
allowed, therefore it is necessary to resort to the indirection provided by the
whiteboard, which contains a set of global parameters, visible only inside a
process.

a) For each of the input parameters having multiple incoming bindings a
whiteboard parameter is created. In order to guarantee its uniqueness,

124

6.4. BPEL MAPPING

this whiteboard parameter is named by appending the input parameter’s
name to the name of its container task.

b) For each of the incoming bindings, an outgoing binding from the source
parameter to the new whiteboard parameter is created. Each of these
outgoing bindings is associated with the task that owns the source output
parameter.

c) An incoming binding between the whiteboard parameter and the original
input parameter is added.

3. Another special case concerns bindings connecting output parameters of tasks
to the output parameters of processes. Again, in OCR it is not possible to
model this directly. Instead, the whiteboard is also used to shadow the process
output parameters, i.e., when a process finishes, the whiteboard parameters
are copied into the matching process output parameters. Therefore:

a) For each process output parameter, a matching whiteboard parameter is
created.

b) For each binding to a process output parameter, an outgoing binding
is added to the task that owns the source parameter linking it to the
whiteboard parameter corresponding to the destination parameter in the
process output.

4. Finally, for each incoming binding of each task, depending on the type of
the source parameter of the OML binding, the appropriate prefix must be
appended to the OCR parameter. Such prefix identifies whether the source
parameter of the binding belongs to the process (PROC), to a system parameter
(SYS) or to the whiteboard (WB). If the source parameter is an output parameter
of a task, then it is prefixed with the task’s name.

If the JVCL data flow graph contains bindings associated with split or merge
operators, the mapping becomes more complex, as OCR does not support such
operators natively.

6.4. BPEL Mapping

In this section we show to what extent it is possible to map our visual composition
language to the Business Process Execution Language for Web Services (BPEL [112])
version 1.15, an emerging XML-based specification for Web service composition, and
viceversa. The main goal of such mapping is to be able to use the JOpera platform
for visually composing Web services into processes, which can be later translated
into BPEL (or any other equivalent specification) for external execution. Conversely,

5This specification is currently undergoing a standardization process and, also taking into account
the volatility of Web service related standards, some of the details we take for granted in this
section may become obsolete in time

125

6. COMPILER

<process name=”Invoke”>
<variables>

<variable name="input"/>
<variable name="output"/>
<variable name="request"/>
<variable name="response"/>

</variables>

<sequence>
<receive name="receiveInput"

portType="tns:Invoke”
operation="initiate"
variable="input"
createInstance="yes">

</receive>
<assign>

<copy>
<from variable="input" part="parameters”

query="//value"/>
<to variable="request" part="parameters"

query="/Service/value"/>
</copy>

</assign>
<invoke name="InvokeService”

portType="tns:Service"
operation=”Service"
inputVariable="request”
outputVariable="response">

</invoke>
<assign>

<copy>
<from variable="response" part="parameters”

query="//result"/>
<to variable="output" part="parameters”

query="/onInvokeResult/result"/>
</copy>

</assign>
<invoke name="replyOutput"

portType="tns:InvokeCallback”
operation="onResult"
inputVariable="output">

</invoke>
</sequence>

</process>

input

Invoke Input

output

Invoke Output

response

request

InvokeService

Invoke - DataFlow

Figure 6.4.: A process with a single Web service invocation represented both in
JVCL and in BPEL. The corresponding parts of the process are shown side by side.

a BPEL document can be translated into OML when it is imported into JOpera to
take advantage of its scalable execution facilities and visual monitoring environment.

6.4.1. Mapping to BPEL

The components of a JVCL process can be accessed using various mechanisms,
which are not limited to those compatible with SOAP/WSDL. In order to keep
the mapping feasible we will assume that either all tasks of a process represent Web
service invocations or that Web service wrappers for the other classes of components
can be readily provided. Such wrapping could be done automatically, as part of this
mapping procedure, or manually, in a separate step.

126

6.4. BPEL MAPPING

<sequence>
<invoke name="InvokeService”.../>
<flow>

<sequence>

</sequence>

</sequence>

<invoke name="InvokeService2”.../>

<sequence>
<invoke name="InvokeService3”.../>
<invoke name="InvokeService4”.../>

</sequence>
</flow>

InvokeService

InvokeService2 InvokeService3

InvokeService4

Figure 6.5.: A process invoking multiple Web services shown both in JVCL and
in BPEL. There is a clear correspondence between the block-based structure of the
BPEL representation and the control flow graph of the JVCL.

Partners For each of the JVCL activities invoking a Web service, a BPEL partner
is created which contains a service link corresponding to the activity’s program and
also a BPEL invoke activity is prepared. For each of the JVCL sub-processes a link
to the JOpera systems where the process is accessible, or, alternatively, to make the
final BPEL document self contained, a new scope is added to the BPEL process.

Control Flow In general, given the arbitrary topology of control flow connections in
JVCL it will not always be possible to reduce it to the block-structured control flow
description of BPEL. However, the control flow graph of a JVCL process can always
be mapped to a single BPEL flow activity composed of all the tasks of the process,
with a direct translation of the dependencies between the service invocations. In
case of control flow dependencies used to model exception handling, specific BPEL
constructs can be employed. In case of loops in the JVCL control flow graph, they
can be detected and mapped to a BPEL while block.

Data Flow In BPEL the flow of information between the services is not explicitly
modeled with a data flow graph as in JVCL. Instead global variables (or containers,
depending on the version of the specification) are used as temporary storage for
the messages exchanged by the services and XPath expressions are used to refer to
individual data elements of the messages. To map the data flow graph of a JVCL
process, a BPEL variable to store the request/response messages of each service
is created and for each data flow connections in the JVCL graph a BPEL assign
activity is inserted before and after the service invocation represented by the BPEL
invoke activity. This assignment activity contains the XPath expression used to
access the individual JVCL parameter (or message parts). As an alternative, a
BPEL variable for each JVCL data flow parameter can be added. An example of a
basic data flow mapping is shown in Figure 6.4.

There are a few constructs in JVCL that have no equivalent construct in BPEL.

127

6. COMPILER

In addition to explicit control flow loops, JVCL offers iteration through list based
split/merge data flow operators. It is unclear how this could be mapped to an
existing standard BPEL construct. Furthermore the system parameters of JVCL,
which, for example give access to meta-data about the process and its tasks, and
can be used to specify the late binding of a service interface to its implementation,
cannot be mapped to standard BPEL expressions.

6.4.2. Mapping from BPEL

BPEL mixes two different types of elements in the same process modeling language.
On the one hand there are structural constructs for modeling the control flow and
data flow of a process. On the other hand there are several different basic activities
used to model the synchronous and asynchronous invocation of Web services, as well
as the handling of events and alarms. The first type of elements can be mapped to
constructs of the JVCL language, while the second type cannot be mapped directly
but is implemented using a library of BPEL components6.

Control Flow As the BPEL control flow is expressed using both a block and graph
structure, it is always possible to map this to a pure graph based model (Figure 6.5).
This way, BPEL constructs such as sequence, flow, pick, while and switch can be re-
placed by a corresponding combination of control flow dependencies and conditions.

BPEL structured exception handling (based on throw, catch, catch all activities)
can be mapped to JVCL by introducing rule-based exception handlers and an ad-
hoc component in the BPEL library which always fails and is used to represent the
throw activity.

Data Flow The mapping of the data flow of a process is not so straightforward,
given the use of global variables (or containers) and arbitrary assign activities in
BPEL. To do so there are two main possibilities: either an assign activity can be
mapped to a direct data flow connection between a pair of JVCL parameters or it
is necessary to add an explicit task, which runs the XPath expression contained in
the assign activity and transforms the input into the output parameter accordingly.

Messaging BPEL invoke activities can be directly mapped to JVCL activities
with a reference to a program representing the corresponding service invocation.
Furthermore, mapping BPEL activities such as send, receive, and wait can all be
done by using JVCL tasks of the Messaging component library7.

Events A similar approach is used with the onAlarm/onMessage constructs. In
this case a process (or part of a process) could be set up as follows. There is a task
which corresponds to the onAlarm/onMessage. This task terminates its execution

6See Section 4.11 on page 83 for more information about the components which represent some
of the basic BPEL activities

7See Section 4.10 on page 79 for a description of the messaging components.

128

6.5. MAPPING TO JAVA

on receipt of a message, or on occurrence of an alarm. The block of actions to be
carried out when such an event occurs, is translated as before with the additional
dependency from the task corresponding to the original onAlarm/onMessage.

6.5. Mapping to Java

In this section we present how the JOpera Visual Composition Language is compiled
into Java executable code. To do so, we first give some background on process
navigation and instantiation. For a given process, these two procedures are executed
by invoking the Java code produced by the compiler. Then we introduce the finite
state machine that models the possible execution states of processes and their tasks.
Understanding this finite state machine is also important because it is the basis for
the interaction between task state changes and their control flow dependencies, as
it is performed by the process navigation algorithm. As a concluding example, we
show how the compiler uses all of these aspects to generate the executable Java code
for a process with a simple structure.

6.5.1. Process Navigation

Navigation is the procedure whereby the system determines the set of tasks to
be executed next [124], given the current state of the process and its control flow
graph, specifying the partial order of execution of the tasks. To do so, the navigation
procedure interprets the information of a directed graph, where the nodes represent
the tasks and are labeled with their current state, and the edges represent control
flow dependencies between the tasks. When a state change of a task occurs, the
algorithm proceeds in two steps. First, in order to determine the set of tasks affected
by the state change, it follows all outgoing control flow dependencies. Then, it
evaluates the starting conditions of these tasks to check if they are ready to be
started. This way, after every task state change it is possible to determine the set
of tasks to be started next.

This approach is very similar to mapping the process description to a set of
Event, Condition, Action (ECA) rules. State changes of tasks trigger events, which
will cause the evaluation of the conditions associated with the set of dependent tasks
and, when a condition evaluates to true and one of these rules fires, the actions
required to start the tasks can be carried out. More specifically, during navigation
the system mainly performs two types of actions (Figure 6.6):

1. The first type concerns the actual task execution, i.e., packing all the necessary
information into a job that can be submitted to the scheduler responsible for
finding a suitable provider for invoking the service.

2. The second type groups operations that access or modify the state information
of a process. For example, copying the data from the parameters of one task
to another as specified in the data flow graph of the process, as well as setting
metadata values, such as the starting time of a task, or accessing the state of

129

6. COMPILER

Navigation
Algorithm

Task
Execution
Requests

Process
Instance

State

Figure 6.6.: Process navigation actions

a set of tasks to determine whether they have failed in order to trigger the
corresponding exception handler.

Executing Navigation In practice, it is not necessary to compile a process de-
scription into a generic ECA-like representation to be interpreted by the process
engine. Instead, to implement our process navigation algorithm we build on the
idea of mapping the process description to a program embodying the specific rules
corresponding to the process description, generated using an ordinary programming
language. This way, we can use the language’s compiler to produce executable code
which can be then dynamically loaded and linked into the kernel’s runtime environ-
ment to be executed. This approach has the potential to provide better performance.
First of all, the executable code is generated in a standard programming language,
in our case Java8, which then is compiled one more time. This way we can map the
process structure to standard language constructs, which can be efficiently executed.
Moreover, during the generation of the code it is possible to analyze the structure
of the process and perform optimizations.

In addition to this, the generated program is completely stateless, as it only
contains a mapping of the process structure. To perform navigation over a particular
process instance, the program reads its state as input. Therefore, it is possible
to perform navigation over many instances of the same process using the same
program code, which only needs to be loaded once. In many existing systems,
this clear separation between the state of a process instance and its structure is
missing and, in the worst case, both types of information need to be loaded from the
persistent repository before each invocation of the navigation procedure, incurring
in unnecessary overhead.

6.5.2. Process Instantiation

Process instantiation is the procedure whereby the system creates a new instance of
a given process template (description, or type) so that it can be executed with the
navigation algorithm presented in the previous section. The input to the process
instantiation procedure consists of the name of the process template that should be

8In our prototype we choose Java because of its portability, the maturity of the available tools and
its ease in dealing with dynamically loadable code. Nevertheless, other programming languages
could be also used.

130

6.5. MAPPING TO JAVA

instantiated as well as the identifier of the new instance to be created. By separating
the two concerns of determining instance identifiers and the actual instantiation, in
JOpera it is possible to decouple an expensive operation – the creation of an instance,
which can be carried out in parallel, notwithstanding – from the less expensive se-
quencing of instances, which can however be a potential performance and scalability
bottleneck.

The result of the instantiation procedure is a newly created (possibly persistent)
image of a process instance, which fully describes the state of the execution of a
process. This information contains both meta-data about processes and their tasks
(e.g., their current execution state), as well as the values of all of the corresponding
input, output and system parameters. As an optimization, the initial values of these
parameters are immediately set from the user-provided default values. Similarly, in
case of parameters bound to constants, such bindings are implicitly evaluated at
compilation time, so that at runtime, when the instance is created, no extra work is
required.

Some of the information included in a process instance is used by the navigation
procedure, i.e., the state of the tasks and the values of the parameters are read
upon the evaluation of the activators and start conditions associated with the de-
pendent tasks. Furthermore, in order to guarantee their recoverability, the state
of the process instances also contains the data produced and consumed by the ser-
vices that are invoked as part of the process. In addition to enable the recovery of
such instances, storing all parameter values is also very useful for monitoring and
debugging purposes, as the user can inspect them interactively.

Executing instantiation There are several options to implement the instantiation
procedure. Depending on the architecture and on the reliability guarantees provided
by a process support system, instantiation of new processes can be delegated to the
database subsystem, where the required tables and tuples to store the state infor-
mation of the new instance are created [21, 98, 145]. Although this approach can
be optimized to reduce the cost of process instantiation by leveraging the function-
ality offered by a specific database system, there are some limitations concerning
the flexibility of the system as the instantiation procedure becomes dependent on
the underlying persistent storage technology. On the one hand, when switching to a
different database, in a worst case scenario, the entire instantiation procedure may
have to be reimplemented. On the other hand, offering support for multiple storage
platforms9 requires a large maintenance effort, as every modification to the process
instance model affects all implementations.

To address this portability issue, while keeping the possibility to do optimiza-
tions, in JOpera we have followed a strategy based on:

1. the definition of a storage subsystem interface with a higher level of abstrac-
tion10;

9including volatile storage, as not all usage scenario require the expensive recoverabilty provided
by persistent storage.

10See Section 34 on page 155 for more information on this.

131

6. COMPILER

2. the generation – at compilation time – of a process-dependent instantiation
procedure based on the abstract storage subsystem interface.

Therefore, in JOpera not only the instantiation procedure has been decoupled
from the actual storage technology but there is no generic instantiation code that
interprets the structure of the process in order to extract the information that defines
the state of the new instance at run-time. Instead, the compiler prepares such image
beforehand and uses it to generate the process-specific instantiation code which can
be run on any implementation of the actual storage subsystem.

6.5.3. Task State Diagram

While it is processed by the system, a task instance goes through several execution
stages [130]. These can be modeled by the finite state machines of Figures 6.7 and
6.8. Defining a model of the task execution state is useful for a variety of purposes:

1. The user receives clear feedback about what is happening within the system.
Knowing the current state of a task is very useful for monitoring purposes, for
detecting failures and for knowing what are the options regarding the interac-
tion with the task. For example, it is not possible to suspend a task that has
already been finished.

2. As the state of the execution of a task is stored persistently, this information
can be used for recovery purposes in case of internal system failures. More
precisely, depending on the last known state of a task, different recovery actions
may need to be carried out.

3. The navigation algorithm generated by the compiler for a given process is
implemented by connecting together each task’s state machine as specified
by the control flow graph of the process. The execution of the navigation
algorithm is triggered after each state transition in order to execute a set of
actions corresponding to the state of the current task, or to fire state transitions
in the subsequent tasks.

4. The most important state transition events are logged in order to provide a
history of the execution of the process instances. This information can be then
mined to gather profiling information and analyzed to detect bottlenecks in
the structure of the process.

Visible state diagram of task instances

As a first approximation, we introduce the simplified state diagram of Figure 6.7
which is used to give feedback to the user about the current state of the execution
of each task. By default, during instantiation, a task is created in the initial state.
When the activator associated with the task is triggered, depending on the outcome

132

6.5. MAPPING TO JAVA

Initial

Waiting

Running

Finished

Failed

Aborted

Suspended

Not Reachable

Figure 6.7.: Simplified state diagram of a task instance as it is seen by the user

of the condition’s evaluation the state of the task may go to not reachable – if the
condition evaluates to false – or waiting – otherwise. The waiting state indicates that
the task is ready to be executed and the system is looking for a suitable provider in
order to invoke the corresponding service. During the invocation of the service, the
state of the task is set to running. In case the service provider becomes unavailable
before the service invocation is completed, it is possible to automatically reschedule
the invocation by resetting the state of the task to waiting so that an alternative
provider can be chosen. Once the invocation has completed, the state is set to
finished or failed depending on whether an error has been detected11.

The user may interact with a task in different ways depending on its state. If the
task is waiting or running the user may suspend it, i.e., block its execution until it
is manually resumed. Furthermore the user may forcefully terminate the execution
of a task, by setting its state to aborted. Similarly, once a task has reached one of
its final states (not reachable, finished, failed, or aborted) it is possible to manually
restart its execution, by resetting its state back to initial. However, when a task
reaches one of the final states, the corresponding control flow dependencies will be
triggered and the execution of the subsequent tasks may begin12.

Internal state diagram of task instances

More in detail, the navigation code generated by the compiler uses some additional
internal states (Figure 6.8) to address the following issues:

1. Internally, the suspended state is paired with the dequeued state in order to

11See chapter 4 on page 45 for more information on how failures detection is modeled for different
types of services.

12There is a close relationship between the four final states of a task instance and the four possible
control flow dependencies described in Section 3.4 on page 25

133

134 6. COMPILER

S→S′ Description

1. →initial A task is in the initial state when it is first created.
initial→waiting Before a task is queued to be executed the values of

its input parameters are fetched as specified by its
incoming data flow bindings.

initial→not reachable If the condition associated with the task evaluates
to false, the execution of the task is skipped.

waiting→running Once the actual execution of the task begins, the
address of the chosen service provider is recorded
for recovery purposes.

running→waiting If the provider currently executing the task becomes
unavailable, the task is automatically rescheduled so
that it can be submitted to an alternative provider.

2. running→finishing A task has completed its execution.
finishing→finished The outgoing data flow bindings of a task are eval-

uated before navigation can proceed.
running→failed A task has failed its execution.

3. waiting→dequeued If the user suspends a waiting task, its state is imme-
diately set to dequeued as there is no remote provider
to contact for actually suspending the task.

dequeued→waiting When the user resumes a dequeued task, it is imme-
diately put back into the queue.

running→suspending The request to suspend a running task is submitted
to the dispatcher.

suspending→running The dispatcher cannot suspend a task.
suspending→suspended The dispatcher has suspended the task.
suspended→resuming The request to resume a suspended task is submitted

to the dispatcher.
resuming→suspended The dispatcher cannot resume a task.
resuming→running The execution of the suspended task has been re-

sumed by the dispatcher.

4. waiting→aborted The execution of a task which was not yet started
has been prevented from happening.

dequeued→aborted A dequeued service invocation was killed.
running→aborting A request to interrupt a running task is forwarded

to the dispatcher managing its execution.
aborting→running The dispatcher cannot kill a task.

suspended→aborting A request to stop a suspended task is forwarded to
the dispatcher.

aborting→aborted The dispatcher has successfully interrupted the ex-
ecution of the task.

5. finished→initial A successfully completed task is restarted.
failed→initial The failed invocation of a task is retried.

aborted→initial The interrupted execution of a task is repeated.
not reachable→initial The state of a skipped task is reset so that its con-

dition can be re-evaluated.

Table 6.1.: Task State Transitions
Actions carried out for each state transition of a task instance

6.5. MAPPING TO JAVA

Initial

Waiting

Running

Finishing

Finished

Failed

Aborting

Aborted

Suspended

Resuming

Suspending

Dequeued

Not Reachable

[condition satisfied]

[task is started][task is rescheduled]

[task is done]

suspend

suspend

resume

restart

kill

kill

kill

resume

[condition false]

Figure 6.8.: Full state diagram of a task instance as it is followed by the code
generated by the compiler

know whether upon resuming it, the task should go back to the running or to
the waiting state, respectively.

2. Three of the additional intermediate states (i.e., aborting, suspending, resum-
ing) have been introduced in order to capture the asynchronous interaction
between the various JOpera system components. More precisely, the interme-
diate state is entered upon the receipt of a request by the user and is exited
after the requested action has been completely carried out by a potentially
remote part of the system.

For example, if the user suspends a running task, upon receipt of such re-
quest the state of the task is set to suspending and the navigator initiates the
corresponding action by contacting the dispatcher, which could be running
on a different machine13. Depending on the type of the service that is being
invoked, the dispatcher attempts to suspend its execution and signals with an-
other event the result of the action. If it was possible to suspend the task, its
state finally goes to suspended, otherwise is reset back to the original running
state and the user is notified about the error. In fact, depending on the type
of service to be invoked as part of the execution of a task it may or may not
be possible to perform such types of interaction14.

13Please turn to Section 7.3 on page 154 for more information on JOpera’s architecture
14Although it is possible to signal a UNIX process and pause its execution, it is not feasible to

135

6. COMPILER

State Condition

initial by default a new process instance is created in this state, which is
left as soon as the navigation algorithm is executed once on it.

finished all tasks are either finished or unreachable15.
waiting at least one task is waiting.
suspended at least one task is suspended.
running at least one task is running.
aborted at least one task has been aborted and this event was not handled

by another task.
failed at least one task has failed and its failure was not handled by another

task.

Table 6.2.: Process State Definition Rules
These rules define how the state of a process instance is aggregated from the state

of its tasks

3. The finishing intermediate state is reached after a task has successfully com-
pleted its execution. During this state, the values of its output parameters
are copied as specified by its outgoing data flow bindings. After these data
transfer operations are completed, the task is finally set to the finished state so
that the navigation algorithm can be triggered and eventually the execution
of the dependent tasks started.

Before discussing the state diagram of a process instance as a whole, in Table 6.1
we give a precise specification of what kind of actions are to be performed for each
one of the state transitions (from state S to state S ′) shown in Figure 6.8. The
first set of transitions is used to begin the execution of a task. The second set
of transitions describes the possible outcomes of a service invocation (success or
failure). The third group of transitions models how the user can suspend and later
resume the execution of a task instance. Similarly, the fourth group models the
interruption of the execution of a task instance, while the last transitions deal with
restartable tasks.

State of the execution of a process instance

The overall state of the execution of a process instance depends on the state of its
component tasks. In order to aggregate the state of all tasks of a process into one
value, we specify a set of rules, which define the state of a process instance as a
function of the collective state of its tasks. In order to simplify the rules, we assume
that they are evaluated with the priority corresponding to the order in which they
are given in Table 6.2.

temporarily suspend the remote invocation of a Web service

136

6.5. MAPPING TO JAVA

Process
Template

Plugin

Metadata

State Information Storage

Addressing

Task Execution

Event Notification

LoggingNavigation

Instantiation

Figure 6.9.: Process Template Plugin Interface
UML Component Diagram describing the interface of a process template plugin in

terms of the provided (left) and required (right) services

6.5.4. Process Template Plugin Interface

In the previous sections we have presented the assumptions that are made by
JOpera’s compiler concerning the state of the task and process instances, as well as
what the compiler should produce given a process description: the executable code
responsible for performing navigation and instantiation. Before showing in detail an
example of the produced Java code, we describe the interface between a so-called
process template plugin and the rest of the JOpera kernel (Figure 6.9). This way,
we clarify the interaction points between the system and the process navigation and
instantiation code and motivate the design of part of the JOpera process execution
kernel, which is presented in detail in the next chapter.

As a general note, it is a very interesting design problem, to define such an
interface in terms of what the plugin provides and what the plugin requires, as these
choices can affect both the flexibility and the performance of the resulting system.

First of all, a process template plugin provides the following functionality to the
rest of the JOpera system.

1. Instantiation – Creation of new process instances for the given template.

2. Navigation – Execution of one step of the navigation algorithm over any of the
previously created process instances.

3. Metadata – Information about the template. This includes the ability to query
the plugin to retrieve both the metadata contained in the original OML pro-
cess (name, description, and author), as well as the compilation date and, in
principle, additional versioning information both about the process description
and the compiler which produced the code.

In order to implement this functionality, a process template plugin requires and
uses a small and well defined set of facilities provided by the rest of the JOpera
kernel. They are briefly introduced in the rest of this section and they will be
described more in detail in the next chapter.

137

6. COMPILER

1. State information storage services are used both by the instantiation code –
to create an image of a new process instance – and by the navigation code, to
implement data flow bindings and evaluate conditions.

2. Task execution requests are queued by the navigation code, once it determines
that a particular service should be invoked.

3. Logging and execution profiling facilities are used by the navigation code to
instrument the execution of a process instance in order to measure its perfor-
mance.

4. Addressing data structures are needed to identify process and task instances,
as well as their parameters, so that their values can be accessed within the
state information storage services.

5. An event notification mechanism is also a requirement, as the navigation code
is called for every state transition event of a certain process (and task) instance.
Furthermore, (both synchronous and asynchronous) sub-process calls are also
implemented on top of event notification.

Example 6.1: Compiling the Stock Quote
Currency Conversion Process
In this example we show the most important sections of the Java executable code produced
as a result of the compilation of the process shown in Figure 4.6 on page 57 within Example
4.1 on page 55. Although this is a small example with only three tasks, with it we can
already illustrate the most important aspects of process compilation. For completeness, the
full listing of such code can be found in Appendix B.

The StockQuoteConvert process shown in Figure 4.6 on page 57 is compiled into the
TStockQuoteConvertTemplate class. This class has six methods, four of which (getName,
getAuthor, getDescription, getCompileDate) are simply used to store metadata about the
plugin, so that it can be correctly identified. Furthermore, the navigation code is contained
in the Evaluate method, while the instantiation code is in the SetupImage method. In the
following we will point out the most important code pattern in both of these methods, and
explain how they relate to the original structure of the process.

Instantiation code

The SetupImage method is called once for every new instance of a process.

218 public void SetupImage(TID Context, Map Params)

It receives two parameters: the first (Context) identifies the new instance, while the
second (Params) contains the values of user-provided process input parameters.

In order to create a new instance, the method uses two different facilities offered by the
JOpera platform:

138

6.5. MAPPING TO JAVA

1. The SetupParam method is used to allocate a new parameter, identified by its Address
(composed of instance, box – or namespace, which can hold one of the following values:
Box.Input, Box.Output, or Box.System – and name). Furthermore, this function also
takes the initial value for the parameter.

2. The SetupSystemBox is used to allocate a set of system parameters used to store metadata
about a certain process (or task) instance. This method allows to keep the compiler inde-
pendent of the actual set of system parameters that are used, enhancing the flexibility of the
system. However, the system parameters whose values depend on the process description
are still explicitly allocated by the compiler.

In the example, the following code allocates the system parameters for the process in-
stance:
220 SetupSystemBox(PROC(Context));

Furthermore, the user defined input and output parameters of the process are allocated.
Whereas the output parameters are set to their default values, the values of the input param-
eters are read from the ones provided by the user, which are stored in the Params parameter
of the SetupImage method.

221 SetupParam(PROC(Context), Box.Input, "symbol",Params.get("symbol"));
222 SetupParam(PROC(Context), Box.Input, "country",Params.get("country"));
223 SetupParam(PROC(Context), Box.Output, "quote","");

Similarly, for each task, a set of calls to the SetupParam and SetupSystemBox are issued.
In addition to the user defined input and output parameters, also a set of system parameters
related to the tasks are prepared.

225 TID Context TASK getStockQuote = TASK(Context, "getStockQuote");
226 SetupSystemBox(Context TASK getStockQuote);
227 SetupParam(Context TASK getStockQuote,Box.System,Box.Name,"getStockQuote");
228 SetupParam(Context TASK getStockQuote,Box.System,Box.Type,Box.Activity);
229 SetupParam(Context TASK getStockQuote,
230 Box.System,
231 Box.Prog,
232 "StockQuotePort getStockQuote");
233 SetupParam(Context TASK getStockQuote,Box.System,Box.MaxRestart,"0");
234 SetupParam(Context TASK getStockQuote, Box.Input, "symbol", "");
235 SetupParam(Context TASK getStockQuote, Box.Output, "Result", "");

Navigation code

The navigation code is contained in the Evaluate method which is intended to be called
for every state transition event regarding a certain process instance. The process instance
for which such an event should be evaluated by the navigation algorithm is identified by the
Context parameter of the method.

35 public void Evaluate(TID Context) throws MemoryException

Before we present in detail how the control flow and data flow description is mapped to
the executable code of the Evaluate method, it should be noted that the navigation code,
which can be considered as the Java implementation of the set of ECA rules, does not make

139

6. COMPILER

any assumptions about the order nor the duration of the tasks, although it strictly enforces
the control flow structure of the process.

More precisely, the Evaluatemethod is called multiple times to execute each navigational
step of a process instance. Therefore, by setting different values for the Context parameter,
it is possible to call multiple times the same method to interleave navigation on multiple
instances of the same process. Furthermore, the method returns as soon as one step of the
navigation algorithm has been performed, although the execution of the process instance may
have not yet completed.

By inserting conditional code that checks the current state of the instance, it is possible
to enable the asynchronous interaction between the Evaluatemethod and the task execution,
which is triggered as a result of navigation from within the Evaluate method but carried
out asynchronously in different parts of the system. This approach is needed to support
parallelism in the control flow of a process, as multiple task execution requests may be issued
concurrently and, similarly, it is necessary to deal with tasks of variable duration, for which
it is not possible to foresee the order of completion.

Due to the asynchronous nature of this interaction, the current state of the instance
identified by the Context parameter must be reconstructed during each call to the navigation
code. To do so, a set of local variables of type State are used to read the state of the process
(and later of its tasks) from the state information storage facilities, identified in the code by
the interface called Memory.

39 State State PROC;

46 State PROC = Memory.getState(Context PROC);

100 State State getStockQuote = Memory.getState(Context TASK getStockQuote);
101 State State getExchangeRate = Memory.getState(Context TASK getExchangeRate);
102 State State Multiply = Memory.getState(Context TASK Multiply);

After reading the state of a process instance it can be decided what needs to be done, if
navigation has been invoked on a newly created process instance (in state initial), the tasks
without any control flow dependency should be started.

48 if (State PROC == State.INITIAL)

The example process has two of such tasks, which should be executed in parallel. Before
a task execution request can be issued, however, it is necessary to prepare its input data ac-
cording to the data flow bindings of the process description. In this case, the getStockQuote
task has one input parameter called symbol which should contain the value of the process
input parameter with the same name. This parameter copy operation is described by the
corresponding data flow binding and is executed through the following Java code:

52 Memory.Copy(MakeAddress(Context PROC, Box.Input, "symbol"),
53 MakeAddress(Context TASK getStockQuote,Box.Input,"symbol"));

If a task had multiple incoming bindings, for each of the bindings there would be a similar
Memory.Copy statement, that instructs the state information storage subsystem to copy a
value from a source to a destination address. Addresses are used to identify a parameter of
a certain process (or task) instance.

After all incoming bindings have been executed, the input data for the task should be
fetched and packaged as part of the task execution request.

140

6.5. MAPPING TO JAVA

56 InputParams.put("symbol", Memory.Load(MakeAddress(
Context TASK getStockQuote,
57 Box.Input,
58 "symbol")));

Finally, the task can be started.

61 Exec.Start(Context TASK getStockQuote, InputParams);

It is important to point out that, in general, the call to Exec.Start returns as soon as
the task execution request has been submitted to the task execution scheduler. Therefore,
it is possible to execute multiple tasks of the same process instance in parallel, as they are
started asynchronously.

In fact, this is what the navigation code of the example does, as it continues with similar
code used to evaluate the incoming data flow bindings of the getExchangeRate task and to
fetch its input data for the corresponding execution request.

78 String p country1 = (String) InputParams.get("country1");
79 String p country2 = (String) InputParams.get("country2");
80
81 if (!(p country1.equals(p country2)))
82 {
83 TimeStamp(Context TASK getExchangeRate, Box.StartTime);
84 Exec.Start(Context TASK getExchangeRate, InputParams);
85 }
86 else
87 {
88 Memory.setState(Context TASK getExchangeRate,State.UNREACHABLE);
89 }

However, in the original process description this task is associated with a condition
that controls for which parameter values the task may be actually started. The code to
implement such start conditions first fetches the parameter values that should be compared
into local variables and then uses them to build a Java expression corresponding to the
original condition. If this expression evaluates to true, the normal task execution request code
is executed. Otherwise, the state of the task which is not executed is set to not reachable.

After all tasks without incoming control flow dependencies have been started (or skipped)
the state of the process is set to running, and the first execution of the Evaluate method
terminates.
90 Memory.setState(Context PROC, State.RUNNING);

As soon as one of the two task running in parallel finishes, the Evaluate method is
called again and, since the state of the process instance is no longer initial, it will not repeat
the previously described code, but instead continue with the rest of the navigation, which
involves the third (and last) task of the process.

More precisely, after the execution of a task has completed, its state is set to finishing, if
its execution was successful. In this case, before the navigation can continue to look for new
tasks to start, the results of the service invocation must be stored persistently in the state
information storage subsystem.

106 Memory.Store(MakeAddress(Context TASK getStockQuote,
107 Box.Output,
108 "Result"), (String) Results.get("Result"));

141

6. COMPILER

Furthermore, in case there are outgoing bindings from a task to the process output
parameters, these must also be carried out, in a way very similar to the incoming bindings.

109 Memory.Copy(MakeAddress(Context TASK getStockQuote,
110 Box.Output,
111 "Result"),
112 MakeAddress(Context PROC, Box.Output, "quote"));

Only at this point, the state of a task is set to finished to allow the navigation algorithm
to continue. As an optimization, to avoid exiting and reentering the Evaluate method, the
cached state of the task is also immediately changed.

114 Memory.setState(Context TASK getStockQuote, State.FINISHED);
115 State getStockQuote = State.FINISHED;

As specified by the control flow graph of the process, only if both the getStockQuote
and getCurrency tasks have completed their execution the third task can be started.

130 if ((State getStockQuote == State.FINISHED)
131 && (State getExchangeRate == State.FINISHED))

Once both control flow dependencies are satisfied, the incoming data flow bindings of
task Multiply can be evaluated, its input parameters are fetched as previously described.

After its input parameters are ready, the task can be started.

157 Exec.Start(Context TASK Multiply, InputParams);

On the other hand, if it is not possible to execute the task, because one of its predecessors
in the control flow graph will not satisfy its activator, the state of the task is set to not
reachable.

171 Memory.setState(Context TASK Multiply,
172 State.UNREACHABLE);

The last part of the Evaluate method contains the code responsible for determining the
state of the process instance as an aggregation of the state of its component tasks. After one
navigation step has been concluded and all of the state transitions of the tasks have been
determined, it is possible to apply the rules specified in Table 6.2 to compute the overall
state of the process instance. In this example we focus on the process termination rules, that
control whether a process has finished or failed.

The following statements control when the process is considered to be finished. It should
be noted that the expression on line 191 refers only to the state of the tasks without outgoing
control flow dependencies.

191 if (((State Multiply == State.FINISHED) || (State Multiply ==
State.UNREACHABLE)))
192 {
194 Memory.setState(Context PROC, State.FINISHED);
195 }

These statements control when the process fails. As described earlier, this happens only
if at least one task has failed and its failure has not been handled by another task.

142

6.6. DISCUSSION

197 if ((State getStockQuote == State.FAILED)
198 || (State getExchangeRate == State.FAILED)
199 || (State Multiply == State.FAILED))
200 {
201 if (State PROC != State.FAILED)
202 Memory.setState(Context PROC, State.FAILED);
203 }

Finally, the following code is executed the last time the Evaluate method is called for a
given process instance. More precisely, this code is used to gather the results of a process,
and, in case the process was started as a sub-process call from within another process, the
Completed method notifies the caller about the outcome of the execution of the invoked
process.

206 if ((State PROC == State.FINISHED) || (State PROC == State.FAILED))
207 {
208 Results.clear();
209 Results.put("quote", Memory.Load(MakeAddress(Context PROC,
210 Box.Output,
211 "quote")));
212
213 Completed(Context PROC);
214 }

6.6. Discussion

This chapter can be interpreted in terms of the model driven architecture (MDA)
paradigm. Model driven architecture is an approach to software construction that,
in the extreme, strives to replace the manual production of program code by the
automatic generation of such code starting from formal specifications, which model
the design of a system [127]. Just like compilers helped to replace assembly level
programming with programming languages at a higher level of abstraction, com-
pilers should be also used as a tool to transform the model of a system into the
corresponding program code.

Very similar ideas can be applied to the domain of process modeling. In Chapter 5
we have defined a language (or meta-model) for modeling processes. In this chapter
we have presented what are the options as far as the transformation of such processes
in other, executable representations is concerned. More precisely, given a process
model written in an OML document, model checking techniques can be applied
to ensure its consistency. Once such model is deemed to be correct, it is possible
to define and apply, up to a certain degree, reversible mappings between different
process meta-models (e.g., exporting a BPEL process from one defined in OML).
This kind of transformation can be used to prepare a process to be interpreted
by a given process execution engine. Also regarding process execution, one-way
compilation is a very useful technique, in order to transform a process model into

143

6. COMPILER

executable code, as we have shown in the last part of this chapter.

Looking outside of the process modeling and execution area, compilation and
interpretation are two standard alternatives, as far as the execution of traditional
programming languages is concerned. Each one has its strenghts and weaknesses,
and recently the distinction has been somewhat blurred by just in time compilation
techniques, which attempt to synthesize the best of both worlds [50].

One of the advantages of interpretation is that source code can be directly exe-
cuted, without an intermediate, time-consuming, static compilation step. Further-
more, as there is no distinction between compile-time and run-time, all of a series
of dynamic techniques can be applied to handle variations and adaptations (includ-
ing late binding) in the execution environment, which would be more difficult in a
pure-compilation approach, where most decisions are taken statically.

Along this line, one of the typical reasons for using interpretation to execute
process descriptions lies in the possibility of dynamically changing the definitions of
the processes on the fly, in order to handle exceptional cases which were unforeseen
at the time of the process was defined. Thanks to interpretation, where, at run-
time, process descriptions are not considered a read-only data structure, dynamic
workflows environments exhibit a liveness level three [226], where users may modify
the structure of a process as it is running while the underlying interpreter ensures
the consistency of the changes.

In the context of this dissertation, processes define scripted interactions between
services, which involve – in most cases – completely automatic execution. That is,
in JOpera production quality processes run without neither human supervision nor
interaction, which are instead the rule in the case of business process automation.
Therefore, it becomes less clear how an approach based on interpreted, dynamic
workflows could be useful, in order to allow developers to change their active pro-
cesses manually. Conversely, in our opinion, the evolution of processes, a kind of
software artifact, should happen through an orderly change review process based
on version control systems, like in most modern software engineering approaches.
Therefore, by extending process definitions with versioning information, in JOpera
the compilation of processes does not interfere with the possibility of customizing
and redefining a process to suit particular purposes which were not foreseen at the
time it was first defined. Before it can be executed, a modified process, like any
other process, must be compiled and – in addition to its name – a version identifier
can be used to distinguish the particular revision when starting it. This way, it is
possible to concurrently run different versions of a process, as version numbers are
also transparently used to identify the process plugin generated by the compiler.

One of the difficulties of applying compilation to processes lies in the fact that
processes are intended to be executed multiple times concurrently. Also with com-
pilation applied to traditional programming languages, where the source code of a
program is transformed into object code, and then linked to build an executable pro-
gram, it is possible to execute multiple instances of the same program concurrently,
as long as the limits within the operating system are not exceeded. The JOpera
system, like other process support systems, is intended to scale beyond such limits

144

6.6. DISCUSSION

and to be able to run a very large number of concurrent processes. Therefore, compi-
lation of process descriptions to executable code, intended to be run directly on top
of the operating system is not an option, although the design of the compiler and its
output would probably have been simpler because the generated code would have
been used to run only one process instance delegating all multi-processing issues to
the operating system’s scheduler.

As a consequence, in the design of JOpera’s compiler, the Java executable code
generated for a given process description is not a stand-alone program, to be run
directly in a Java virtual machine. Instead, as we have discussed in Section 6.5,
processes are compiled into plugins that are dynamically loaded into JOpera’s
kernel to manage the creation and the concurrent execution of multiple process
instances. To do so, the executable code for a process generated by the compiler
is completely stateless, as it only contains the process dependent navigation and
instantiation logic – corresponding to the structure of the process. To determine
the next services to be invoked, the code reads the current state of the execution of
a given instance as input. Nevertheless, by configuring JOpera’s process execution
kernel appropriately and linking it with the process code, it is still possible to
execute a single instance of a process as a stand-alone program, as we will show in
the next chapter.

145

6. COMPILER

146

7. Architecture

In this chapter we present the architecture of the JOpera system, which provides
an integrated set of tools to support the development and the execution of the pro-
cesses written in the JVCL language presented in Chapter 3. The tools composing
JOpera can be organized following the life cycle of a process in three main cate-
gories: design-time, compile-time and run-time. While in the previous chapter we
have already discussed the features and the architecture of JOpera’s compiler, in
this chapter we present the architecture and usability features of the visual develop-
ment environment (design-time) and also the architecture and deployment options
regarding the process execution kernel (run-time).

7.1. Motivation

The main purpose of the JOpera system is to provide the user with an integrated and
flexible environment for creating, editing, checking, compiling, deploying, executing,
monitoring and profiling the processes written in the JVCL language. The main
goals for creating the JOpera system were:

� Ease of use. First of all, we believe that a visual language – as opposed to an
XML based representation – can greatly improve the understanding of a pro-
cess built by drawing connections between different component services [187].
However, employing a visual language is not enough to claim the usability of
the system supporting it [191]. In this context, visual scalability is an impor-
tant issue, as the understandability of a large diagram may decrease as its
size increases [35]. Therefore, we will discuss how the visual notation and the
supporting environment address this important usability factor.

� Flexibility. Flexibility is a key aspect of the JOpera system for two reasons.
First of all, flexibility is very important in supporting and dealing with diff-
ent types of components. Not only an open (and flexible) component meta-
model is required, as discussed in Chapter 4, but the underlying architecture
of the system should also provide the necessary extension points to plug in
the adapters which efficiently map JOpera’s high level model to the actual
protocols used to perform a service invocation.

Furthermore, the JOpera process execution kernel provides a flexible execution
platform for the processes written in JOpera Visual Composition Language

147

7. ARCHITECTURE

OMLtoJava
Compiler

JOpera Process
Execution Kernel

JOpera Visual
Development
Environment

OML
Processes

Template
Plugin

API

Figure 7.1.: Overview of the JOpera Visual Development Environment and the
JOpera Kernel

which can be tailored to different quality of service guarantees, both in terms
of performance, reliability and scalability, as well as portability to different
environments, in which the system can be deployed. More precisely, as we will
present in the second part of this chapter, JOpera’s kernel can be deployed in
several different configurations. For example, in a light weight configuration,
it may run embedded as a library in other Java applications. At the other end
of this spectrum, JOpera may run independently, as a cluster-based process
execution engine which can scale to handle large workloads.

Figure 7.1 depicts the relationship between the JOpera Visual Development En-
vironment, the Compiler and the Process Execution Kernel. The processes defined
in the JVCL language are created and edited using the development environment.
As we have discussed in the previous chapter, once the processes are complete and
ready to be executed, they are first compiled into Java and the resulting process
template plugins are then dynamically loaded into the kernel for execution. Once
a new process instance has been started, its execution is managed by the kernel,
which may be run independently of the development environment. However, mul-
tiple users may connect a development and monitoring environment to an existing
kernel to monitor the activity and the progress of their processes.

In the first part of this chapter we describe JOpera’s visual development and
monitoring environment, while in the second part we focus on the design of the
flexible architecture of the process execution kernel.

7.2. Visual Development Environment

In this section we introduce JOpera’s visual development environment, an integrated
set of tools we have built to support the JOpera Visual Composition Language. First
we give an overview about the development cycle from the user’s point of view.
Then we concentrate on its visual scalability features and conclude by describing its
architecture.

148

7.2. VISUAL DEVELOPMENT ENVIRONMENT

7.2.1. Development cycle

The whole lifecycle of a process can be managed with the JOpera visual process
development environment. First of all, Web services and other component types
can be imported into the service library as reusable components. The user can
browse through it, select a set of services and drag and drop them into the data flow
graph of a process. At this point, the development environment can automatically
suggest data flow connections between parameters of matching names and data
types, or, for example, assist the user in building the appropriate data conversion
filters between mismatching parameters. The control flow graph of the process is
also automatically kept consistent with the data flow graph, so that the user can
look at it to get an overview over the order of invocation of the services or to
add additional constraints. When deleting a control flow dependency all of the
corresponding data flow bindings are removed. Conversely, whenever a new data
flow binding is established, the corresponding control flow dependency is added.
The user is notified with optional warning messages of the consequences of these
actions, which otherwise are carried out in a transparent manner1.

Once all services have been connected the process is compiled to Java executable
code and uploaded to a JOpera runtime environment for execution. During com-
pilation various consistency checks of the process model are carried out and the
user is notified with a list of errors (e.g., parameters of incompatible types are con-
nected) and warnings about potential problems (e.g, an input parameter has been
left disconnected).

After a successful compilation, the user may start multiple concurrent instances
of a process, which are managed by the same runtime environment.

The user may keep track of the progress of a running process (an instance)
through various monitoring tools, which provide both the ability to inquire about
the state of a process instance, interact with it and receive notifications whenever a
state change occurs. The progress of a running process can also be visually monitored
by watching the color of task boxes, indicating their execution state, and by clicking
on data parameters to inspect (and modify) their content. The user may interact
with a process and its tasks to abort, pause, continue and restart their execution at
will.

Once a process terminates its execution, the system keeps its state in a history
database, which includes both the content of all parameters as well as profiling infor-
mation with measurements about the execution time of each task. This information
can later be analyzed, e.g., for performance optimization.

Moreover, in order to optimize response time and resource utilization, JOpera
checks incoming process instantiation requests against the history database. To
service similar requests, it may reuse results already computed. The same kind of
optimization can be performed with respect to currently running processes, avoiding
to perform duplicate work. Caching results in the history database can lead to
overflow, therefore JOpera provides various garbage collection policies. The users

1See Section 3.4 on page 25 for more information on how the relationship between the data flow
and control flow graphs of a process has been defined in the language.

149

7. ARCHITECTURE

may set an expiry date on their process instances and, similarly to [139], system
administrators may delete process instances no longer needed. The system itself
may also purge from the database results that are least frequently reused if more
space to store newer results is needed.

Finally, once its development and testing has been completed, production-level
processes can be published as Web services [198].

7.2.2. Visual scalability

One of the advantages of using a visual programming language is that the data and
control flow of a process can be specified directly by drawing graphs. In practice,
however, some manual effort is required in order to obtain a readable diagram, even
for small sized graphs. Thanks to the automatic layout facilities built into the devel-
opment environment, the amount of work necessary to re-arrange the graph layout is
significantly reduced. We have adapted several hierarchical layout algorithms [152]
to take into account the syntactical relationships between the graph elements [37].
Furthermore, these algorithms are intended to be used incrementally in order to
preserve the user’s mental map of the process [163].

Although the automatic layout features already improve the user’s productivity,
better support is required to visualize realistic graphs having a large number of
elements. Therefore our development environment provides the user with other
features that increase the scalability of the visual language [35].

1. First of all, thanks to the sub-process construct, parts of the graph may be
collapsed into single nodes and the user may easily navigate back and forth
between the various levels of nesting. This allows the user to design processes
following both a top-down progressive refinement and a bottom-up aggregation
approach.

2. Second, the environment provides the ability to create and work with multiple
views over the same data flow graph. In this case, the user may easily extract
a subset of the data flow graph, for example, to analyze the data flowing
through a particular task, or to focus on the tasks receiving data from a
certain parameter. This way, the user may navigate interactively through a
complex data flow graph and is always presented with an uncluttered view over
the relevant information. The development environment also allows the user
to edit the data flow graph from any of the views by enforcing the required
consistency constraints. For example, when deleting a redundant data flow
connection which is present in more than one view, the user will be warned
about it and may decide to remove the connection from all views.

7.2.3. Architecture

The JOpera visual development environment has a layered architecture, which pro-
vides a common user interface to the rest of the JOpera system. In it, the user has

150

7.2. VISUAL DEVELOPMENT ENVIRONMENT

Design and Monitoring GUI

OML Data Model

Algorithms Compilers Client

XML
DOM

JOpera
API

Delphi
VCL/Win32

Figure 7.2.: Architecture of the JOpera Visual Development Environment

access to a set of tools (editors, model checking algorithms, compilers, and debug-
gers) which are used to manage the lifecycle of a process. At design time, the visual
process editor is used to draw the structure of a process in terms of the control
and data flow graph defined as part of the JVCL in Chapter 3. At runtime, the
monitoring tool also shows the processes using the same visual notation. Both of
these graph visualization and editing tools are based on the Model View Controller
design pattern [81]. As shown in Figure 7.2, the design and monitoring graphical
user interface is layered on top of the data model, which internalizes the informa-
tion stored in an OML document and the information extracted from the Process
Execution Kernel.

OML Data Model The data model underneath the visual environment is built
on top of a Document Object Model (DOM [259]), which provides an in-memory
representation of an OML document, a particular kind of XML document. In ad-
dition, the DOM API provides an event based notification mechanism for detecting
and propagating editing changes (attribute value modifications, insertion an removal
of elements) from the model back to the subscribed views. When changes occur,
by serializing the DOM into its string representation is also possible to build an
undo/redo stack, which buffers the modifications to the model in a generic way.

The interface towards the rest of the system of the OML data model presents a
higher level of abstraction, as opposed to the XML DOM API, where a document is
represented in terms of its element nodes and their attributes. The development of
the editors, the views and the other components can be simplified if these compo-
nents may use an object oriented data model, based on the inheritance, aggregation
and reference concepts defined in Section 5.1 on page 87. This abstraction layer
does not need to be manually programmed, as its code can be automatically gener-
ated from the description of the data model itself by using advanced model driven
architecture [127] techniques.

Design GUI The main purpose of JOpera’s GUI is to allow the user to quickly
compose services without having to struggle with the XML syntax, which is great for
processing automatically semi-structured and self-describing data [68], but not quite
optimal, as far as using it for programming is concerned. Therefore, in JOpera’s
environment the XML syntax of an OML document remains well hidden at all
times underneath the design (and monitoring) GUI components. The designer thus

151

7. ARCHITECTURE

provides the user with a visual environment to enter the information about the
processes and draw their structure according to the JOpera Visual Composition
Language. When a process model is saved, the corresponding XML serialization in
an OML document is produced automatically. Furthermore, model checking features
can be easily accessed, in order to provide immediate feedback about the consistency
of the process model. In particular, a set of background checks of the OML data
model are carried out while the user is working (e.g. ensuring that a new data
flow connection can be drawn) while more expensive ones (e.g. generating warnings
about disconnected parameters) are triggered manually by the user.

JOpera’s graphical user interface is based on the Delphi Visual Component Li-
brary running on Windows. These libraries and tools have been selected to build the
current version of JOpera’s visual environment because they provide a rapid applica-
tion development environment for quickly building user interfaces, with interesting
features, such as visual inheritance and frame-based reuse of GUI widgets and re-
lated code, without which the feasibility of the project within the given timeframe
would have been questionable. However, in order to overcome current limitations re-
garding the platforms on which JOpera’s development environment can be deployed,
a port to the Eclipse [80] environment is well under way at this time.

Algorithms In addition to the basic data management functionality, the data
model layer is augmented with a component dedicated to performing consistency
checks, transformations and general utility functions on the data stored in an OML
model. These algorithms are used as building blocks to support the compilation of
the model into other representations (Chapter 6). They are also triggered by changes
in the data model in order to ensure its consistency. Here is an non-exaustive clas-
sification of some of the most interesting features of this component:

� Consistency checks (Synchronization between control and data flow graphs)

� Referential integrity

� Data extraction and filtering

� Automatic graph layout

� Data flow analysis

Compilers This component is used to transform the OML model into other rep-
resentations. As we have shown in Chapter 6 in order to execute the processes
modeled with OML, they are first compiled to other, executable representations. In
addition to the compiler which produces OCR (Section 6.3), BPEL (Section 6.4),
and Java (Section 6.5), this component groups also other types of compilers, which
do the following:

1. The component responsible for the transformation of OML into its graphical
JVCL representation can also considered a compiler. With it, the input of the

152

7.2. VISUAL DEVELOPMENT ENVIRONMENT

transformation is stored within the OML data model and the output is dis-
played on screen using a graphical notation, which can be edited interactively
by the user.

2. A tool is also available, which takes the OML data model and starting from
its machine-oriented XML syntax, transforms it into different (HTML, LATEX)
representations intended to be used for automatically producing on-line and
off-line user documentation of the content of OML documents.

Monitoring GUI In addition to design-time functionality, the JOpera graphical
user interface offers the developer with a set of run-time tools, used for monitoring
and debugging the processes. These include an interface for navigating the informa-
tion contained in JOpera’s history database. This way, the user may browse through
several representations (e.g. graph-based, table-based, tree-based and key-value list
based) of the active processes and tasks and inspect the content of their parame-
ters. With these tools, users may also interact with a running process by aborting,
suspending and resuming their execution by sending the corresponding signaling
commands to the Process Control API. While a process is suspended, as in most
debugging environments, it is also possible to modify the values of the parameters
of a process and its tasks.

All of these features are implemented with a similar pattern. Each action per-
formed by the user triggers the invocation of the API, either to initiate a certain
operation (e.g. when starting or stopping a process) or to query the system for some
information, which is then internalized in the data model before the views can be
updated. By subscribing to the event notification API, monitoring clients can auto-
matically refresh the displayed information about the state of a process. This way,
it is not necessary for the user to actively (and in some cases repeatedly) click on
the “Refresh” button in order to get the latest view on the progress of the execution
of a process.

Finally, it should be noted that the monitoring information returned by the
invocation of the kernel’s API is cached by the client, within the data model. This
opens up the interesting opportunity of supporting an off-line mode of operation,
where the monitoring tools are used to interactively browse and perform automated
analysis over historical information, which does not have to be accessed through the
system’s API, but is stored locally in the client’s cache.

Client In order to provide monitoring and debugging functionality, JOpera’s GUI
uses this component for interacting with the rest of the system, i.e. with the API
of the process execution kernel. In the course of the project, clients for this API
have been developed in several programming languages (C++, Java, and Delphi)
in order to guarantee the accessibility of the API and make it feasible to integrate
external tools with the system.

153

7. ARCHITECTURE

Kernel

Navigator Dispatcher

Process
Template

Plugin

Process
Template

Plugin

U
N

IX

S
O

A
P

J
A

V
A

....

State
Information

Storage

Event Queues

Task
Execution
Scheduler

Figure 7.3.: Architecture of a Monolithic Process Execution Kernel

7.3. Process Execution Kernel

After presenting the features and the architecture of the user interface of JOpera, in
this section we show the core infrastructure necessary to run the processes written
in JVCL. As in all client/server architectures, the JOpera’s kernel is intended to be
connected to the rest of the system (i.e., the user interface) through a well-defined
API2. This way, one kernel may support the execution of processes submitted by
multiple clients of different kinds (e.g., GUIs, Web Browsers). Likewise, as long as
the API doesn’t change, the actual configuration of the kernel behind it may be
freely changed without affecting the presentation layer.

In the following, we first give a detailed presentation of each of the main kernel
components, introducing what are the basic options concerning their design and
implementation. Then, we define how they interact and we show that, thanks to
this approach, the architecture of JOpera’s kernel is flexible enough to be deployed
in a variety of settings.

7.3.1. Architecture

As depicted in Figure 7.3, the process execution kernel of the JOpera system includes
mechanisms to 1) run the navigation algorithm, 2) schedule and 3) dispatch tasks for
execution in the correct environment, 4) access and modify state information about
tasks and processes, and 5) exchange event notifications triggering the execution
of the navigation algorithm itself. After the description put forth in the previous
chapter (Section 6.5.4), it should be clear that the navigation algorithm used by the
compiler is independent of the actual implementation of these basic facilities.

Navigator

The navigator is the component of the kernel responsible for managing the exe-
cution of process instances. To do so, it handles incoming process events, which

2See Section 7.5 on page 172 for an overview of JOpera’s API

154

7.3. PROCESS EXECUTION KERNEL

are generally triggered by changes in the state of tasks or represent user requests.
When such events occur, for example when the dispatcher has finished executing a
task belonging to a certain process instance, the navigator runs the algorithm for
deciding what task should be executed next. The navigator also acts as a container
for the process plugins generated by the compiler, which embody a process specific
version of the navigation algorithm. Upon receipt of events concerning a particular
process, if necessary, the navigator dynamically loads the appropriate plugin.

Task Execution Scheduler

This component couples the navigator, generating task execution requests, with the
dispatcher, which manages the actual task execution. In a distributed kernel (Fig-
ure 7.6), the scheduler receives task execution requests from a number of navigators
and forwards them to one out of a set of dispatchers. This is a key component
concerning the scalability of the system, as its throughput limits the rate at which
tasks can be executed.

Dispatcher

If the navigator is in charge of deciding what tasks should be started next, the dis-
patcher is the component which actually starts executing the tasks by dispatching
them to the appropriate execution subsystem. In order to increase the navigator’s
throughput3, the actual task startup operation has been decoupled from the nav-
igation step which triggers it. This way, the navigator may asynchronously issue
multiple task startup requests to the task execution scheduler, which queues and
forwards them to one or more dispatcher components. Once the dispatcher receives
a job it checks what the job’s characteristics are and sends it to a matching task
execution subsystem4, which provide an adapter to support the invocation of the
services of one of the component types presented in Chapter 4. Once the job’s ex-
ecution has completed, the dispatcher sends an event encapsulating its results back
to the navigator.

State Information Storage

This is the component responsible for storing the state information about the pro-
cess instances. Its design has been influenced by many requirements, such as per-
formance, reliability, and portability across different data repositories. The com-
ponent’s interface supports only a simple, key-value based data model, where the
key has been structured as the following tuple (Process, Task, Instance, Box,

Parameter) and is used to uniquely identify a certain data Value across the system.
The definition of the key reflects the structure of the information to be stored: a
process is composed of a set of tasks, of which there can be many instances. Each

3See the following Section 7.3.2 on page 157 for a discussion of the reasons behind this important
design decision.

4For more information on the internal design of the Dispatcher component, refer to Section 7.4
on page 163.

155

7. ARCHITECTURE

State Information
Storage

Local
Main

Memory

State Information
Storage

Remote
Tuple
Space

State Information
Storage

Main Memory
Write-through

Cache

Remote
Tuple
Space

(a) Volatile Storage (b) Remote Persistent Storage (c) Cached Remote Pers. Storage

Figure 7.4.: State Information Storage Implementations for the monolithic kernel

process/task instance has multiple parameters which are grouped into three boxes
(or logical namespaces): system, input, output.

The main advantages of this approach are summarized in the following argu-
ments.

� First of all, since the information in the key is neutral with respect to the phys-
ical location of the data, it becomes possible to transparently move the data
to exploit locality and even replicate it among different physical locations to
improve its availability. Furthermore, the hierarchical nature of the key, sug-
gests a natural data partitioning strategy. For example, instances of different
process templates can be assigned to different physical data repositories.

� Another advantage is that changes and extensions to the data model of the
processes’ state information do not affect the storage component, since this low
level data representation is mostly independent from the data and metadata
that needs to be stored [1].

� Finally, as shown in Figure 7.4 the data layer can be implemented with a
wide variety of mechanisms. These range from centralized memory based data
structures (such as a hash map), to traditional forms of persistent storage (such
as network file systems, or relational databases), distributed storage systems
(such as Linda-like tuple spaces [40] like TSpaces [138] or JavaSpaces [76]), or
even newer peer to peer storage systems (such as OceanStore [131], Chord [217]
and the Cooperative File System (CFS) [59]).

Event Queues

The various kernel components communicate by exchanging event notifications man-
aged by the event queues. Sources for the events consumed by the navigator com-
ponents are the user interface, other navigators and the dispatchers. Events are
sent by the user interface in order to start, stop, and, in general, interact with a
process instance. The dispatcher notifies the navigator with an event every time a
task has finished its execution. Navigators also exchange events, for example, when
a sub-process has completed its execution and navigation over the calling process,
managed in general by a different navigator, needs to be triggered. The priority of
these three classes of events can be adjusted.

156

7.3. PROCESS EXECUTION KERNEL

In a distributed kernel, event communication is also important concerning the
system’s scalability. We compared different implementations of the event queues,
each having different scalability properties.

1. First, as a reference, we used a single tuple space server to which all ker-
nel components connect and exchange events by writing and taking tuples.
As expected, this centralized event queue quickly becomes a bottleneck if all
events sent by multiple dispatchers to a set of replicated navigators need to go
through it.

2. Therefore, in a second design, we chose to use a multi-layered approach, by
distributing the event queue across all navigator components, with the fol-
lowing heuristic in mind: the navigator responsible for handling the incoming
events should be kept as close as possible to the events themselves. This way,
the dispatchers may directly send the “task-finished” events to the appropriate
navigator. Events which are not sent to a specific navigator still go through
the central queue, which, in this configuration, needs to handle relatively less
traffic. For example, user generated process startup requests are queued cen-
trally and the corresponding “start-process” events may be retrieved by idle
navigators.

To further reduce the communication overhead, as a general rule, events gener-
ated by a navigator which can be processed by the same navigator are kept locally
and do not need to be sent over the network.

7.3.2. Threading issues

In order to clarify the relationship between the process template plugins generated
by the compiler and the overall flow of control within the JOpera kernel, in this
section we present more in detail the interaction between the kernel components
and its various threads of control.

In the simplest approach, it would seem intuitive to assign one thread of control
to the execution of each single process instance. This way, the lifecycle of a process
instance corresponds to the lifecycle of a thread in the JOpera kernel: beginning
with the instantiation of a process, the thread executes the navigation algorithm
until the process instance has completed its execution.

For efficiency and scalability reasons, in JOpera, as opposed to having one thread
responsible for managing the execution of one process instance, we have completely
decoupled the layout of the physical threads inside the kernel from the execution of
the process instances for the following reasons:

� The simple one-thread one-process approach suffers from scalability limita-
tions, as the number of threads (a limited resource) grows linearly with the
number of active process instances.

157

7. ARCHITECTURE

Kernel

Service
Provider

Navigator Dispatcher

Process
Template

Task
Execution
Subsystem

Plugin

State
Information

Storage

Event Queues

Task
Execution
Scheduler

1

2

3

4
5

6

Figure 7.5.: Main Process Execution Loop
This figure shows how the kernel components interact during the execution of one

step of the navigation algorithm.

� Furthermore, during the execution of a process involving tasks of a long du-
ration, nothing happens most of the time. Therefore, the threads responsible
for the navigation of a process would be idle, mostly waiting on notifications
that service invocations have completed.

� It is not clear, how, in the simple approach, a single thread would be able to
handle the concurrent execution of multiple tasks at the same time.

From these considerations, it becomes evident that, just as physical processors
can be shared through the operating system among multiple logical threads, also
in JOpera, a very large number of concurrent process instances can be executed by
a relatively small number of threads, which5 can even be dynamically increased or
decreased depending on the current workload of the system.

Process Execution Loop

In order to describe how the workload related to the execution of processes can
be partitioned and shared among these threads, we consider JOpera’s main process
execution loop, which defines how the main system components interact (Figure 7.5).

1. An event concerning a certain process instance is retrieved by the navigator,
which forwards it to the appropriate process template plugin. Although such
an event may also trigger the instantiation of a new process instance, in most
cases the navigation algorithm will be executed, as we will assume in the rest
of this description.

2. During navigation, state information about the process instance is read and
written from the storage component.

5as opposed to hardware processors.

158

7.3. PROCESS EXECUTION KERNEL

3. Furthermore, if the navigation algorithm determines that some services are
ready to be invoked, the corresponding task execution requests are issued
through the task execution scheduler component.

4. The dispatcher is then contacted to handle the actual service invocation by
selecting the appropriate execution subsystem plugin.

5. The subsystem adapts JOpera’s invocation request to the actual protocol un-
derstood by the service and manages the interaction with the service, according
to different interaction patterns6

6. Once the service invocation terminates, an event with the results of the invo-
cation is sent to the navigator so that the loop is closed.

As hinted by the previous description and by Figure 7.5, in the design of JOpera’s
architecture the main process execution loop has been partitioned in two types of
actions carried out by different threads. On the left side, the navigator thread is
responsible for forwarding events to the appropriate process template plugin and,
through the execution of their navigation code, issuing tasks execution requests,
which are queued. On the right side, the dispatcher thread is responsible for carrying
out task execution requests, by forwarding them to the appropriate task execution
subsystem7, and notifying the navigator of completed service invocations.

Consequently, the queues maintained by the task execution scheduler and the
event notification mechanism bind the two main JOpera threads: the navigator,
consumer of events and producer of task execution requests; and the dispatcher,
consumer of task execution requests and producer of events.

As opposed to the simple threading model, this design provides the following
benefits:

� In the smallest configuration, only two threads are necessary to execute any
concurrent number of process instances, which may issue any number of con-
current task execution requests.

� In order to increase the task execution capacity of the system, it is possible
to replicate the dispatcher thread across multiple processors or even physical
hosts by providing the appropriate distributed implementation of the task
execution scheduler and the event notification queues.

� Similarly, as long as the appropriate synchronization mechanisms are in place
in order to prevent more than one navigator thread to perform navigation
over the same process instance, it becomes possible to increase the process
execution capacity of the system by employing additional navigator threads.

6As explained in Section 7.4.2 on page 167, a service may be invoked immediately, synchronously,
or asynchronously. Furthermore, for some component types, before the invocation takes place
a suitable provider may have to be chosen.

7Each execution subsystem may use its own threading model to handle the synchronous or asyn-
chronous interaction with the actual service provider

159

7. ARCHITECTURE

Navigator

Navigator

Dispatcher

Dispatcher

Dispatcher

Process
Template

Plugin

Process
Template

Plugin

Process
Template

Plugin

Process
Template

Plugin

U
N

IX
U

N
IX

U
N

IX

S
O

A
P

S
O

A
P

S
O

A
P

J
A

V
A

J
A

V
A

J
A

V
A

....
....

....
State

Information
Storage

Event Queues
Task

Execution
Scheduler

Kernel

Figure 7.6.: Architecture of a Distributed Kernel

� By monitoring the length of the queues which buffer the interaction between
navigator and dispatcher threads it is possible to dynamically determine the
optimal number of threads on each side automatically, e.g., with the goal of
keeping the average queue length constant.

� By extending the event notification, the task execution scheduler, and the
state information storage components with transactional properties, it is pos-
sible to achieve fault tolerance. This way, all interactions of the navigator
thread with the state information storage component during the processing
of an event happen atomically. If the navigator fails, the state of both the
event notification and storage components is rolled back, as the transaction
is aborted. Thus, the system can recover immediately, because a different
navigator thread may resume the work of the failed one.

7.3.3. Deployment Scenarios

In this section we present some of the configurations, listed in Table 7.1, in which
our flexible kernel architecture can be deployed and discuss the main advantages
and disadvantages regarding their performance.

Not only flexibility is an important aspect for performance reasons, but it allows
the system to be adapted to different requirements, so that it can be deployed into
several environments and configurations to match a specific workload target. For ex-
ample, our architecture can be deployed as a light-weight process simulation engine,
attached to a process development tool. Similarly, it can be embedded into stan-
dalone Java applications that require process enactment capabilities to coordinate

160

7.3. PROCESS EXECUTION KERNEL

the invocation of different components and services. This way, the coordination logic
specified as a process can be directly executed within the context of the application.
Alternatively, the JOpera kernel can be used as a reliable service orchestration plat-
form running inside an application server (or an enterprise service bus), which can
also scale to handle very large workloads, using a cluster based configuration.

Furthermore, flexibility is one of the basic requirement of an infrastructure ca-
pable of exhibiting autonomic behaviour [109]. To this end, it is important that
the system can be reconfigured dynamically following the decisions of an autonomic
system controller, which monitors the current workload conditions and determines
the optimal system configuration [21].

The simplest configuration (a) is a so-called monolithic kernel, where one navi-
gator and one dispatcher run on the same machine. The state information storage,
the event queues and the task execution services are implemented using the appro-
priate main memory data structures. Since all data is kept in main memory, this
configuration trades recoverability from failures with very fast access to the state in-
formation. Given its centralized nature, such an architecture doesn’t scale well with
large workloads, both because there are only a single navigator and one dispatcher
components, and because, when managing a very large number of process instances,
the system may run out of memory space8. In addition to the ease of deployment,
its main benefit lies in its very low overhead with small workloads.

The next configuration (b) is called monolithic persistent kernel. Again, one
navigator and one dispatcher run on the same machine, but the storage of the state
information is implemented using a remote, persistent, data repository. This makes
the kernel recoverable, at the cost of a larger overhead9.

The limitations of these centralized configurations concern all five main system
components: the Navigator, the Dispatcher, the Task Execution Scheduler, the State
Information Storage and the Event Queues. If one is replicated in order to improve
its throughput, very soon another component becomes a bottleneck. For example,
if a set of navigators send task execution requests to the dispatchers through a
centralized scheduler, the throughput of the scheduler limits the rate at which tasks
can be executed. Similarly, if the performance of the state information storage
improves, the navigator will be able to produce and consume events at a higher
rate, putting a higher burden on the event queues. Thus, while scaling up the
system and configuring it with replicated components (Figure 7.6), care must be
taken to keep the system well balanced.

The first replicated configuration we present concerns the dispatcher component.
In this case, a single navigator (with (d) or without (c) persistent storage) manages
the processes, whose tasks are executed by an increasingly large number of dispatch-
ers. As the task execution capacity of the system increases, it is to be expected that
the system may be capable of handling a larger workload. As the measurements
show, this is only true when the task duration is long enough, that is longer than 10

8See Figure 8.6 on page 189 for some measurements of the memory consumption of a monolithic
kernel.

9as the results shown in Figure 8.3 on page 186 indicate.

161

7. ARCHITECTURE

State Task
Event Information Execution
Queues Storage Scheduler Dispatcher Navigator

(a) Local Volatile Local Single Single
(b) Local Persistent Local Single Single
(c) Centralized Volatile Remote Multiple Single
(d) Centralized Persistent Remote Multiple Single
(e) Distributed Volatile Remote Multiple Multiple
(f) Distributed Persistent Remote Multiple Multiple

Table 7.1.: Deployment Scenarios

seconds. For tasks lasting a shorter time, the actual bottleneck lies in the navigator
component.

This problem is addressed by the configurations (e) and (f), where also the
navigator component is replicated, keeping the number of dispatchers and the cor-
responding task execution capacity constant. As our measurements indicate, the
system’s scalability is now bound by the persistent storage service. In fact, using a
centralized data repository with an increasingly large number of clients (the naviga-
tors) only scales up to a certain limit. Therefore, we also tested a configuration (e)
having the storage of the state information localized at the navigator. Because of
the improved performance of the storage service, the limiting factor shifted to the
event communication service, which also had to be partitioned in order to keep the
system functioning.

7.3.4. Parallel Navigation

As we have shown in the previous section, the JOpera Kernel is flexible enough so
that it can be deployed in different configurations. One key aspect that enables
such flexibility is the execution of the navigation algorithm in parallel on multiple
process instances. To do so, we chose to parallelize the navigation algorithm based
on the observation that each process instance is a fully independent entity. In
particular, changes to the state of one instance do not affect other process instances.
Therefore, it is possible to partition the system’s workload at the granularity level
of the process instance and perform navigation on different, independent process
instances in parallel. As a consequence, the navigation algorithm presented here
doesn’t need to be changed, since it can be implemented in a thread-safe manner.
However, the underlying infrastructure needs to support the concurrent execution
of the algorithm, triggered by events concerning independent process instances.

Once the system is capable of performing parallel navigation, issues such as load
balancing and fault tolerance should be dealt with. In our current prototype we
support two different load balancing strategies: either process instances can be stat-
ically partitioned among different parallel navigators (load sharing), or events and
state information can be dynamically moved between different navigators in order

162

7.4. SUPPORTING HETEROGENEOUS SERVICES

Dispatcher

U
N

IX

J
A

V
A

W
F

X
P

A
T

H

P
E

C

S
O

A
P

X
S

L

J
M

S

H
T

T
P

S
Q

L

E
C

H
O

B
P

E
L

O
P

E
R

A

....
Figure 7.7.: The dispatcher as a container of task execution subsystem plugins

to keep the system balanced. Moreover, since each navigational step is executed
atomically within a transaction, and if the state information can be stored remotely
and persistently, recovery from failures occurring in the navigator becomes com-
pletely transparent. In fact, when a dynamic load balancing strategy is used, upon
detection of the failure, the process instances belonging to a failed navigator can be
immediately assigned to another one.

Another interesting set of scheduling problems stem from the possibility of having
an heterogeneous set of available plugins loaded in both the navigator and dispatcher
components. As a consequence, the routing of the events to the appropriate navi-
gator on one side, and the scheduling of the task execution requests on the other,
become more complex, because not all of the dispatchers (and navigators) have ac-
cess to the same set of plugins. On the one hand, by using Java code mobility
techniques, it is always possible to upload a missing process plugin into a navigator
which has received an event for an unknown process. However, it is necessary to
devise a mechanism to locate the required process plugin and include a policy to
determine in advance, considering the overall workload distribution, the benefit of
such migration of the process plugin. On the other hand, the service invocation
adapters loaded into the dispatchers are determined by the system configuration, as
we will discuss in the next section. Therefore the task execution scheduler should
not assume an homogeneous environment.

7.4. Supporting Heterogeneous Services

After presenting the set of components into which JOpera’s process execution kernel
has been structured, in this section we focus on one of them: the dispatcher, with
the aim of describing how JOpera’s flexible component meta-model (Chapter 4)
has been implemented. In order to support an open-ended set of component types
– including the ones listed in Table 4.1 on page 51 – flexibility is an important
property associated with the design of both the Opera Modeling Language as well
as the JOpera system itself.

Flexibility in the design of the system is achieved through a plugin-based archi-
tecture, where an abstract interface used by the rest of the system to perform task
execution is mapped to the actual service invocation mechanism, which is related to
the type of component. This mapping is implemented by an adapter module: the
task execution subsystem, which can be dynamically plugged into the dispatcher.
Thus, the dispatcher acts as a container of task execution subsystem plugins (Fig-

163

7. ARCHITECTURE

Job

TID getTID()
setState(State)
setProvider(String)
Map getInputParams()
Map getOutputParams()
Map getSystemInParams()
Map getSystemOutParams()

Task
Execution

SubSystem
Plugin

Execute(Job)

Notify(Job)

Signal(TID, Signal)

Figure 7.8.: Interface definition of the task execution subsystem
The UML component diagram on the left defines the provided and required

services of a task execution subsystem. The class diagram on the right defines the
attributes of the Job interface, which is passed as a parameter to the task

execution subsystem plugin.

ure 7.7), factoring out common functionality such as thread pooling, handling of
failed service invocations, and dispatching the task execution requests submitted by
the navigator to a suitable plugin.

Here is an example to motivate such plugin based approach. The task execu-
tion request to run a UNIX command line should be mapped to the corresponding
fork/exec system calls, while the task execution request to invoke a remote Web
service is mapped to the corresponding SOAP message round. Although these two
service invocation mechanisms are completely different – the first involves the in-
teraction with the local operating system, while the second requires (in most cases)
the exchange of XML documents over an HTTP connection – they can be unified
under a common interface, to which any task execution plugin must conform.

As shown in the UML diagram of Figure 7.8, this SubSystem interface has been
kept by design very simple, shifting the complexity of different types of interaction
patterns and service invocation mechanisms into the Job parameter. A task execu-
tion plugin must implement at least the Execute method, while the Signal method
is optional, as not all service invocation protocols support the signaling of an active
service invocation.

Similar to the issues discussed when defining JOpera’s component meta-model,
behind the design of such an interface there are the following considerations:

� Control flow. Through the same interface different patterns of interactions
should be supported, as far as the control flow is concerned. This implies that
a mechanism is required for using the synchronous Java method call of the
Execute method – which initiates the service invocation through the plugin
– to support asynchronous interactions, where the invocation of the service
does not complete when the call of the Execute method returns. In case of
asynchronous invocations, the plugin is responsible of sending a notification
event through the Notify method, which exposes to the plugin the event queue
component of the kernel.

In order to support additional interactions with a service invocation, such as

164

7.4. SUPPORTING HETEROGENEOUS SERVICES

the possibility of interrupting it, the plugin has the Signal method, which
takes both the task identifier (TID) and the required Signal as parameters.
As opposed to having a method for each possible interaction, to ensure the
flexibility of the resulting system, the Signal parameter is used to specify
the required interaction. Its value is interpreted by the plugin, and the set of
possible values (currently: Abort, Suspend, Resume) is not restricted apriori.
This way, as long as existing plugins validate their input, it becomes possible
to extend JOpera with additional interaction capabilities, without breaking
the task execution subsystem interface.

� Data flow. All plugins must conform to JOpera’s meta-model based on system
parameters. In other words, the notion of system input and output parame-
ters is shared among all plugin implementations. However, the actual set of
system parameters understood and expected by a certain plugin depends on
the corresponding service invocation mechanism, as defined in Chapter 4.

Furthermore, regarding output parameters, the mapping between system and
user defined parameters is also performed by the task execution plugin. How-
ever, within JOpera there is a set of predefined mappings, which are thus
available to be reused among all plugin implementations.

� Failures. It is the responsibility of the plugin to determine whether the service
invocation has succeeded or not, and to map the failure modes of the specific
protocol back to JOpera’s system parameters. As far as the plugin interface
is concerned, Failures are not signaled through Java exceptions. Instead, error
conditions are set as part of the Job parameter because – as previously men-
tioned – the outcome of a service invocation may not always be known when
the Execute method returns.

As a final remark, in order to facilitate the integration of adapters for many
different types of components, the simplicity of the interface’s contract is a very
important practical aspect. If it would turn out to be too difficult to fulfill the
contract behind the task execution interface, the number of available task execution
plugins would not be very large and the viability of the component meta-model
would suffer.

7.4.1. Describing a task execution request

As shown in Figure 7.8, the information describing a task execution request has been
structured into the Job class. Although some of the attributes (e.g., the TID used to
identify the job) are shared among all types of service invocations, a task execution
request also contains information which is strictly related to the mechanism used to
invoke the service.

The choice of how such information is described as it flows through the various
layers of the system (i.e., from the process model at design-time to the service
invocation at run-time) constitutes an important design decision, which affects both
the efficiency and the flexibility of the system (Table 7.2).

165

7. ARCHITECTURE

User (JVCL)

Process Model (OML)

Service Provider

Task Execution Subsystem

System Layer

Flexibility

Performance

Coupling

high

low

loose

(1) (2) (3)

high

medium

medium

low

high

tight

Table 7.2.: Design options to describe a task execution request.
The lines represent the degree of coupling between the various layers of the system.

1. On one side of the spectrum, at runtime, all information concerning a task
execution request is encoded as a string [21]. This solution emphasizes flexi-
bility at the expense of performance. On the one hand, the interface of all task
execution plugins is simplified, as it only receives a command string. On the
other hand, as the task execution request is prepared, all related information
(e.g., values of parameters) must be encoded in such string, which must be
later decoded to be interpreted by the task execution subsystem plugin.

2. As a compromise, in order to store separately different sets of parameters, it
is possible to use an associative data structure (called Map in Java) to store
a set of key-value pairs. As shown in Figure 7.8, this is the current approach
in JOpera, as it allows to keep a generic (and, most important, open) plugin
interface (based on the Job class) and avoids the runtime costs due to the
encoding and the decoding of command strings of the previous solution.

3. At the other end of the possible solutions, a viable design in case of a system
with a fixed (and closed) set of component types would be as follows. For each
component type, the information describing a task execution request would
be stored into a different Java class (implementing the Job interface), whose
fields would correspond to the system parameters listed in the component
type description. At runtime, the task execution request would be stored in
an object of one of such classes by the navigator’s process plugin. The object
would be thus transferred from the navigator to the task execution subsystem
without any additional overhead. This way, as depicted in Table 7.2, the
interface of the task execution subsystem would not constitute a bottleneck in
the flow of information between different parts of the kernel.

These different solutions also have an impact on the possibility of checking that
the jobs are correctly passed to the appropriate task execution plugin. Although
with the first two solutions it becomes easy to fit a new plugin within the JOpera
system, the possibility of statically checking that the plugin receives only matching

166

7.4. SUPPORTING HETEROGENEOUS SERVICES

execution requests is greatly reduced, as neither the compiler nor JOpera can verify
the format of the command string or the content of the parameter maps. In reverse,
the last option would also allow to use type checking to ensure that jobs are routed
to the appropriate plugin. However, in this case the programming effort required
when developing a new plugin would significantly increase as opposed to the previous
solutions. In all cases, regardless of the way the description of the service invocation
is encoded, it still remains the responsibility of the task execution plugins to ensure
the correctness of the values of the system parameters they receive, in order to catch
some possible error conditions before the service invocations are attempted.

7.4.2. Dispatching a task execution request

Once a task execution request has been submitted by the navigator thread, as it
has been discussed in Section 7.3.2 on page 157, the dispatcher thread is responsible
for performing the corresponding service invocation. As this happens, depending
on the actual type of service to be invoked, a task execution request (or a job) goes
through several stages in order to support late binding, as well as for providing a
certain degree of fault tolerance.

Before the actual service invocation can be carried out, given the requirements
associated with the job, a suitable task execution subsystem must be found. This
way, only at the latest possible moment the system chooses which access method
should be used to contact the service provider. If a matching subsystem plugin
cannot be located, the task execution fails.

Furthermore, if during the invocation an error occurs, which prevents the com-
pletion of the invocation, the dispatcher attempts to locate an alternative access
method to automatically retry the invocation up to a certain number of times. As
opposed to failures detected after the invocation of a service has completed, i.e.,
the results returned by the service invocation are incorrect, this error condition
corresponds to the impossibility of initiating a service invocation, due to, e.g., the
unavailability of a service provider. To keep this retry-based fault tolerance mech-
anism independent of the task execution subsystem, the Execute method raises an
exception to signal that such an error has occurred and that the service invocation
should be retried.

Especially when dealing with unresponsive service providers, where the invoca-
tion of a service fails because an answer from the corresponding provider doesn’t
come after a certain timeout has expired, it is important to guarantee that a slow
service invocation does not affect, nor delays other independent ones running concur-
rently. Therefore, to dispatch task execution requests, JOpera uses a pool of threads
of a configurable size. The previous description still holds, as this is corresponds of
having a pool of one thread. However, in more realistic setting, to provide enough
task execution capacity, the logical dispatcher thread corresponds to a physical pool
of threads, whose size determines the maximum number of tasks that the system
can execute in parallel. As we have previously mentioned, depending on JOpera’s
deployment configuration, these threads can be distributed across several machines.

Another approach to reduce the number of threads that are used for executing

167

7. ARCHITECTURE

Dispatcher
Program
Library

Navigator
Subsystem

Plugin

Job.setState(...)

Prepare(Job)

Service
Provider

Function Call Notification

Legend:

Figure 7.9.: Immediate service invocation

service invocations can be taken within the implementation of a task execution
subsystem. If applicable to the specifics of the service invocation protocol involved, a
thread may be used only to initiate the service invocation and, as opposed to blocking
its execution in order to wait for the response of the service provider, the rest of
the invocation may be carried out asynchronously. Therefore, the dispatcher thread
can be returned to the pool, so that it can be used to execute other jobs. However,
in order for this optimization to work, the interaction between the subsystem and
the service provider must be asynchronous, i.e., the response of the service provider
has to come through a separate channel and the subsystem itself should implement
the listener required to correlate the response messages to the pending jobs, and to
send the notification event back to the navigator. Considering the component types
listed in Chapter 4, there are many candidates for which this optimization may be
applied. Not only messaging components and job submissions to cluster computing
environments, but workflow tasks, and sub-process calls are also implemented this
way.

7.4.3. Service invocation patterns

Proceeding from the previous observations, in the design of the JOpera kernel we
distinguish between different patterns of interaction between the various kernel com-
ponents and the service provider, in order to perform a service invocation in the most
appropriate way.

Depending on its component type, a service can be invoked immediately (Fig-
ure 7.9), synchronously (Figure 7.10), or asynchronously (Figure 7.11). Further-
more, in case it is possible to choose between multiple providers, such synchronous
(Figure 7.12) and asynchronous (Figure 7.13) invocations can be scheduled, i.e.,
the provider to be contacted is chosen among the set of available ones before the
invocation takes place.

Immediate service invocation

This service invocation patterns offers the most efficient way of interacting with
a service, as the invocation is implemented as a method call executed within the

168

7.4. SUPPORTING HETEROGENEOUS SERVICES

Dispatcher
Program
Library

Navigator
Subsystem

Plugin

Job.setState(...)

Execute(Job)

Invoke

Prepare(Job)

Submit(Job)

Notify(Job)

Service
Provider

Figure 7.10.: Synchronous service invocation

context of the navigator thread. As shown in Figure 7.9, once it has determined
that a certain task should be executed, the Navigator contacts the Program Library
to prepare the corresponding job (or task execution request). In case of programs
corresponding to the “Java Script” (Section 4.5.1) component type, the code entered
by the developer has been embedded by the compiler in the job preparation code.
This way, it can be immediately executed.

Furthermore, the compiler inserts a call to the Job.setState(...) method after
the embedded Java code. By checking the state of the Job after preparing it, the
navigator can detect that a job has not only been prepared but it has already finished
(or failed), thus it is not necessary to submit it to the task execution scheduler, and
navigation over the rest of the process can continue without delay.

One limitation of this interaction pattern is that the execution of the service
is carried out within the same thread responsible for executing process navigation.
Therefore, the benefit of reducing the overhead for one service invocation must be
discounted with a reduction in the throughput of the navigator thread. The duration
of the computations performed by services invoked following this pattern must be
kept small, in order to reduce their impact on the overall performance of the system.

Synchronous service invocation

After a job has been prepared by the navigator thread, in case it still needs to be
executed – as in most cases – the job is submitted through the task execution sched-
uler to the dispatcher thread (Figure 7.10). As previously described, the dispatcher
locates the most appropriate task execution subsystem and forwards to it the job
by calling its Execute method, which maps the task execution request to the actual
mechanisms and protocols corresponding to the component type.

In case of component types which support the synchronous interaction with
the service provider – e.g., a Web service contacted through the RPC style (Sec-

169

7. ARCHITECTURE

Dispatcher
Program
Library

Navigator Subsystem
Plugin

Job.setState(...)

Send

Receive

Prepare(Job)

Submit(Job)

Notify(Job)

Execute(Job)

Service
Provider

Figure 7.11.: Asynchronous service invocation

tion 4.3.1), the invocation of shell command (Section 4.4), or the execution of an
XML transformation (Section 4.7.1) – the invocation of the service happens through
a method call. The completion of such call indicates that the service invocation has
finished (or failed). Thus, the subsystem can update the state of the job with the
results of the call before its Execute method terminates. The dispatcher detects
that the job has already been completed and notifies the navigator thread of such
event.

Asynchronous service invocation

Considering component types that involve the asynchronous interaction with a ser-
vice provider, e.g., through message exchange or non blocking calls, the implemen-
tation of the Execute method of the subsystem plugin changes, as shown in Fig-
ure 7.11. In it, the service invocation is only initiated and the state of the job is left
untouched. This way, the dispatcher can catch this condition and avoid sending any
notification back to the navigator, as the task execution has not yet completed.

Once this happen, the service provider contacts the subsystem plugin through
the appropriate mechanism dependent on the component type to send it the results
of the service invocation. The plugin can then extract them from the message and
perform the inverse mapping from system parameters to user defined parameters.
Finally, an event with such results, formatted in a way that can be understood by
the rest of the JOpera system, is sent to the navigator, to indicate that the task
execution has completed.

Scheduled service invocation

The difference between synchronous and asynchronous service invocation is shown
in the UML sequence diagram of Figures 7.10 and 7.11. For both of these patterns

170

7.4. SUPPORTING HETEROGENEOUS SERVICES 171

Dispatcher
Program
Library

Navigator Subsystem
Plugin

Job.setState(...)

Job.setProvider(...)

Submit(Job)

Invoke

Prepare(Job)

Notify(Job)

Submit(Job)

Notify(Job)

Execute(Job)

Scheduler
Service
Provider

Figure 7.12.: Scheduled synchronous service invocation

Dispatcher
Program
Library

Navigator Subsystem
Plugin

Job.setState(...)

Job.setProvider(...)

Submit(Job)

Send

Receive

Prepare(Job)

Execute(Job)

Submit(Job)

Notify(Job)

Execute(Job)

Scheduler
Service
Provider

Figure 7.13.: Scheduled asynchronous service invocation

7. ARCHITECTURE

it is possible to introduce an additional, intermediate scheduling step, where the
service provider to be invoked is chosen among a set of alternative ones.

To do so, an additional component is introduced, which provides scheduling
services to the task execution subsystem plugins. In some cases, e.g., where the sub-
mission of a job to be executed on a cluster of computers is involved, the scheduling
component is external. In others, when choosing the optimal database server to
which a certain SQL statement should be submitted, the scheduler is internal to
the plugin. Likewise, the choice of the most appropriate human operator to which
a certain workflow task should be assigned is performed within the worklist handler
subsystem.

In all cases, before a service can be invoked, a suitable provider for it must
be located. Therefore, the Execute method of the plugins supporting this feature
is divided in two parts. The first part involves the submission of a scheduling
request, while the second one involves the actual synchronous (or asynchronous)
service invocation, which remains very similar to the previous description.

The scheduling policies [213] that are applicable to the choice of the provider
also depend on the component type involved. For example, the information policy
specifies what load information is available to the scheduler and when and how that
information is sent to the scheduler (e.g., on demand, periodically, or upon significant
change). In case of a cluster of computers managed by BioOpera, each node of the
cluster can be considered a different provider of computational services [23]. The
load of such a node can be easily defined in terms of CPU utilization and available
memory. For other types of components (e.g., a remote Web server) it may be
more difficult or even impossible to perform measurements of the load of a certain
provider. Thus, the feedback from the provider that could be used to make more
informed scheduling decisions is missing. However, for a given service provider, it is
always possible to track its availability state and the number of outstanding service
invocations, so that – at least in feedforward – the scheduling control loop can be
closed.

7.5. API

In JOpera’s architecture, the compiler links the design tools to the process exe-
cution kernel. At runtime, the monitoring, debugging, and system administration
tools connect to the process execution kernel through its Application Programming
Interface (API). Additionally, the functionality of this API is also available to be
called within JOpera processes, through reflection based on system services10. This
API can be structured in two different parts: the Process Control API and the
Program Library Management API.

10See Section 3.7 on page 34 for examples on how to call JOpera’s API from within a JOpera
process.

172

7.5. API

7.5.1. Process Control

In the following we describe in detail the most relevant functions of the Process
Control API, also listed in Table 7.3.

API Function Description
login Authenticate with the system.
start Start a new process instance.
query state Query about the state of an existing instance.
query data Query about the parameter values of an instance.
set data Update the value of a parameter value of an instance.
query interface Query about the interface definition of a process tem-

plate.
list instances Return the list of all instances.
list templates Return the list of all templates.
signal Interact with an instance: kill, restart, suspend, or re-

sume it.
delete Delete an inactive instance.
subscribe Subscribe to the state change events of an instance.
unsubscribe Unsubscribe to the events generated by an instance.

Table 7.3.: Summary of the JOpera Process Control API

Login

The login(user, password) function authenticates a user with the system and,
if successful, returns a security session token which must be passed to every other
function of the API. The password is sent as a hash value [204]. The system may
also be configured to communicate this sensitive information internally using SSL
and externally using SOAP over HTTPS. The life cycle of the session is maintained
using a soft state technique [194], i.e., if no activity is detected after a configurable
timeout the session’s validity expires and the user must use the login function
again.

Start

The start(process, parameters, options) function is used to create a new in-
stance for a process template. The caller may pass parameters which will be assigned
to the input parameters of the new instance. If no error occurred, the function re-
turns the id identifying the new instance.

In addition to input parameters it is also possible to specify some options to
control how the new instance will be managed by the system. In addition to the
system parameters presented in Section 4.8.2 on page 74, through this API function
is possible to access the following two additional options: First of all, with the
subscribe option, it is also possible to atomically start a process and subscribe

173

7. ARCHITECTURE

to it, for example, to be notified when it has finished. There is also an optional
flags indicating whether the process instance should be automatically deleted upon
successful termination (delete on finish), or conversely it should be kept in the
history database so that its results can be reused by other instances.

Query Instance State and Data

The query state(id) function returns the current state of a certain process in-
stance. State information includes whether a process is running, it has finished or it
has failed, and timing information measuring, for example, how long the execution
of the process took.

Similarly, the query data(id) function returns the above state information plus
the current content of all input and output parameters of a certain instance identified
by its id. For debugging purposes, it is possible to use the set data(id,value)

function to update the value of a parameter of a certain instance. In order to ensure
the consistency of the process, this action should be only performed on paused
process instances.

Query Template Interface

The query interface(process) function returns the list of input and output pa-
rameters describing the interface of a certain process. This information, as with
most of the other API functions, is returned formatted in XML. This function was
originally intended to be used before starting a process, in order to present the user
with an input form where she may select or enter the values of the input param-
eters of the new instance. It turned out to be very useful when implementing the
automatic translation to WSDL of the interface of a process published as a Web
service.

List Templates and Instances

The list templates function returns the list of all process templates registered
within the system. This list contains some metadata about the templates, such as
their id, name, author, description, and flags indicating whether the template should
be made visible as a Web service or not and whether it can be started by the user. For
a given process template, the function list instances(process, filter) returns
the list of its instances. Since the resulting list may be quite large, it is possible
to select a filter criteria to make JOpera only return the relevant instances, for
example, to list only the processes that have failed or have been aborted, the ones
started by a particular user in a certain time range, or the ones having a specified
set of input parameter values.

Signal and Delete an Instance

The signal(id, signal) and delete(id) functions are used to interact with in-
stances identified by the specified id. Possible signals for an instance are kill to

174

7.5. API

abort its execution, restart, suspend to pause its execution, and resume to con-
tinue executing a suspended instance. Instances can only be deleted when they are
inactive; attempting to delete a running instance will result in an error.

Event Notification

The subscribe(id) and unsubscribe(id) function is used to register and dereg-
ister a listener for state change events related to a certain process instance. The
subscribe function is symmetric to the query state function, in the sense that it
lets the client be notified as soon as a state change occurs, instead of having the
client polling the system about the state of a particular instance with a certain
frequency. The notification of an event to the registered listeners occurs using an
internal protocol.

7.5.2. Program Library Management

The first set of functions of the program library management API listed in Table 7.4
are used to query JOpera’s registry of available programs. The second ones allows
developers to register new programs and modify the access methods of existing ones.

Query and List

The query and list functions are used to retrieve lists of programs which match a
certain criteria.

The query program(name) looks up in JOpera’s registry for programs with a
matching name and returns all information relative to one (i.e. its interface and
its access methods). Additionally, the list interface(id) functions searches the
program library for programs which are compatible with a given interface. Such
interface is identified by the id of the task which uses it. To control the number of
returned matches, it is possible to specify with an additional, optional parameter,
whether one or more results should be given. If no matches can be found, the
invocation of the API function fails.As we have shown in Example 3.2 on page 36
these functions can be used to support the dynamic choice of an implementation to
match a given service interface. In case a list of more than one matching programs
is found, in this scenario, it is necessary to process the list to choose the optimal
service implementation.

The list dependency(name) is used to determine, given a program’s name,
which are the processes currently referring to it. With this function, system ad-
ministrators can determine the impact of a modification to a program, i.e., by list-
ing which are the processes that will be affected if a program is changed. The
list programs(filter) returns the list of all matching programs. In the simplest
case, all programs in the library are returned. Otherwise it is possible to apply sev-
eral filtering criteria. For example, to obtain the list of programs used within a given
process. The keys returned by this function should be passed to the query program

to obtain specific information about the individual program.

175

7. ARCHITECTURE

API Function Description
query program Lookup a program based on its name.
list interface Lookup a program based on an interface.
list dependency Return all processes that refer to a certain program.
list programs Return the list of all matching programs.
update program Modify the access methods of a program.
delete program Remove a program definition.

Table 7.4.: Summary of the JOpera Program Library Management API

Update

The update program(oml) is used both to insert a new program registration in the
library and to update the information about an existing one. In the latter case, only
changes to its access methods are allowed, while the interface cannot be modified, as
this would invalidate the references of the activities which call the updated program.
Given the clear separation between the processes and the programs, which are linked
by the interface, changes to the internal details of a program do not affect the
processes using it, i.e. such processes do not have to be recompiled. Furthermore,
after the modification of a program has been stored, the updated information is
immediately available to the rest of the system, and is used both by new instances
and processes that were already active before the update was made.

The delete program(name) removes a program registration from the library.

7.6. Discussion

As we have mentioned at the beginning of this chapter, the design of JOpera’s
architecture has been influenced by two contrasting requirements: efficiency and
flexibility. Flexibility is very important in order to support the invocation of services
belonging to an open and rich set of different component types (Section 7.4), as
well as to build a system that can be easily configured to be deployed in different
settings. This way, as described in Section 7.3.3, the configuration of the system
can be tailored to scale from a light-weight, embedded process simulation kernel to
a cluster-based, distributed process execution engine. Flexibility, however, comes
with a price. In particular, there is a trade off between the efficiency of the system
and its flexibility.

To address this trade-off, in this chapter we leveraged the flexibility of the archi-
tecture to be able to include or exclude features which may constitute a potential
efficiency bottleneck. For example, if JOpera should be used as a process devel-
opment platform for rapidly building and testing processes composed of different
services, then the expensive reliability features (involving a transactional and per-
sistent implementation of the state information storage) are not required. Therefore,
to suit this usage scenario, JOpera can be deployed without them.

Likewise, the flexibility which allows to replace the implementation of the state

176

7.6. DISCUSSION

Navigator

Navigator

Dispatcher

Dispatcher

Dispatcher

Process
Template

Plugin

Process
Template

Plugin

Process
Template

Plugin

Process
Template

Plugin

U
N

IX
U

N
IX

U
N

IX

S
O

A
P

S
O

A
P

S
O

A
P

J
A

V
A

J
A

V
A

State
Information

Storage

State
Information

Storage

Event Queues

Event Queues

Task
Execution
Scheduler

Task
Execution
Scheduler

Task
Execution
Scheduler

Task
Execution
Scheduler

Task
Execution
Scheduler

Kernel

J
A

V
A

....
....

....

Figure 7.14.: Architecture of a Peer to Peer Process Execution Kernel

information storage, event queue and task execution scheduler components without
affecting the rest of the system (and most important, the compiler) can be exploited
to experiment with alternative infrastructures. For example, the state information
storage can be optimized for different database management systems, as long as its
interface to the rest of the system isn’t modified, so that it is possible to leverage
existing database installations when deploying the kernel. If an existing database
is not available, it is always possible, for example, to replace the implementation of
the storage subsystem with a file-based one.

Another possible extension of these basic services consists of using emerging peer
to peer technologies in order to implement a highly dynamic system where both the
state of the processes and navigational events are propagated without relying on
a centralized component. This way, it becomes possible to produce a peer to peer
version of the kernel, in which the execution of the processes is shared among several
peers through a server-less implementation of the state information storage, event
and task scheduling subsystems (Figure 7.14). Currently, it remains an interesting,
open question, whether existing peer to peer technologies can provide a reasonable
level of performance, both in terms of reliability and scalability, when applied to
this application scenario. Still, we believe that the architecture of the system –
as we have presented it in this chapter – would not radically change, although the
system could become the basis for a new type of process-based distributed computing
environment. In it, the current asymmetry of peers contributing cycles to existing
computations and problems without the opportunity of submitting and starting their
own ones would cease to exist, because we speculate that all peers would share the
ability of both executing and starting processes. Therefore, the reward to motivate

177

7. ARCHITECTURE

new peers to join a distributed computation would lie in the ability of every peer
running a JOpera kernel to compile, submit and monitor the progress of his or her
own process, which would be run using shared resources of potentially many other
peers.

A flexibile architecture is also important in terms of providing dynamic, auto-
matic system reconfiguration. To do so, JOpera’s infrastucture provides the basic
mechanisms to grow, shrink or migrate parts of the system, e.g., by starting or stop-
ping navigator and dispatcher threads across the nodes of a cluster. Currently, these
operations are initiated manually, i.e., a system administrator doesn’t have to shut
down a distributed JOpera kernel to start a new navigator or a dispatcher thread
on a new machine. However, as it has been investigated by [21], also with JOpera’s
flexible architecture it should be possible to include an autonomic controller compo-
nent, which would periodically monitor the state of a distributed kernel and perform
the necessary reconfiguration actions to achieve different goals. These may involve
the optimization of resource utilization, the increase of the system’s fault tolerance,
or the minimization of the turn-around time of the execution of a process instance.
Moreover, the autonomic controller would have to be based on a model of the system,
which could be used to determine the most useful system parameters (for example,
the length of the event and task scheduling queues) that have to be measured to
make predicitions about the effect of configuration changes to the behaviour of the
system.

Furthermore, flexibility in terms of supporting many different service invocation
patterns (Section 7.4.2) is also useful in applying the most efficient one, which is –
at the same time – appropriate to interact with the component type in question.
For example, immediate invocation (with the performance penality equivalent to a
Java method call) is available for minimizing the overhead of invoking fine-grained
services. For other component types of a larger granularity, both synchronous and
asynchronous interaction patterns are supported, again, in order to enable the de-
velopment of task execution plugins, for which a perfomance penalty must not be
paid due to the inflexibility of the architecture. This argument can also be seen
from the opposite perspective. If all service invocations would have to follow the
same interaction pattern (assuming that it would be feasible to integrate all types of
components) it would not be possible to minimize the service invocation overhead
by adapting the service invocation mechanism to the peculiarities of each compo-
nent type, because of the constraints of such an inflexible architecture. For example,
considering the scenario where all service invocations would have to be submitted
to a scheduler, even if no multiple, alternative providers are possible. Consequently,
for some component types, the scheduling step would not be necessary and thus
the invocation of the corresponding services would incur in unnecessary overhead.
However, due to the rigidity of the architecture, it would not be possible to bypass
such scheduling step, which would also become an important scalability bottleneck.

To what degree we have been successful in designing this flexible architecture
without sacrificing the efficiency of the implementation will be quantified in the
next chapter with a series of experimental results.

178

8. Measurements

This chapter presents some experimental results which both motivate and validate
JOpera’s architecture.

We begin by comparing the service invocation overhead of different component
types. This way, we show that, also from a performance perspective, it is important
to support the composition of more than just Web services.

Along this direction, we study the performance of a mapping between mismatch-
ing service interfaces. This mapping (described in Example 4.3 on page 69) has been
both defined visually using the JVCL and textually with an XSLT stylesheet. The
performance of the two solutions is compared in Section 8.2.

Finally, in Section 8.3 we present some experimental results concerning the re-
liability and scalability of different configurations of JOpera’s kernel which give an
empirical validation of the design decisions that were discussed in the previous chap-
ter.

8.1. Service Invocation Overheads

As discussed in Chapter 4, performance is one of the arguments behind the idea
of providing support for invoking services of different component types. In order
to give an indication of the overhead involved, we measured the execution time of
processes containing only one task. For each process, the task invokes a service of
a different type. This way, it is possible to compare the time it takes to invoke a
remote Web service across the Internet with the time it takes to perform a local Java
method call, and – quantitatively – determine the cost (or the benefit) of preferring
services of a certain type over another.

More precisely, in this experiment we compare different access mechanism to
the same “Temperature Conversion Service”. We choose this service due to its
trivial implementation, so that the execution cost is negligible when compared to
the overhead of invoking it. Another reason to choose this service is that we found
a remote implementation on the Internet at [120]. With it, it becomes possible
to present an interesting comparison between the invocation overhead of local and
remote Web services.

As listed in Table 8.1, in this performance comparison we use services of vari-
ous component types and several implementations of the corresponding execution
subsystem plugins.

Before presenting the results of the experiment, we make explicit some of the

179

8. MEASUREMENTS

Component type Description Reference

JS Java Script Section 4.5.1
OPERA JOpera SubProcess Call Section 4.8.2
JAVA Java Method Call Section 4.5.2
MSG Local Message Queue Section 4.10
JVM Java Virtual Machine Section 4.5.4

PYTHON Python Scripting Language Section 4.6
SOAP/A11 Local Web Service using Axis

1.1 [12].
Section 4.3

SOAP/A12 Local Web Service using Axis 1.2α. Section 4.3
SOAP/WS Remote Web Service using Axis

1.1.
Section 4.3

Table 8.1.: Service Invocation Mechanisms to be compared

assumptions about JOpera’s configuration. First of all, in this experiment JOpera
was running with Java JDK 1.4 on Windows XP, using a Pentium 4 (3Ghz, with
Hyperthreading enabled), with 1GB of RAM. To minimize the impact of external
factors, we deployed JOpera’s kernel in a monolithic, volatile configuration1. This
way, we ensured that the internal process execution overhead is minimized and the
measurements only show the cost of invoking the services using different mechanisms.
Furthermore, although several measurements were performed for each component
type, at most one service invocation was running at a time. This way, the potential
influence of multiple process instances running concurrently was removed. Finally,
all plugins (processes and subsystems) have been preloaded into the kernel before
the beginning of the experiment.

8.1.1. Results

As shown in Figure 8.1, the most important result of this experiment is that the
average service invocation overhead varies about three orders of magnitude (from
less than 1 millisecond to 2.31 seconds) depending on the component type.

By further looking at the logarithmic graph in Figure 8.1 (right), it is possible
to group the component types in different categories, depending on their overhead.

1. The first four components (JS, OPERA, JAVA, MSG) offer an invocation overhead
of significantly less than 1/10th of a second, as the implementation of the
service is located within the same Java virtual machine where the JOpera
kernel is running.

2. Invoking both the JVM and the PYTHON component types requires to spawn a
child process in which the corresponding interpreter is started, and this re-
quires more time: about 0.28 seconds. The overhead of this kind of local

1Please refer also to Section 7.3.3 on page 160 for more information on this deployment setting.

180

8.1. SERVICE INVOCATION OVERHEADS

0 0.5 1 1.5 2 2.5 3 3.5

SOAP/WS

SOAP/A12

SOAP/A11

PYTHON

JVM

MSG

JAVA

OPERA

JS

C
o

m
p

o
n

e
n

t
ty

p
e

Time (seconds)

0.001 0.01 0.1 1 10

SOAP/WS

SOAP/A12

SOAP/A11

PYTHON

JVM

MSG

JAVA

OPERA

JS

Time (seconds)

Figure 8.1.: Service Invocation Overhead for different component types

inter-process communication is more than 50% of the fastest Web service in-
vocation.

3. The average Web service invocation time is 0.42 seconds in case of a Web
service deployed on the local area network, called using Axis version 1.1
(SOAP/A11). This time grows to 0.66 seconds using the latest version of Axis
1.2α (SOAP/A12). In case of a remote Web service (SOAP/WS), the delay and
jitter of the wide area network need to be discounted. This effect can be rec-
ognized both in the higher (2.31 seconds) average response time and in the
very high standard deviation (0.9 seconds).

8.1.2. Discussion

The great variability of the results shown in Figure 8.1 can be partially correlated
to the architecture of JOpera’s kernel2.

� In the first case (JS) the temperature conversion formula – written as a Java
expression – is directly embedded into a process. This component type is thus
invoked immediately, i.e., within the same navigator thread which is executing
the process. Therefore, the very small overhead can be explained by the fact
JOpera invokes this service at a cost comparable to the one of a Java method
call.

� The OPERA component type represents a sub-process call to the previous ex-
ample, in which the service is implemented as a Java script. The difference in
the overhead with the JS component type shows the cost of performing such
process invocation (about 9 ms with a system running only one process at a
time).

2In particular refer to Section 7.4 on page 163 for a description of the plug-in based task execution
adapters that are used to map the service invocation to the required protocols and mechanisms
corresponding to the involved component type.

181

8. MEASUREMENTS

� The JAVA component type represents the synchronous invocation of a method
of a Java object, which is created by the Java local method invocation plugin.
As opposed to the JS component type, in this case the Java code is invoked
within a different thread belonging to the dispatcher pool. The difference in
the overhead gives an indication of the cost of such context switch.

� The MSG component type represents the message-based interaction of two pro-
cesses. As opposed to a synchronous process call, this example shows the
cost of using message queues to control the interaction of two processes. As
shown in Example 4.5 on page 81 the client process posts a request with the
value of the temperature to be converted in the input queue of the server pro-
cess, which retrieves it and converts it using the previously mentioned Java
expression. The result is returned through the output queue. In this case, the
overhead of such interaction is kept very small by the fact that the message
queues are implemented locally within the task execution subsystem. Fur-
thermore, such volatile queues do not offer any of the persistence and message
routing feature, e.g., of a full JMS implementation [220].

� The invocation of the JVM component type involves the execution of an external
Java Virtual Machine, which loads the previously mentioned JAVA class and
wraps it so that the input data can be received from the command line and
the results of the temperature conversion can be returned to JOpera’s plugin
through the standard output pipe. All of these additional operations cause the
service invocation using this mechanism to be one order of magnitude more
expensive. The same considerations can be applied to the PYTHON component
type.

� As expected, Web services are the most expensive component type in terms of
the overhead involved. Given the current state of flux of the relevant standards
and available implementations, the performance of the service invocation may
be significantly affected by the choice of which libraries are used. Additionally,
the location of the Web service also affects the overhead, as the cost of invoking
the remote Web service shows.

However, it should not be left implicit that this additional cost is due to the
distributed nature of the service interaction, in which JOpera and the service
provider are separated by the Internet. Thus, it should not be blamed on
the Web services protocols, which – instead – are one of the few technologies
currently enabling such type of distributed interaction.

182

8.2. VISUAL ADAPTATION OF MISMATCHING INTERFACES

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 200 400 600 800 1000

Number of parallel transformations

R
e
la

ti
v
e

p
e
rf

o
rm

a
n

c
e

0

2

4

6

8

10

12

14

0 200 400 600 800 1000

Number of parallel transformations

A
v
e
ra

g
e

T
ra

n
s
fo

rm
a
ti

o
n

T
im

e

(s
e
c
o

n
d

s
)

JVCL

XSL

Figure 8.2.: Performance of a visual mapping
Absolute (left) and relative (right) performance of JOpera’s visual language
compared with an equivalent XSL transformation, for a variable number of

transformations running in parallel.

8.2. Visual Adaptation of Mismatching Interfaces

As we have shown in the previous section, when measuring the performance of
composite Web services, the results are bound by the time it takes to exchange
SOAP messages across the Web. However, in case the interfaces of these services
do not match, it is important to check that the transformations applied to these
messages by the process engine do not significantly increase this overhead.

In this section we briefly present the results of a small experiment, whose goal
was to compare the performance of the example mapping discussed in Example
4.3 on page 69 implemented using JOpera’s visual language (Figure 4.11) with the
performance of the equivalent XSL transformation (Figure 4.12) ran by the default
XSL processor bundled with Java 1.4.1 Standard Edition. In both cases the Java
virtual machine was running on a Linux v2.4.20 server with 4 XEON 1.5Ghz CPUs
with hyperthreading enabled and 3.5GB of RAM. We chose this type of hardware
environment in order to exploit JOpera’s multithreaded execution capabilities, as it
was configured to use a pool of up to 64 parallel task execution threads.

In order to minimize the effect of external factors, such as the time required to
start a Java Virtual Machine, or the time necessary to load external files, all data
was kept in main memory and the XSL processor was embedded inside JOpera, as
one of its execution subsystems, so that the overhead of invoking it would be kept
to a minimum and JOpera’s multithreaded execution would not represent an unfair
advantage. All transformations were applied to the same input dataset (Figure 4.11
(top)) and produced the same output dataset (Figure 4.11 (bottom))

8.2.1. Results

The results in Figure 8.2 (left) show the average transformation time as a function
of the number of parallel transformations run concurrently by JOpera (going from

183

8. MEASUREMENTS

1 to 1000). For the transformation written in XSL (Figure 4.12) the average time
grows from 50 milliseconds up to 12.1 seconds per transformation. The equivalent
transformation specified visually with the process of Figure 4.11 and compiled by
JOpera into Java scales better, since its average execution time grows from 15 mil-
liseconds up to 3.8 seconds per transformation. As it can be seen from Figure 8.2
(right), the visual mapping outperforms the XSL transformation by about 35%.

8.2.2. Discussion

Our expectation was that the visual mapping, programmed in JOpera using a pro-
cess with four different tasks, each of which needs to be scheduled, dispatched and
executed by the system, would incur in a much higher overhead when compared
with the XSL transformation, which has also been implemented within JOpera, but
its process has only one task which directly calls the XSL processor as depicted in
Figure 4.12 (right). Nevertheless, splitting up the transformation in three execution
stages can better exploit JOpera’s multithreaded execution capabilities, which come
into play as the execution of each mapping is pipelined through the system. The fact
that the visual mapping is compiled into Java also helps to beat the performance of
the XSL processor which, instead, interprets the transformation read from the style
sheet.

8.3. Scalability and Reliability

The goal of the experiments presented in this section is to analyze the performance
of a significant subset of the deployment and configuration options described in
Section 7.3.3 on page 160. First of all we attempt to point out the scalability limits
of a centralized system, where all the data storage, event and job scheduling services
are implemented using the local main memory. Then we add external persistent
storage for the state information to determine what is the cost of adding persistence
to the system. Then we replicate the dispatcher and navigator components, and
observe the changes to the system’s throughput.

Hardware Setup

The hardware and software setup for the experiments is as follows: the navigator
and dispatcher kernel components were running on a cluster of dual Pentium-III
1000Mhz PCs with 1024 MB of RAM using Java 1.4.1 running on Linux v2.4.17.
The three tuple space servers dedicated to state information storage, task execution
scheduling and event communication were running each on separate dual Athlon
1.5Ghz with 1024 MB of RAM, Java 1.4.1 on Linux v2.4.19 and used the IBM’s
TSpaces implementation version 2.1.2 [108].

184

8.3. SCALABILITY AND RELIABILITY

Variable Values
Number of concurrent processes 1, 64, 128, 256, 512, 1024, 2048
Number of tasks 1, 10, 100
Task duration (seconds) 0, 1, 10, 30
Control flow topology Sequential, Parallel, Matrix

Table 8.2.: Workload Control Variables

Workload description

The behavior of the system is affected by the properties of the workload, which
are defined by the control variables listed in Table 8.2. The number of processes
indicates how large is the batch of concurrent processes to be executed. The size of
a process is the number of tasks composing it. We used three different process sizes:
1, 10 and 100 tasks. Larger processes require more storage space and generate a
higher number of jobs and events. The duration of the tasks affects the navigator’s
throughput, since the longer a task runs, the longer the delay between a job startup
request and the corresponding termination event. During this time the navigator(s)
may be free to process other events or have to remain idle.

Finally, different topologies of the control flow of the processes generate different
patterns of event exchanges. In the case of a process composed of a single task there
are no degrees of freedom concerning the control flow, but as soon as the size of the
process increases it is possible to connect the tasks in different ways. We have been
testing our system with a variety of control flow graphs. In the case of ten tasks
we used two topologies, one sequential, where the tasks are executed sequentially
and a parallel one, where all tasks are executed concurrently. The same parallel
topology has also been used with the larger process, composed of 100 tasks. In the
case of a large process, we also tested a more complex control flow graph modeling
a matrix-like computation.

Measured variables

First of all, we are interested in measuring the user perceived effect of the different
configurations. This effect is measured by how long a process takes to complete.
More precisely, we computed the average wall-clock time over all the concurrent
processes of a certain batch.

Second, for every experiment, we recorded the batch execution time, this is how
long it took to run an entire batch of concurrent processes. In the case of tasks
running for 0 seconds, the execution time of the batch of processes can be used to
compute the average throughput of the system, defined as the number of processed
tasks per second. This value indicates the overall speed of the system in performing
the operations (navigation, scheduling, running and results gathering) required to
execute the tasks.

Third, in order to observe the system’s internal behavior we instrumented the
state information storage services to measure the time necessary to create the image

185

8. MEASUREMENTS

0

50

100

150

200

250

300

350

400

1 64 128 256 512 1024

Number of concurrent processes

A
v
e
ra

g
e

W
a
ll

T
im

e
(s

e
c
o

n
d

s
)

Volatile

Storage Configuration:

Process Size: tasks

Control Flow:

10

Parallel

Persistent (with Cache)

Persistent

0

100

200

300

400

500

600

700

1 64 128 256 512 1024

Number of concurrent processes

A
v
e
ra

g
e

W
a
ll

T
im

e
(s

e
c
o

n
d

s
)

Volatile

Storage Configuration:

Process Size: tasks

Control Flow:

10

Sequential

Persistent (with Cache)

Persistent

0

500

1000

1500

2000

1 64 128 256 512 1024

Number of concurrent processes

A
v
e
ra

g
e

W
a
ll

T
im

e
(s

e
c
o

n
d

s
)

0

1000

2000

3000

4000

5000

1 64 128 256 512 1024

Number of concurrent processes

A
v
e
ra

g
e

W
a
ll

T
im

e
(s

e
c
o

n
d

s
)

VolatileVolatile

Storage Configuration:Storage Configuration:

Process Size: tasks

Control Flow:

100

Matrix

Process Size: tasks

Control Flow:

100

Parallel

Persistent (with Cache)Persistent (with Cache)

PersistentPersistent

Figure 8.3.: Performance degradation of a centralized process support system under
increasingly large workloads

of a new process instance. In our experience, this critical step is a potential perfor-
mance bottleneck, since it is not possible to perform navigation until an instance has
been created. We expected process instantiation to be expensive since, depending
on the size of the process, (a lot of) information about the process, its tasks and
their parameters needs to be written out to the state information storage service.

8.3.1. Results

Reliability and response time of a monolithic kernel

The limitations of centralized architectures can be illustrated by analyzing the per-
formance of a centralized process support system. Such a system is built with a
single component dedicated to process navigation, which uses a centralized repos-
itory to keep track of the state of the execution of the processes. As it has been
often observed [124, 208], both centralization and persistence generate a significant
overhead in process support systems under heavy workload. In Figure 8.3 we quan-
tify the user perceived behavior of a centralized system while running four different
types of processes.

As the results show, the system’s response time, i.e., the average wall-clock dura-

186

8.3. SCALABILITY AND RELIABILITY

0 5 10 15 20 25 30

Matrix
(100)

Parallel
(100)

Parallel
(10)

Sequential

(10)

Sequential

(1)

P
ro

c
e
s
s

to
p

o
lo

g
y

a
n

d
s
iz

e

Throughput (tasks/sec)

64

128

256

512

1024

Number of
concurrent
processes

Figure 8.4.: Throughput degradation of a centralized process support system under
increasingly large workloads

tion of a process, grows as a function of the system’s workload defined as the number
of processes running concurrently within the system. Relative to an unloaded sys-
tem, where only one process at a time is executed, in the worst case the response
time grows about 200 times when the workload size is increased thousand-fold. The
actual performance degradation depends both on the type and size of the processes
and on the specific properties of the system’s configuration (Figure 7.4). First of
all, it can be observed that a relative performance improvement can be obtained by
sacrificing the reliability of the system. In fact, using the local, volatile, memory of
the process navigation component to store the processes’ state information, can lead
to response times up to 50% shorter than the time required to perform navigation
over persistent state. As discussed in Section 34 on page 155, different types of
persistent storage can be used, such as a traditional relational database or, in our
case, a single Tuple Space server [138].

As an attempt to combine the benefits of both configurations, we added a write-
through cache located between the navigation component and the persistent storage.
As the results indicate, a cache significantly reduces the penalty of using a remote
storage service but still has limited scalability.

187

8. MEASUREMENTS

0.1

1

10

100

1000

0 5 10 15 20 25

Number of Navigators

P
ro

c
e
s
s

in
s
ta

n
ti

a
ti

o
n

ti
m

e
(m

il
li

s
e
c
o

n
d

s
)

State Information Storage

Centralized, Persistent

Distributed, Volatile

Process Size

1 task

10 tasks

100 tasks

Figure 8.5.: Scalability of the process instantiation

Throughput degradation of a monolithic kernel

In addition to the results already presented in Figure 8.3 concerning the degradation
of the response time of a centralized system under increasingly large workloads, we
would like to display the corresponding throughput’s degradation in Figure 8.4. This
set of measurements has been performed with a monolithic kernel configured to use
volatile storage and up to 64 threads for local task execution, i.e., its execution
capacity is limited to 64 concurrent tasks.

For all process types, the maximum throughput is achieved when running the
smallest workload. As the number of concurrent processes increases, the throughput
decreases to a minimum. The actual degradation rate depends on the process topol-
ogy, as the overhead of navigation is more important for larger and more complex
processes.

Scalable Process Instantiation: time

Figure 8.5 displays the average process instantiation time as a function of the number
of navigators, the size of the process and the configuration of the state information

188

8.3. SCALABILITY AND RELIABILITY

0

50

100

150

200

250

300

1

2

3

4

5

6

7

8

9

10

350

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of Concurrent Processes

M
e
m

o
ry

S
iz

e
(M

B
)

P
ro

c
e
s
s

S
iz

e
(N

u
m

b
e
r

o
f

ta
s
k
s
)

Figure 8.6.: Memory requirements for process instantiation

storage. As we expected, the instantiation time grows linearly with the process size:
the higher number of tasks, the more information about them needs to be written to
the data repository. The Figure also contains two interesting results. Not only is the
instantiation time using persistent storage more than one order of magnitude longer
than the time with volatile storage, but also, the volatile storage scales well with
the number of navigators, since the process instantiation time remains constant. On
the other hand, the performance of the centralized repository degrades as more and
more navigators store in it data about their new processes. As it has been often
suggested [124, 208], replicating the persistent storage would alleviate this problem.
In all cases the instantiation time remains well below the 1 second boundary.

Scalable Process Instantiation: space

Complementary to the performance in the time dimension, another important aspect
of the scalability of the process instantiation concerns the memory requirements. In
Figure 8.6 we show the results of another set of experiments, which measure how
much physical memory is required to run an increasingly large amount of process

189

8. MEASUREMENTS

instances. This parameter depends linearly both on the number of process instances
(shown on the X-axis) and on the size of such processes, both in terms of their
number of tasks (Z-axis) and parameters. In these measurements, the JOpera kernel
was configured to use volatile storage, as this is the most critical configuration as
far as the memory usage is concerned. As a consequence, these results should give
an upper bound for other configurations, where the physical memory is only used
for caching purposes.

As it can be read from Figure 8.6, in order to run 10000 processes composed of
1 task (each of which has one input and one output parameter), the JOpera kernel
consumes about 50MB of RAM. A ten-fold increase in the size of the processes
corresponds to an increased memory usage of more than 300MB. Clearly, these
figures are not only dependent on the number of tasks per process and on the total
number of parameters per process, but also on the content of these parameters,
which is also stored as part of the state of a process instance. Therefore, it becomes
more complex to build a model in order to predict the memory requirements of the
system, given a target workload.

In case memory consumption becomes a limiting factor in the scalability of the
system under a very large workload, it is possible to leverage the flexibility of the
architecture to:

1. Extend the storage subsystem implementation so that the state of inactive
(and completed) processes is no longer kept in main memory, but it is swapped
out to secondary storage.

2. Replicate the kernel across a cluster of machines, so that the workload can
be partitioned among each replica. This way, the total amount of memory
available to JOpera can be increased beyond the capabilities of each node.

Scalable Process Navigation: throughput

Figure 8.7 shows the average system throughput with processes of 10 parallel tasks
run with a variable number of navigators, 25 dispatcher components and different
workload sizes.

(a) In the case of persistent storage, for all workload sizes the throughput peaks
at 12 navigators at about 140 tasks/second. This is a significant improvement
with respect to a centralized system, especially considering that the through-
put does not degrade as more and more processes run concurrently.

(b) The throughput actually improves as the workload size increases, indicating
that, in the case of volatile storage, the performance of the replicated naviga-
tor does not saturate. Although the absolute throughput reaches about 350
tasks/second, this value is also obtained with 12 navigators, as the centralized
task execution scheduler is the limiting factor of this configuration.

190

8.3. SCALABILITY AND RELIABILITY 191

0

20

40

60

80

100

120

140

160

0 5 10 15 20 25

Number of Navigators

T
h

ro
u

g
h

p
u

t
(t

a
s
k
s
/s

e
c
o

n
d

)

Number of
concurrent
processes

64
128
256
512
1024
2048

(a) Processes of 10 parallel tasks with persistent storage

0

50

100

150

200

250

300

350

400

0 5 10 15 20 25

Number of Navigators

T
h

ro
u

g
h

p
u

t
(t

a
s
k
s
/s

e
c
o

n
d

)

Number of
concurrent
processes

64
128
256
512
1024
2048

(b) Processes of 10 parallel tasks with volatile storage

Figure 8.7.: Scalable navigation: throughput
Average throughput of the system using an increasingly large number of parallel

navigators.

8. MEASUREMENTS

0

100

200

300

400

500

600

0 60 120 180 240

0 25 50 75 100

1

2

3

4

8

Number of

Navigators

Average Event Processing Speed
(Events/second)

300 360

Time (seconds)

L
e

n
g

th
o

f
th

e
e

v
e

n
t

q
u

e
u

e

Figure 8.8.: Scalable navigation: event queue
Behavior of the event queue with a fixed workload of 512 processes of 10 parallel

tasks of 10 seconds and a variable number of parallel navigators.

Scalable Process Navigation: event queue

In addition to a study of the overall throughput of a distributed kernel, defined as
the number of tasks per second, we are also interested in observing the behavior
of the event queue component, which has the critical responsibility of delivering
notifications to the different navigator components.

In this experiment, the workload is kept constant at 512 processes of 10 parallel
tasks, with a duration of 10 seconds each. The length of the event queue has been
sampled at regular time intervals to determine the average event processing speed of
the system, when the number of navigators – the consumer of events – is increased.
As it is shown in Figure 8.8, the rate at which events are processed by the kernel
depends linearly on the number of navigators, going from 15 events/second with
one navigator up to 80 events/second with a kernel configured to use 8 navigator
threads, each running on a different node of the cluster.

Looking at Figure 8.8 also suggests that the length of the event queue is a good
indicator of the current workload of the system. If many events are queued, it may
be possible to start additional navigator threads to process them. If the queue is
empty, some navigators may be idle and can be temporarily relinquished, until the
next burst of activity arrives.

Scalable Process Navigation: response time

Figure 8.9 shows the system response time with up to 2048 concurrent processes of
10 sequential tasks run in the same settings as Figure 8.7. It can be observed that

192

8.4. DISCUSSION

1

64
128
256
512

1024

2048

10

100

1000

10000

0 5 10 15 20 25

Number of Navigators

B
a
tc

h
E

x
e
c
u

ti
o

n

T
im

e
(s

e
c
o

n
d

s
)

Configuration: storage
Task duration: seconds

Persistent
10

1

64

128

256

512

1024

2048

10

100

1000

10000

Configuration: storage
Task duration: seconds

Volatile
10

0 5 10 15 20 25

Number of Navigators

B
a
tc

h
E

x
e
c
u

ti
o

n

T
im

e
(s

e
c
o

n
d

s
)

10

100

1000

10000

0 5 10 15 20 25

641
128

256

512

1024

2048

Number of Navigators

B
a
tc

h
E

x
e
c
u

ti
o

n

T
im

e
(s

e
c
o

n
d

s
)

Configuration: storage
Task duration: second

Persistent
1

64
128
256
512

1024

2048

B
a
tc

h
E

x
e
c
u

ti
o

n

T
im

e
(s

e
c
o

n
d

s
)

10

100

1000

10000

0 5 10 15 20 25

Number of Navigators

Configuration: storage
Task duration: second

Volatile
1

1

Figure 8.9.: Scalable navigation: batch execution time
Execution time of batches processes having 10 tasks and sequential control flow
topology as a function of 4 variables: 1) the number of navigators (X-Axis), the
workload size (Z-Axis), the duration of the tasks and the system configuration

(volatile or persistent storage)

for small workloads, as the number of navigators increases the batch execution time
approximates the time necessary to run only 1 process, which is close to 10 or 100
seconds, depending on the duration of the tasks. For larger workloads, the response
time still grows linearly with the workload size, although the rate of increase can be
controlled by changing the number of navigators. Using volatile storage the system
scales well up to 20 navigators. Although the absolute response time is twice as high,
the penalty of adding persistent storage is acceptable, as it shows good scalability
up to 16 navigators accessing the same centralized data repository.

8.4. Discussion

Three orders of magnitude, this is the difference we observed between a local call to
a Java method and the remote call to a Web service across the Internet. This figure
gives a good indication of the potential overhead of an inflexible system, where all
services that are composed are of the same type. Clearly, in many cases, it may
not be possible to avoid using Web services. Especially if a process includes remote
services provided by external organizations, these would not be readily accessible
without this very useful technology. In this context, standards-based interoper-

193

8. MEASUREMENTS

ability is a necessity to enable the successful integration of external services into
a process, and the price to pay for it is a fair one. However, if a system is not
flexible enough to compose other types of components which are less expensive to
invoke, this invocation overhead would also have to be included in the invocation
of local services, for which alternative protocols may be available. With this result,
described in Section 8.1 we have shown that flexibility may actually help efficiency,
as it allows the system designer to choose the most appropriate mechanism to invoke
a service.

In Section 8.2 we have shown a comparison of the performance of a data trans-
formation defined visually with the equivalent XSLT transformation. Thanks to
process compilation and the multi-threaded architecture of JOpera’s kernel, the vi-
sual mapping outperforms by 35% the interpreted style sheet transformation. Thus,
we have shown an example where a visual language is not only easier to program, but
also gives better performance than an alternative, XML-based, language. Still, both
solutions have been compared within the context of the JOpera service composition
model, where also style sheet transformations are considered an useful component
type, which can be always embedded within a process by developers which are fa-
miliar with this technology.

Finally, in Section 8.3 we have presented the performance of different deploy-
ment settings and configuration options of the JOpera kernel. More specifically, the
overhead of adding reliability features has been quantified and the benefit of a flex-
ible architecture has been shown, as the same architecture can be deployed across a
cluster of computers, in order to handle large workloads.

194

9. Conclusion

9.1. Summary

In this dissertation we have described a visual language for service composition
and an open component meta-model, followed by the design of a flexible system
architecture. We have included several examples, to show how to use them to easily
build and efficiently run distributed systems made out of reusable services.

The idea of following a high level approach to design and build complex sys-
tems is not new. In fact, service oriented architectures are only the latest state
in the evolution of ideas related to component based software engineering, mega
programming, hierarchical decomposition, middleware, coordination/glue languages
affecting application domains that range from process-based e-business automation
and enterprise application integration to cluster and grid computing.

With the emergence of Web services and related technologies, standards based
interoperability has made it feasible to build systems out of reusable components
which are potentially distributed across the Web. These loosely coupled compo-
nents are provided by independent organizations in the form of services, i.e., their
availability is guaranteed with a certain degree of transparency, where the under-
lying platform and languages used to implement a service are independent of the
standard mechanism used to describe and access it.

Thus, service composition becomes an important aspect, where value-added ser-
vices and integrated systems can be built out of aggregations of basic services in a
bottom-up fashion.

Current state-of-the-art approaches to Web service composition feature process-
based modeling of service interactions, ad-hoc languages, data model-driven ap-
proaches and, clearly, the addition of libraries and toolkits to traditional program-
ming languages. Although in the first part of this dissertation we developed a
language for service composition along the time dimension, which is also based on
the notion of process, our approach differs from existing ones in at least the following
main aspects:

1. We have defined a true visual service composition language (the JOpera Vi-
sual Composition Language, Chapter 3), whereas the great majority of process
based languages that have been brought forward share a complementary ap-
proach based on the XML syntax. Especially from a usability perspective, this
is an important difference. With JOpera developers may compose services by

195

9. CONCLUSION

drawing their interaction in a data flow graph, while the development environ-
ment keeps the underlying XML-based process model (Chapter 5) hidden at all
times. However, it should be noted that a visual language does not necessarily
guarantee an improved usability of the system. Issues such as visual scalability
have to be taken into account. In Section 7.2.2 we have presented our approach
based on a combination of nesting constructs, automatic, incremental graph
layout techniques and the possibility of editing multiple, overlapping views of
the same data flow graph, which support the user while browsing and editing
the graphical notation.

All in all, we have argued that service composition is a good application do-
main for visual languages, where a simple, graph-based syntax is most ap-
propriate to describe the order of execution of services, the data exchanges
between them and the necessary failure handling behavior. Throughout the
dissertation we have included several examples showing that, when compared
to existing XML-based approaches, thanks to our visual language, services
can be composed at a higher level of abstraction with a more intuitive syntax.
Considering a scenario where services are composed automatically using ad-
ditional semantics, a surface representation based on a visual language is still
an important mean to significantly ease the understanding of the generated
solution.

2. Current process modeling languages applied to Web service composition are
limited to describing the composition of only one type of components: Web
services. We see this as big limitation, as it greatly restricts the applicability of
the composition language which – as we propose in this dissertation – should
be orthogonal with respect to the mechanisms and protocols used to access
the implementations of the services1.

Instead, we generalized the notion of service, by developing a component meta-
model, in which we abstract common features shared among Web services, and
many other kinds of services. In Chapter 4 we have attempted to show the
applicability of the meta model to several different examples. With it, in a
process it is possible to mix and match local and remote services which are
accessible through many different mechanisms and protocols, including syn-
chronous and asynchronous ones. Thus, freedom of choice is given to pick
among services having a wide spectrum of different interoperability, perfor-
mance, reliability, security, and convenience features.

Furthermore, we have shown that generalizing the notion of service helps to
keep the composition language simple. More precisely, thanks to JOpera’s
open component meta-model, our service composition language – describing
the interactions between services at the level of their interfaces – is completely

1Incidentally, this does not contradict the vision behind Web services, where standards based
interfaces and access protocols hide the actual implementation details. Likewise, our visual
language defines composition at the level of service interfaces and does not make any assump-
tions about the actual access mechanisms behind them.

196

9.1. SUMMARY

independent of the types of services that are composed. This way, many
constructs (e.g. distinguishing synchronous from asynchronous interaction)
can be shifted from the composition language to the component meta-model.

Support for heterogeneous services is not only included at the level of the
composition language, but is also part of JOpera’s flexible architecture, where
the most efficient mechanism to access the implementation of each type of
services can be selected (Section 7.4).

3. Service composition is described at the level of service interfaces by drawing
a data flow graph. Most existing visual process modeling approaches overlook
this important aspect, while focusing on providing a rich set of control flow
patterns. Although we also included an explicit representation of the control
flow of the process, we choose to emphasize data flow aspects for several reasons
(Section 5.3.4), which can be summarized as follows:

� Including an explicit, declarative model of the interactions between ser-
vice interfaces helps to keep the process model at a higher level of ab-
straction, where the scheduling of the corresponding data flow transfers
is done automatically by the compiler. Moreover, a side effect free rep-
resentation (such as a data flow graph) greatly improves the clarity of
the process, as it is not necessary to resort to potentially harmful global
variables, like in other process modeling languages.

� Data flow bindings between parameters of different service interfaces im-
ply a control flow dependency between the two service invocations. From
this rule, it becomes possible to derive automatically the control flow
graph of a process from its data flow graph. Nevertheless, the control
flow graph is also an explicit part of the process model that is used to
specify additional constraints such as conditional branches, synchroniza-
tion points and exception handling behavior.

� When parameters of mismatching service interfaces are connected, type
checking can be applied to guide the developer in supplying the necessary
adapters. The data transformations involved can also be programmed
visually using the same data flow based syntax used to compose the
services.

After giving a detailed description with several examples of the JOpera Visual
Composition Language (Chapter 3), JOpera’s component meta-model (Chapter 4)
and the underlying Opera process Modeling Language (Chapter 5), in the second
part of the dissertation we described the JOpera system which provides an inte-
grated set of tools to support the rapid development of composite services using the
aforementioned languages.

It is our view that visual, process based service composition tools will not gain
a widespread acceptance if they cannot deliver a level of performance comparable

197

9. CONCLUSION

to traditional programming languages. In other words, the benefit of using such
languages and tools with their ability to model service composition at a higher level
of abstraction should not be reduced (or lost) at runtime, when the models need
to be executed. To achieve this objective, in the design of the architecture of the
JOpera system we faced two competing requirements: efficiency and flexibility.

To achieve a higher efficiency during the execution of the processes, we built on
the idea of using compiled process execution. As opposed to the interpreted process
execution approach followed by most process engines (or process interpreters), in
JOpera, process descriptions are compiled to Java executable code, which is then
dynamically loaded into the process execution kernel to manage the execution of
multiple, concurrent process instances. As we discussed in Chapter 6 the generated
code is still flexible enough to support dynamic late binding of service interfaces to
their implementations.

Flexibility is an important requirement when building a system to execute pro-
cesses composed out of services, whose type is not known in advance. Thus, in this
case, flexibility does not contradict efficiency. Flexibility enables to choose the most
efficient access mechanism to the service implementation among several alternative
ones. Instead, a rigid architecture, limited to invoking services of only one com-
ponent type, would force to use the same mechanism with all service invocations,
preventing the possibility of doing optimizations. As we have shown in Section 8.1,
the overhead in invoking remote Web services is two to three orders of magnitude
larger than the one involved in a Java method call within the same Java virtual
machine. Therefore, depending on the location and the granularity of the services
to be composed, the flexibility of choosing the most appropriate access mechanism,
has a potentially beneficial impact on the performance of the final composite system.

Furthermore, we have shown that JOpera is a flexible system as it can be de-
ployed in several different settings and configurations (Section 7.3.3). This way, the
most useful solution to the trade-off between costs and benefits of several features
(e.g. quality of service guarantees, reliability, scalability) can be found at deploy-
ment time, depending on external requirements and environmental settings. For
example, in some usage scenarios (e.g., at development time), persistence is not nec-
essary. Thus, the JOpera kernel can be deployed in a volatile configuration, which
offers a smaller runtime overhead. Likewise, the flexible architecture of JOpera
supports dynamic reconfiguration. This feature represents an important step to-
wards building a self-tuning, autonomous system, where the optimal configuration
is determined automatically [21].

As a concluding remark, with JOpera it is possible to rapidly develop and run
complex, distributed applications made out of many different types of components
(including, but not limited to Web services). By using a visual glue language,
such applications can be built by literally drawing the interactions between the
interfaces of the services composing them. Thus, loosely coupled services which
have been originally developed independently can be adapted and integrated into
more complex, value-added services. It remains an interesting study to observe
the effect of the composition on its components, which are no longer free to evolve

198

9.2. OUTLOOK

independently. On the one hand, the reliability of the composite system is limited
by the weakest of its component services (Example 3.4). On the other hand, it
becomes difficult to modify the interfaces of the services without affecting the ones
depending on them (Example 4.3).

9.2. Outlook

The ideas about the languages and the system presented in this dissertation can be
extended in several research directions. It would be also interesting to apply them
to other domains, different from the examples that we have included throughout the
dissertation.

� First of all, additional language features could be included in the JOpera Visual
Composition Language (Chapter 3). These concern its very simple control
flow syntax, which – if necessary – could be extended with constructs for
explicitly modeling branches and merges in the control flow graph. However,
these would not add to the expressiveness of the language, but only provide so-
called ”syntactical sugar”. With them, some of the features already part of the
underlying process model would be also have a visual representation. Likewise,
the swimlanes construct should be evaluated in order to compare it with the
current approach based on system parameters. Swimlanes could be used to
visually assign the owner of a task (or the provider of a service) by positioning
the task inside the swimlane corresponding to the owner. Although with a
different syntax, it is already possible to specify this information by using
system parameters. As part of this evaluation, the visual scalability of such
swimlanes should be taken into account. It is not clear, after all, whether this
construct could be applied with success to scenarios involving the interaction
of a large number of parties. In addition to sequential and parallel list-based
loops, an intermediate approach based on pipelines could also be an interesting
extension. Similar to [25], the values of the input list would be processed by
the tasks included in the loop’s body in a pipelined fashion.

� Assuming the availability of appropriate standards to specify the semantics
associated to an interface. Moreover, assuming that the corresponding tools
to use this information for producing goal-directed, automatic service com-
position exist. Then, the JOpera visual development environment could be
extended by integrating such functionality. For instance, it would become
possible – up to a certain extent – to provide features such as automatic pro-
cess completion or automatic generation of mappings between mismatching
service interfaces.

� With the aim of increasing the heterogeneity of the services that can be com-
posed in a process, the list of component types supported by JOpera presented
in Chapter 4 should be extended further. This way, the validity of JOpera’s
component meta-model would be confirmed and the system could be applied

199

9. CONCLUSION

to a even wider set of domains. For example, by adding support for Grid ser-
vices (as opposed to Web services), processes could be used to build Grid-based
distributed computations.

� In Chapter 5 the syntax of the Opera process Modeling Language has been de-
fined as a particular kind of XML syntax. However, the semantics of the Opera
process Modeling Language was defined operationally, as embedded into the
corresponding compilers (Chapter 6). Thus, producing a formal description
of this semantics, based, e.g., on the π-calculus [162] would be a useful line of
work, as many existing model checking tools based on such formal representa-
tions could augment the current set of available tools.

� The topic of modeling service conversations was only briefly touched by this
dissertation. On the one hand, a process can be used in a straightforward man-
ner for modeling a particular interaction between two or more parties based
on synchronous and asynchronous message exchanges (Section 4.10). On the
other hand, due to the lack of a standardized way of modeling such interac-
tion protocols, it is still difficult to provide automatic tools that can statically
verify that a process represents a valid instance of a given conversation.

� We claim that the architecture of JOpera’s kernel presented in Chapter 7 is
flexible enough that several different implementations of its internal system
components can be used without modifying the structure of the system, and,
most important, without affecting the compiler. Therefore, within the frame-
work of such flexible architecture, it is possible to implement critical system
components – the ones implementing abstractions such as the task scheduler,
the event queues and the state information storage – using different tech-
nologies (e.g., peer to peer systems, replicated databases, messaging systems).
With this, it becomes possible to perform a detailed analysis of the level of
performance that can be achieved with each solution. These results can be
compared with the deployment constraints and additional features provided
by each implementation technology in order to determine what are the require-
ments for providing given quality of service guarantees.

200

A. Opera Modeling Language
Schema

Here is the formal definition of the Opera Modeling Language first described in
Chapter 5 written using the XML Schema notation [247].

<?xml version="1.0" encoding="UTF-8"?>

<!--

XML Schema for the Opera Modeling Language (OML)

version 2.0

(C)2001-2004 Cesare Pautasso, ETH Zurich

Fri Apr 16 15:06:03 2004

-->

<xs:schema targetNamespace="http://www.iks.ethz.ch/jopera/oml"

xmlns:xs="http://www.w3.org/2001/XMLSchema">

<!-- Root Element -->

<xs:element name="OCR">

<xs:annotation><xs:documentation>

Root Element: The root element of an Opera Markup Language document
</xs:documentation></xs:annotation>

<xs:complexType>

<xs:attribute name="VER" type="xs:string" use="required"/><!-- Version -->

<xs:attribute name="MAXID" type="xs:integer" use="required"/><!-- NextObjectID -->

<xs:all>

<xs:element name="PROCS" minOccurs="0" maxOccurs="1"><!-- Processes -->

<xs:sequence>

<xs:element ref="PROC" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:element>

<xs:element name="PROGRAMS" minOccurs="0" maxOccurs="1"><!-- Programs -->

<xs:sequence>

<xs:element ref="PROGRAM" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:element>

<xs:element name="COMPS" minOccurs="0" maxOccurs="1"><!-- ComponentTypes -->

<xs:sequence>

<xs:element ref="COMP" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:element>

</xs:all>

</xs:complexType>

</xs:element>

<!-- Abstract Elements -->

201

A. OPERA MODELING LANGUAGE SCHEMA

<xs:element name="Object">

<xs:annotation><xs:documentation>

Object Element: Any object with an ID. If not specified, all other elements extend this basic one, as every ele-
ment in an OML document must be uniquely identifiable
</xs:documentation></xs:annotation>

<xs:complexType>

<xs:attribute name="OID" type="xs:ID" use="required"/><!-- ObjectID -->

<xs:attribute name="CS" type="CompilerState" use="required"/><!-- CompilerState -->

</xs:complexType>

</xs:element>

<xs:simpleType name="CompilerState">

<xs:restriction base="xs:string">

<xs:enumeration value="Ok"/>

<xs:enumeration value="Comment"/>

<xs:enumeration value="Error"/>

<xs:enumeration value="Warning"/>

</xs:restriction>

</xs:simpleType>

<xs:element name="NamedObject">

<xs:annotation><xs:documentation>

NamedObject Element: It represents any element with a name and an optional description
</xs:documentation></xs:annotation>

<xs:complexType>

<xs:extension base="Object">

<xs:attribute name="NAME" type="xs:string" use="required"/><!-- Name -->

<xs:attribute name="DESC" type="xs:string"/><!-- Description -->

</xs:extension>

</xs:complexType>

</xs:element>

<xs:element name="Interface">

<xs:annotation><xs:documentation>

Interface Element: This element represents the interface of any process element which can exchange data. The in-
terface of a Process or a Program consists of input and output lists of user-defined parameters. In case of Compo-
nentTypes and AccessMethods, such parameter lists are used for defining system parameters
</xs:documentation></xs:annotation>

<xs:complexType>

<xs:extension base="NamedObject">

<xs:attribute name="AUTHOR" type="xs:string" use="required"/><!-- Author -->

<xs:all>

<xs:element name="INBOX" minOccurs="0" maxOccurs="1"><!-- Inbox -->

<xs:sequence>

<xs:element ref="PARAM" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:element>

<xs:element name="OUTBOX" minOccurs="0" maxOccurs="1"><!-- Outbox -->

<xs:sequence>

<xs:element ref="PARAM" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:element>

</xs:all>

</xs:extension>

</xs:complexType>

</xs:element>

<!-- Process Elements -->

<xs:element name="PROC">

<xs:annotation><xs:documentation>

Process Element: A Process contains a number of tasks connected by data and control flow graphs, which are de-
fined visually. In JOpera, a process is the smallest executable unit of composition. It describes how a set of ser-
vice invocations are composed together. Through the SubProcess construct, processes can also be di-
rectly reused as components within other processes. Similarly, processes can be published as Web services for exter-
nal reuse. To model and control its level of reuse, a process has the following attributes
</xs:documentation></xs:annotation>

<xs:complexType>

202

<xs:extension base="Interface">

<xs:attribute name="PUBLISHED" type="xs:boolean" use="required"/><!-- Published -->

<xs:attribute name="SUBPROC" type="xs:boolean" use="required"/><!-- SubProcess -->

<xs:attribute name="ABSTRACT" type="xs:boolean" use="required"/><!-- Abstract -->

<xs:all>

<xs:element name="VIEWS" minOccurs="0" maxOccurs="1"><!-- Views -->

<xs:sequence>

<xs:element ref="VIEW" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:element>

<xs:element name="DATAFLOW" minOccurs="0" maxOccurs="1"><!-- Dataflow -->

<xs:sequence>

<xs:element ref="BIND" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:element>

<xs:element name="CONSTS" minOccurs="0" maxOccurs="1"><!-- Constants -->

<xs:sequence>

<xs:element ref="PARAM" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:element>

<xs:element name="TASKS" minOccurs="0" maxOccurs="1"><!-- Tasks -->

<xs:sequence>

<xs:element ref="Task" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:element>

</xs:all>

</xs:extension>

</xs:complexType>

</xs:element>

<xs:element name="Task">

<xs:annotation><xs:documentation>

Task Element: A task represent any component of a process: a basic step in the computation modeled by a pro-
cess. The description of how such steps depend on each other is also part of the content of a task. More pre-
cisely, its Activator and Condition attributes model the basic control flow dependencies linking a task to its pre-
decessors. The remaining attributes are used for describing more advanced scheduling and synchronization op-
tions, in case the task belongs to a list-based loop, i.e., it is found within a pair of split and merge opera-
tors. The concrete forms of a task, which appear in an OML document, are either the Activity or the Sub-Process el-
ements, which contain additional information modeling the actual service to be invoked as part of the task execution
</xs:documentation></xs:annotation>

<xs:complexType>

<xs:extension base="NamedObject">

<xs:attribute name="ACT" type="xs:string" use="required"/><!-- Activator -->

<xs:attribute name="COND" type="xs:string" use="required"/><!-- Condition -->

<xs:attribute name="PRIORITY" type="xs:integer"/><!-- Priority -->

<xs:attribute name="DEP" type="DependencyType"/><!-- Dependency -->

<xs:attribute name="SYNCH" type="SynchType"/><!-- Synchronization -->

<xs:attribute name="FAILH" type="FailureHandlingType"/><!-- FailureHandling -->

</xs:extension>

</xs:complexType>

</xs:element>

<xs:simpleType name="DependencyType">

<xs:restriction base="xs:string">

<xs:enumeration value="Finished"/>

<xs:enumeration value="Failed"/>

<xs:enumeration value="FinishOrFailed"/>

<xs:enumeration value="Aborted"/>

<xs:enumeration value="None"/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="SynchType">

<xs:restriction base="xs:string">

<xs:enumeration value="WaitForAll"/>

<xs:enumeration value="WaitForOne"/>

</xs:restriction>

</xs:simpleType>

203

A. OPERA MODELING LANGUAGE SCHEMA

<xs:simpleType name="FailureHandlingType">

<xs:restriction base="xs:string">

<xs:enumeration value="FailForOne"/>

<xs:enumeration value="FailForAll"/>

<xs:enumeration value="FailForPercent"/>

</xs:restriction>

</xs:simpleType>

<xs:element name="ACTIVITY">

<xs:annotation><xs:documentation>

Activity Element: An Activity is a task which references a program
</xs:documentation></xs:annotation>

<xs:complexType>

<xs:extension base="Task">

<xs:attribute name="PROGRAMID" type="xs:IDREF" use="required"/><!-- ProgramID -->

</xs:extension>

</xs:complexType>

</xs:element>

<xs:element name="SUBPROC">

<xs:annotation><xs:documentation>

SubProcess Element: A SubProcess is a task which references a process.
</xs:documentation></xs:annotation>

<xs:complexType>

<xs:extension base="Task">

<xs:attribute name="PROCESSID" type="xs:IDREF" use="required"/><!-- ProcessID -->

</xs:extension>

</xs:complexType>

</xs:element>

<!-- Data Flow Elements -->

<xs:element name="PARAM">

<xs:annotation><xs:documentation>

Parameter Element: A Parameter models a data container that can be attached to a Process, a Program, an Ac-
cessMethod and a ComponentType.
</xs:documentation></xs:annotation>

<xs:complexType>

<xs:extension base="NamedObject">

<xs:attribute name="TYPE" type="xs:string"/><!-- Type -->

<xs:attribute name="VALUE" type="xs:string"/><!-- Value -->

</xs:extension>

</xs:complexType>

</xs:element>

<xs:element name="BIND">

<xs:annotation><xs:documentation>

Binding Element: A data flow Binding is an edge linking a source and a destination param-
eter in the data flow graph of the Process. Parameters can belong to a process (including con-
stants), or a task. For tasks, the parameters are defined in the referenced program/process. By default, a bind-
ing models a data transfer between a pair of parameters. Additionally, using the ActionType and ActionData at-
tributes, it is possible to specify the application of a split or merge operator to the data in transit.
</xs:documentation></xs:annotation>

<xs:complexType>

<xs:extension base="Object">

<xs:attribute name="SOURCETYPE" type="BindRefType" use="required"/><!-- SourceType -->

<xs:attribute name="SOURCEPID" type="xs:IDREF" use="required"/><!-- SourceParam -->

<xs:attribute name="DESTTYPE" type="BindRefType" use="required"/><!-- DestType -->

<xs:attribute name="DESTPID" type="xs:IDREF" use="required"/><!-- DestParam -->

<xs:attribute name="ACTION" type="ActionType"/><!-- ActionType -->

<xs:attribute name="ACTIONDATA" type="xs:string"/><!-- ActionData -->

</xs:extension>

</xs:complexType>

</xs:element>

<xs:simpleType name="BindRefType">

<xs:restriction base="xs:string">

204

<xs:enumeration value="Normal"/>

<xs:enumeration value="System"/>

<xs:enumeration value="Constant"/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="ActionType">

<xs:restriction base="xs:string">

<xs:enumeration value="Copy"/>

<xs:enumeration value="Split"/>

<xs:enumeration value="Merge"/>

</xs:restriction>

</xs:simpleType>

<!-- JOpera Visual Composition Language (JVCL) Elements -->

<xs:element name="VIEW">

<xs:annotation><xs:documentation>

View Element: A view is a visual representation of the control flow or data flow graphs of the enclosing process el-
ement. A graph is modeled both in terms of its topology (edges linking nodes) as well as its two dimensional lay-
out (nodes are displayed as rectangles located at certain coordinates, while edges can be routed following a set of con-
trol points)
</xs:documentation></xs:annotation>

<xs:complexType>

<xs:extension base="NamedObject">

<xs:attribute name="VTYPE" type="ViewType" use="required"/><!-- ViewType -->

<xs:attribute name="PAPER" type="xs:string" use="required"/><!-- PaperSize -->

<xs:all>

<xs:element name="ARROWS" minOccurs="0" maxOccurs="1"><!-- Arrows -->

<xs:sequence>

<xs:element ref="ARROW" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:element>

<xs:element name="BOXES" minOccurs="0" maxOccurs="1"><!-- Boxes -->

<xs:sequence>

<xs:element ref="Box" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:element>

<xs:element name="GROUPS" minOccurs="0" maxOccurs="1"><!-- Groups -->

<xs:sequence>

<xs:element ref="GROUPBOX" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:element>

</xs:all>

</xs:extension>

</xs:complexType>

</xs:element>

<xs:simpleType name="ViewType">

<xs:restriction base="xs:string">

<xs:enumeration value="Controlflow"/>

<xs:enumeration value="Dataflow"/>

</xs:restriction>

</xs:simpleType>

<xs:element name="ViewObject">

<xs:annotation><xs:documentation>

ViewObject Element: Any element inside a View element should extend this one. In the case of Arrows and Ref-
Boxes, it represents a visible object which references an element in the rest of the process model.
</xs:documentation></xs:annotation>

<xs:complexType>

<xs:extension base="Object">

</xs:extension>

</xs:complexType>

</xs:element>

<xs:element name="GROUPBOX">

<xs:annotation><xs:documentation>

205

A. OPERA MODELING LANGUAGE SCHEMA

GroupBox Element: A Group is a semantically transparent grouping of visual objects used to constrain the auto-
matic layout algorithms
</xs:documentation></xs:annotation>

<xs:complexType>

<xs:extension base="ViewObject">

<xs:attribute name="ELEMENTS" type="xs:IDREF" use="required"/><!-- Elements -->

</xs:extension>

</xs:complexType>

</xs:element>

<xs:element name="Box">

<xs:annotation><xs:documentation>

Box Element: A box is any rectangle displayed in a view, it is further specialized by the TextBox and Ref-
Box concrete elements. All coordinates of the graphic elements are stored using floating point values. Al-
though the origin of the coordinate system should be mapped to the center of the screen, no explicit assump-
tion is made about the direction of the X and Y axis
</xs:documentation></xs:annotation>

<xs:complexType>

<xs:extension base="ViewObject">

<xs:attribute name="X" type="Float" use="required"/><!-- X -->

<xs:attribute name="Y" type="Float" use="required"/><!-- Y -->

<xs:attribute name="DX" type="Float" use="required"/><!-- Width -->

<xs:attribute name="DY" type="Float" use="required"/><!-- Height -->

</xs:extension>

</xs:complexType>

</xs:element>

<xs:element name="RBOX">

<xs:annotation><xs:documentation>

RefBox Element: A RefBox is a node of the graph, which represents a task, a parameter or the process it-
self. The text shown inside the RefBox is extracted from the referred document element. These boxes are au-
tomatically resized to fit with the displayed text
</xs:documentation></xs:annotation>

<xs:complexType>

<xs:extension base="Box">

<xs:attribute name="REF" type="xs:IDREF" use="required"/><!-- Reference -->

<xs:attribute name="REFTYPE" type="BRefType" use="required"/><!-- ReferenceType -->

<xs:all>

<xs:element name="BOXES" minOccurs="0" maxOccurs="1"><!-- Boxes -->

<xs:sequence>

<xs:element ref="RBOX" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:element>

</xs:all>

</xs:extension>

</xs:complexType>

</xs:element>

<xs:simpleType name="BRefType">

<xs:restriction base="xs:string">

<xs:enumeration value="Activity"/><!-- Activity -->

<xs:enumeration value="SubProcess"/><!-- SubProcess -->

<xs:enumeration value="DataInBox"/><!-- Input Parameter -->

<xs:enumeration value="DataOutBox"/><!-- Output Parameter -->

<xs:enumeration value="ProcessInput"/><!-- Process Input Placeholder -->

<xs:enumeration value="ProcessOutput"/><!-- Process Output Placeholder -->

<xs:enumeration value="Const"/><!-- Constant Parameter -->

<xs:enumeration value="SysInBox"/><!-- System Input Parameter -->

<xs:enumeration value="SysOutBox"/><!-- System Output Parameter -->

</xs:restriction>

</xs:simpleType>

<xs:element name="TEXTBOX">

<xs:annotation><xs:documentation>

TextBox Element: A TextBox is used to display textual comments inside a view. If a text box over-
laps with any other ViewObjects, such objects appear as commented out and the corresponding process ele-
ments are ignored by the compiler
</xs:documentation></xs:annotation>

206

<xs:complexType>

<xs:extension base="Box">

<xs:attribute name="TEXT" type="xs:string" use="required"/><!-- Text -->

</xs:extension>

</xs:complexType>

</xs:element>

<xs:element name="ARROW">

<xs:annotation><xs:documentation>

Arrow Element: An arrow is a directed edge linking two boxes. Depending on the type of the container View ele-
ment, it represents a control flow dependency between two task boxes, or a data flow binding between a pair of pa-
rameters. An arrow cannot exist without both of the boxes which it links
</xs:documentation></xs:annotation>

<xs:complexType>

<xs:extension base="ViewObject">

<xs:attribute name="ID1" type="xs:IDREF" use="required"/><!-- Source -->

<xs:attribute name="ID2" type="xs:IDREF" use="required"/><!-- Destination -->

<xs:attribute name="CONTROLPOINTS" type="xs:string"/><!-- ControlPoints -->

<xs:attribute name="REF" type="xs:IDREF"/><!-- Reference -->

<xs:attribute name="REFTYPE" type="ARefType" use="required"/><!-- ReferenceType -->

</xs:extension>

</xs:complexType>

</xs:element>

<xs:simpleType name="ARefType">

<xs:restriction base="xs:string">

<xs:enumeration value="Copy"/>

<xs:enumeration value="Split"/>

<xs:enumeration value="Merge"/>

<xs:enumeration value="Finished"/>

<xs:enumeration value="Failed"/>

<xs:enumeration value="FinishOrFail"/>

<xs:enumeration value="Aborted"/>

<xs:enumeration value="Unreachable"/>

</xs:restriction>

</xs:simpleType>

<!-- Program Library Elements -->

<xs:element name="PROGRAM">

<xs:annotation><xs:documentation>

Program Element: A Program is a component referred by the activities of a process and represents the invo-
cation of a service. Similar to WSDL, a Program both includes information on the interface of a ser-
vice, as well as multiple AccessMethod elements which refer to the actual component type to be used while ac-
cessing the service.
</xs:documentation></xs:annotation>

<xs:complexType>

<xs:extension base="Interface">

<xs:attribute name="SIZE" type="xs:integer" use="required"/><!-- Size -->

<xs:attribute name="RESTART" type="xs:integer" use="required"/><!-- Restart -->

<xs:all>

<xs:element name="ACCESS" minOccurs="0" maxOccurs="1"><!-- Access Methods -->

<xs:sequence>

<xs:element ref="METHOD" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:element>

</xs:all>

</xs:extension>

</xs:complexType>

</xs:element>

<xs:element name="METHOD">

<xs:annotation><xs:documentation>

AccessMethod Element: An access method contains the system parameters that control how to access the ser-
vices provided by the specified component type. It also defines a mapping between the program input parameters -
- which are application dependent and defined by the user -- to the system input parameters of the Component-
Type, which depend on the mechanisms and the protocols used to perform the service invocation
</xs:documentation></xs:annotation>

207

A. OPERA MODELING LANGUAGE SCHEMA

<xs:complexType>

<xs:extension base="Interface">

<xs:attribute name="COMP" type="xs:IDREF" use="required"/><!-- ComponentType -->

</xs:extension>

</xs:complexType>

</xs:element>

<!-- Component Type Modeling Elements -->

<xs:element name="COMP">

<xs:annotation><xs:documentation>

ComponentType Element: A Component Type is a template for an AccessMethod, it defines a set of input and out-
put system parameters that are used to generate the ones of the access method referencing it
</xs:documentation></xs:annotation>

<xs:complexType>

<xs:extension base="Interface">

<xs:attribute name="PARENT" type="xs:IDREF" use="required"/><!-- Extends -->

<xs:attribute name="ABSTRACT" type="xs:boolean" use="required"/><!-- Abstract -->

</xs:extension>

</xs:complexType>

</xs:element>

</xs:schema>

208

B. JOpera Compiler Output

In this appendix we include the full listing of the Java executable code produced by
JOpera’s compiler applied to the Example 4.1 on page 55. For more information on
how compilation works, please turn to Section 6.5.4 on page 137.

1

2 //JOpera Process Template Plugin
3 //OML2Java Compiler Version v1.65 20040130
4

5 package ch.ethz.bioopera.templates;

6

7 import ch.ethz.bioopera.kernel.*;

8 import ch.ethz.bioopera.ws.tools.*;

9 import ch.ethz.bioopera.common.*;

10 import java.util.*;

11

12 public class TStockQuoteConvertTemplate extends Template

13 {
15 public String getName()

16 {
17 return "StockQuoteConvert";

18 }
19

20 public String getAuthor()

21 {
22 return "CP";

23 }
24

25 public String getDescription()

26 {
27 return "This process returns the 20-minute delayed stock quote of a given stock market

symbol, converted to the currency of the given country.";

28 }
29

30 public String getCompileDate()

31 {
32 return "2004-02-06 15:45:32.937";

33 }
34

35 public void Evaluate(TID Context) throws MemoryException

36 {
37 boolean part ok;

38 int nc;

39 State State PROC;

40

41 TID Context PROC = PROC(Context);

42 TID Context TASK getStockQuote = TASK(Context, "getStockQuote");

43 TID Context TASK getExchangeRate = TASK(Context, "getExchangeRate");

44 TID Context TASK Multiply = TASK(Context, "Multiply");

45

46 State PROC = Memory.getState(Context PROC);

47

48 if (State PROC == State.INITIAL)

49 {
50 TimeStamp(Context PROC, Box.StartTime);

209

B. JOPERA COMPILER OUTPUT

52 Memory.Copy(MakeAddress(Context PROC, Box.Input, "symbol"),

53 MakeAddress(Context TASK getStockQuote, Box.Input, "symbol"));

54

55 InputParams.clear();

56 InputParams.put("symbol", Memory.Load(MakeAddress(Context TASK getStockQuote,

57 Box.Input,

58 "symbol")));

59

60 TimeStamp(Context TASK getStockQuote, Box.StartTime);

61 Exec.Start(Context TASK getStockQuote, InputParams);

62

63 Memory.Copy(MakeAddress(Context PROC, Box.Input, "country"),

64 MakeAddress(Context TASK getExchangeRate,

65 Box.Input,

66 "country2"));

67

68 InputParams.clear();

69 InputParams.put("country1", Memory

70 .Load(MakeAddress(Context TASK getExchangeRate,

71 Box.Input,

72 "country1")));

73 InputParams.put("country2", Memory

74 .Load(MakeAddress(Context TASK getExchangeRate,

75 Box.Input,

76 "country2")));

77

78 String p country1 = (String) InputParams.get("country1");

79 String p country2 = (String) InputParams.get("country2");

80

81 if (!(p country1.equals(p country2)))

82 {
83 TimeStamp(Context TASK getExchangeRate, Box.StartTime);

84 Exec.Start(Context TASK getExchangeRate, InputParams);

85 }
86 else
87 {
88 Memory.setState(Context TASK getExchangeRate, State.UNREACHABLE);

89 }
90 Memory.setState(Context PROC, State.RUNNING);

91 }
92 else
93 {
94 State State Context = Memory.getState(Context);

95 if ((State PROC == State.RUNNING)

96 || (State Context == State.FINISHING)

97 || (State Context == State.FAILED)

98 || (State Context == State.UNREACHABLE))

99 {
100 State State getStockQuote = Memory.getState(Context TASK getStockQuote);

101 State State getExchangeRate = Memory.getState(Context TASK getExchangeRate);

102 State State Multiply = Memory.getState(Context TASK Multiply);

103

104 if ((State getStockQuote == State.FINISHING))

105 {
106 Memory.Store(MakeAddress(Context TASK getStockQuote,

107 Box.Output,

108 "Result"), (String) Results.get("Result"));

109 Memory.Copy(MakeAddress(Context TASK getStockQuote,

110 Box.Output,

111 "Result"),

112 MakeAddress(Context PROC, Box.Output, "quote"));

113

114 Memory.setState(Context TASK getStockQuote, State.FINISHED);

115 State getStockQuote = State.FINISHED;

116 }
117

118 if ((State getExchangeRate == State.FINISHING))

119 {

210

120 Memory.Store(MakeAddress(Context TASK getExchangeRate,

121 Box.Output,

122 "Result"), (String) Results.get("Result"));

124 Memory.setState(Context TASK getExchangeRate, State.FINISHED);

125 State getExchangeRate = State.FINISHED;

126 }
127

128 if (State Multiply == State.INITIAL)

129 {
130 if ((State getStockQuote == State.FINISHED)

131 && (State getExchangeRate == State.FINISHED))

132 {
133 Memory.Copy(MakeAddress(Context TASK getExchangeRate,

134 Box.Output,

135 "Result"),

136 MakeAddress(Context TASK Multiply,

137 Box.Input,

138 "b"));

139 Memory.Copy(MakeAddress(Context TASK getStockQuote,

140 Box.Output,

141 "Result"),

142 MakeAddress(Context TASK Multiply,

143 Box.Input,

144 "a"));

145

146 InputParams.clear();

147 InputParams.put("a", Memory

148 .Load(MakeAddress(Context TASK Multiply,

149 Box.Input,

150 "a")));

151 InputParams.put("b", Memory

152 .Load(MakeAddress(Context TASK Multiply,

153 Box.Input,

154 "b")));

155

156 TimeStamp(Context TASK Multiply, Box.StartTime);

157 Exec.Start(Context TASK Multiply, InputParams);

158 }
159 else
160 if (((State getStockQuote != State.FINISHED)

161 && (State getStockQuote != State.INITIAL)

162 && (State getStockQuote != State.RUNNING)

163 && (State getStockQuote != State.WAITING)

164 && (State getStockQuote != State.FINISHING))

165 || ((State getExchangeRate != State.FINISHED)

166 && (State getExchangeRate != State.INITIAL)

167 && (State getExchangeRate != State.RUNNING)

168 && (State getExchangeRate != State.WAITING)

169 && (State getExchangeRate != State.FINISHING)))

170 {
171 Memory.setState(Context TASK Multiply,

172 State.UNREACHABLE);

173 }
174 }
176 if ((State Multiply == State.FINISHING))

177 {
178 Memory.Store(MakeAddress(Context TASK Multiply,

179 Box.Output,

180 "result"), (String) Results.get("result"));

181

182 Memory.Copy(MakeAddress(Context TASK Multiply,

183 Box.Output,

184 "result"),

185 MakeAddress(Context PROC, Box.Output, "quote"));

186

187 Memory.setState(Context TASK Multiply, State.FINISHED);

188 State Multiply = State.FINISHED;

189 }

211

B. JOPERA COMPILER OUTPUT

190

191 if (((State Multiply == State.FINISHED) || (State Multiply == State.UNREACHABLE)))

192 {
193 if (State PROC != State.FINISHED)

194 Memory.setState(Context PROC, State.FINISHED);

195 }
197 if ((State getStockQuote == State.FAILED)

198 || (State getExchangeRate == State.FAILED)

199 || (State Multiply == State.FAILED))

200 {
201 if (State PROC != State.FAILED)

202 Memory.setState(Context PROC, State.FAILED);

203 }
204 }
205

206 if ((State PROC == State.FINISHED) || (State PROC == State.FAILED))

207 {
208 Results.clear();

209 Results.put("quote", Memory.Load(MakeAddress(Context PROC,

210 Box.Output,

211 "quote")));

213 Completed(Context PROC);

214 }
215 }
216 }
217

218 public void SetupImage(TID Context, Map Params)

219 {
220 SetupSystemBox(PROC(Context));

221 SetupParam(PROC(Context), Box.Input, "symbol", Params.get("symbol"));

222 SetupParam(PROC(Context), Box.Input, "country", Params.get("country"));

223 SetupParam(PROC(Context), Box.Output, "quote", "");

225 TID Context TASK getStockQuote = TASK(Context, "getStockQuote");

226 SetupSystemBox(Context TASK getStockQuote);

227 SetupParam(Context TASK getStockQuote, Box.System, Box.Name, "getStockQuote");

228 SetupParam(Context TASK getStockQuote, Box.System, Box.Type, Box.Activity);

229 SetupParam(Context TASK getStockQuote,

230 Box.System,

231 Box.Prog,

232 "StockQuotePort getStockQuote");

233 SetupParam(Context TASK getStockQuote, Box.System, Box.MaxRestart, "0");

234 SetupParam(Context TASK getStockQuote, Box.Input, "symbol", "");

235 SetupParam(Context TASK getStockQuote, Box.Output, "Result", "");

237 TID Context TASK getExchangeRate = TASK(Context, "getExchangeRate");

238 SetupSystemBox(Context TASK getExchangeRate);

239 SetupParam(Context TASK getExchangeRate, Box.System, Box.Name, "getExchangeRate");

240 SetupParam(Context TASK getExchangeRate, Box.System, Box.Type, Box.Activity);

241 SetupParam(Context TASK getExchangeRate,

242 Box.System,

243 Box.Prog,

244 "CurrencyExchangePort getRate");

245 SetupParam(Context TASK getExchangeRate, Box.System, Box.MaxRestart, "0");

246 SetupParam(Context TASK getExchangeRate, Box.Input, "country1", "usa");

247 SetupParam(Context TASK getExchangeRate, Box.Input, "country2", "");

248 SetupParam(Context TASK getExchangeRate, Box.Output, "Result", "");

250 TID Context TASK Multiply = TASK(Context, "Multiply");

251 SetupSystemBox(Context TASK Multiply);

252 SetupParam(Context TASK Multiply, Box.System, Box.Name, "Multiply");

253 SetupParam(Context TASK Multiply, Box.System, Box.Type, Box.Activity);

254 SetupParam(Context TASK Multiply, Box.System, Box.Prog, "ProgramMul JS");

255 SetupParam(Context TASK Multiply, Box.System, Box.MaxRestart, "0");

256 SetupParam(Context TASK Multiply, Box.Input, "a", "");

257 SetupParam(Context TASK Multiply, Box.Input, "b", "");

258 SetupParam(Context TASK Multiply, Box.Output, "result", "");

259 }
260 }

212

Bibliography

[1] R. Agrawal, A. Somani, and Y. Xu. Storage and Querying of E-Commerce Data. In VLDB
2001 [13], pages 149–158. 156

[2] R. Allen and D. Garlan. A formal basis for architectural connection. ACM Transactions on
Software Engineering and Methodology (TOSEM), 6(3):213–249, July 1997. 5

[3] G. Alonso. Myths around Web services. Bulletin of the IEEE Technical Committee on Data
Engineering, 25(4):3–9, December 2002. 45

[4] G. Alonso, W. Bausch, C. Pautasso, M. Hallett, and A. Kahn. Dependable Computing in
Virtual Laboratories. In ICDE2001 [264], pages 235–242. 11, 17, 32, 37

[5] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web services: Concepts, Architectures
and Applications. Springer, November 2003. 8, 9, 46

[6] G. Alonso, U. Fiedler, C. Hagen, A. Lazcano, H. Schuldt, and N. Weiler. WISE: Business to
business e-commerce. In RIDE’99 [84], pages 132–139. 11, 17

[7] G. Alonso and C. Hagen. Geo-Opera: Workflow Concepts for Spatial Processes. In SSD97
[205], pages 238–258. 17

[8] G. Alonso and C. Hagen. Beyond the black box: event-based inter-process communication
in process support systems. In ICDCS’99 [90]. 17

[9] G. Alonso, C. Hagen, H.-J. Schek, and M. Tresch. Distributed processing over stand-alone
systems and applications. In VLDB 1997 [118], pages 575–579. 16

[10] G. Alonso, M. Kamath, D. Agrawal, A. El Abbadi, R. Günthör, and C. Mohan. Advanced
transaction models in the workflow contexts. In ICDE 1996 [219], pages 574–581. 44

[11] Altova. Mapforce 2004. http://www.altova.com/products_mapforce.html. 6

[12] Apache Software Foundation. AXIS version 1.1. http://xml.apache.org/axis. 9, 180

[13] P. M. G. Apers, P. Atzeni, S. Ceri, S. Paraboschi, K. Ramamohanarao, and R. T. Snodgrass,
editors. Proceedings of 27th International Conference on Very Large Data Bases (VLDB
2001), Roma, Italy, September 2001. 213, 216

[14] P. M. G. Apers, M. Bouzeghoub, and G. Gardarin, editors. Proceedings of the 5th Interna-
tional Conference on Advances in Database Technology (EDBT’96), Volume 1057 of Lecture
Notes in Computer Science, Avignon, France, March 1996. Springer. 219

[15] V. R. Aragao and A. A. Fernandes. Conflict resolution in Web service federations. In
ICWS-Europe 2003 [119], pages 109–122. 6, 65

[16] U. Assmann. Invasive Software Composition. Springer, 2003. ethbib 782616. 7

[17] M. Auguston and A. Delgado. Iterative constructs in the visual data flow language. In VL97
[228], pages 152–159. 6

[18] T. Baeyens. Java business process management. http://www.jbpm.org/. 45

213

Bibliography

[19] M. K. Basu. SeWeR: A customizable and integrated dynamic HTML interface to bioinfor-
matics services. Bioinformatics, 17(6):577–578, 2001. 54

[20] T. Bauer and P. Dadam. A distributed execution environment for large-scale workflow
management systems with subnets and server migration. In CoopIS’97 [46], pages 99–108.
16

[21] W. Bausch. OPERA-G - A Microkernel for Computational Grids. PhD thesis, Diss. ETH
Nr. 15395, December 2003. 12, 17, 115, 121, 123, 131, 161, 166, 178, 198

[22] W. Bausch, C. Pautasso, and G. Alonso. Programming for dependability in a service based
grid. In CCGrid03 [137], pages 164–171. 11, 17, 75

[23] W. Bausch, C. Pautasso, R. Schaeppi, and G. Alonso. Bioopera: Cluster-aware computing.
In CLUSTER 2002 [93], pages 99–106. 17, 75, 172

[24] A. Bayucan, R. Henderson, C. Lesiak, B. Mann, T. Proett, and D. Tweten. Portable Batch
System External Reference Specification. MRJ Technology Solutions, May 1999. 75

[25] A. Beguelin, J. J. Dongarra, A. Geist, R. Manchek, K. Moore, R. Wade, and V. S. Sunderam.
HeNCE: Graphical development tools for network-based concurrent computing. In SHPCC-
92 [241], pages 129–136. 5, 31, 199

[26] P. Bernus, K. Mertins, and G. Schmidt, editors. Handbook on Architecture of Information
Systems. Springer, Berlin, 1998. ethbib 778781. 11

[27] B. Bhargava. A study of communication delays for web transactions. Cluster Computing,
4(4):319–333, October 2001. 59

[28] D. Box. Essential COM. Addison Wesley, 6th edition, 2000. eth-infk IH.98.26. 7

[29] BPMI. BPML: Business Process Modeling Language 1.0. Business Process Management
Initiative, Match 2001. http://www.bpmi.org. 9, 45, 101, 114

[30] BPMI. BPMN: Business Process Modeling Notation 1.0. Business Process Management
Initiative, 2003. http://www.bpmi.org. 44

[31] F. P. Brooks. No silver bullet: Essence and accidents of software engineering. COMPUTER,
20(4):10–19, April 1987. 7

[32] J. C. Browne, S. I. Hyder, J. Dongarra, K. Moore, and P. Newton. Visual programming and
debugging for parallel computing. IEEE Parallel and Distributed Technology: Systems and
Applications, 3(1):75–83, Spring 1995. 5

[33] A. Buchmann, F. Casati, L. Fiege, M.-C. Hsu, and M.-C. Shan, editors. Proceedings of the
Third International Workshop on Technologies for E-Services (TES 2002), Volume 2444 of
Lecture Notes in Computer Science, Hong Kong, China, August 2002. Springer. 221

[34] T. Bultan, X. Fu, R. Hull, and J. Su. Conversation specification: a new approach to design
and analysis of e-service composition. In WWW 2003 [103], pages 403–410. 9

[35] M. M. Burnett, M. J. Baker, C. Bohus, P. Carlson, S. Yang, and P. van Zee. Scaling up
visual programming languages. COMPUTER, 28(3):45–54, March 1995. 21, 147, 150

[36] C. Bussler. B2B Integration. Concepts and Architecture. Springer, 2002. 22

[37] A. Caliano. Automatic layout. Master’s thesis, ETH Department of Computer Science,
March 2003. 150

[38] S. Cannan and G. Otten. SQL - The Standard Handbook. Mc Graw Hill, 1993. 62

[39] J. Cao, S. A. Jarvis, S. Saini, and G. R. Nudd. Gridflow: Workflow management for grid
computing. In CCGrid03 [137], pages 198–205. 11

214

[40] N. Carriero and D. Gelernter. How to Write Parallel Programs. MIT Press, 1990. ethbib
749112. 156

[41] F. Casati and A. Discenza. Modeling and managing interactions among business processes.
Journal of Systems Integration, 10(2):145–168, April 2001. 11

[42] F. Casati and M.-C. Shan. Dynamic and adaptive composition of e-services. Information
Systems, 26:143–163, 2001. 5, 8, 9, 11

[43] T. Catarci, M. F. Costabile, S. Levialdi, and C. Batini. Visual query systems for databases:
A survey. Journal of Visual Languages and Computing, 8(2):215–260, April 1997. 6

[44] S. Ceri, S. Comai, E. Damiani, P. Fraternali, S. Paraboschi, and L. Tanca. XML-GL: a
graphical language for querying and restructuring XML documents. In Proceedings of the
8th International World Wide Web Conference, Toronto, Canada, 1999. 6

[45] S. Ceri, P. Fraternali, A. Bongio, M. Brambilla, S. Comai, and M. Matera. Designing Data-
Intensive Web Applications. Morgan Kaufmann, December 2002. http://www.webml.org.
5, 9

[46] A. L. P. Chen, W. Klas, and M. P. Singh, editors. Proceedings of the 2nd IFCIS Interna-
tional Conference on Cooperative Information Systems (CoopIS’97), Kiawah Island, South
Carolina, USA, June 1997. 214

[47] J.-Y. Chung, K.-J. Lin, and R. G. Mathieu. Web services computing–advancing software
interoperability. COMPUTER, 36(10):35–37, October 2003. 9

[48] J. Church and N. Gandal. Network effects, software provision and standardization. Journal
of Industrial Economics, 40(1):85–103, 1992. 7

[49] Collaxa. BPEL Server and Designer. http://www.collaxa.com. 15

[50] K. Cooper and L. Torczon. Engineering a Compiler. Morgan Kaufmann, 2004. ethbib
783640. 121, 144

[51] G. Copeland and D. Maier. Making smalltalk a database system. In Proceedings of the 1984
ACM SIGMOD international conference on Management of data, pages 316–325, Boston,
Massachusetts, 1984. 9

[52] B. J. Cox. Planning the software industrial revolution. IEEE Software, 7(6):25–33, 1990. 7

[53] P. T. Cox, F. R. Giles, and T. Pietrzykowski. Prograph, In Visual object-oriented program-
ming: concepts and environments, chapter 3, pages 45–66. Manning Publications Co., 1995.
5

[54] P. T. Cox and B. Song. A formal model for component-based software. In HCC 2001 [140],
pages 304–311. 7

[55] M. Crispin. Internet Message Access Protocol. IETF RFC 2060, 1996. 79

[56] J. Crupi, D. Malks, and D. Alur. Core J2EE Patterns: Best practices and design strategies.
Prentice Hall, 2nd edition, 2003. 7

[57] G. Cugola, E. D. Nitto, and A. Fuggetta. The JEDI event-based infrastructure and its appli-
cation to the development of the OPSS WFMS. IEEE Transactions on Software Engineering,
22(12):827–850, September 2001. 15

[58] F. Curbera, R. Khalaf, F. Leymann, and S. Weerawarana. Exception handling in the
BPEL4WS language. In BPM2003 [239], pages 276–290. 13, 26

[59] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica. Wide-area cooperative stor-
age with CFS. In Proceedings of the 18th ACM symposium on Operating systems principles,
pages 202–215, Banff, Alberta, Canada, 2001. 156

215

Bibliography

[60] U. Dayal, M. Hsu, and R. Ladin. Business process coordination: State of the art, trends,
and open issues. In VLDB 2001 [13], pages 3–13. 12

[61] H. M. Deitel, P. J. Deitel, B. DuWaldt, and L. K. Trees. Web services: a Technical Intro-
duction. Prentice Hall, 2003. HES-EIF 681.351 WEB B 02-593. p. 12. 8

[62] J. B. Dennis. Dataflow supercomputers. COMPUTER, 13(11):48–56, 1980. 6, 44

[63] E. di Nitto, L. Lavazza, M. Schiavoni, E. Tracanella, and M. Trombetta. Deriving executable
process descriptions from UML. In ICSE 2002 [230], pages 155–165. 10, 22

[64] A. Dogac, L. Kalichenko, M. T. Ozsu, and A. Sheth, editors. Workflow Management Systems
and Interoperability, Volume 164 of Computer and Systems Sciences. NATO ASI Series, 1997.
11, 220, 221

[65] V. Draluk. Discovering Web services: An Overview. In VLDB 2001 [13], pages 637–640. 9

[66] ebXML. ebXML Business Process Specification Schema (BPSS) 1.01, 2001. http://www.
ebxml.org/specs/ebBPSS.pdf. 9

[67] C. A. Ellis. Information control nets: A mathematical model of office information flow.
In Proceedings of the Conference on Simulation, Measurement and Modeling of Computer
Systems, pages 225–240, Boulder, CO, 1979. 10

[68] D. W. Embley and W. Y. Mok. Developing XML documents with guaranteed ”good” prop-
erties. In ER 2001 [132], pages 426–441. 151

[69] W. Emmerich. Distributed component technologies and their software engineering implica-
tions. In ICSE 2002 [230], pages 537–546. 7

[70] Entigen. BioNavigator. www.bionavigator.com. 54

[71] M. Erwig. Xing: A visual XML query language. Journal of Visual Languages and Computing,
14(1):5–45, February 2003. 6

[72] O. Etzion and P. Scheuermann, editors. 7th International Conference on Cooperative Infor-
mation Systems (CoopIS-2000), Volume 1901 of Lecture Notes in Computer Science, Eilat,
Israel, September 2000. Springer. 225

[73] D. Fensel and C. Bussler. The web service modeling framework wsmf. Electronic Commerce
Research and Applications, 1(2):113–137, Summer 2002. 8

[74] D. Florescu, A. Gruenhagen, and D. Kossmann. Xl: An XML programming language for
web service specification and composition. In WWW2002 [134], pages 65–76. 9

[75] D. Florescu, A. Gruenhagen, and D. Kossmann. Xl: A platform for Web services. In CIDR
2003 [218]. 9

[76] E. Freeman, S. Hupfer, and K. Arnold. JavaSpaces: Principles, Patterns and Practice.
Addison Wesley, 1999. 156

[77] J. C. Freytag, P. C. Lockemann, S. Abiteboul, M. J. Carey, P. G. Selinger, and A. Heuer,
editors. Proceedings of 29th International Conference on Very Large Data Bases (VLDB
2003), Berlin, Germany, September 2003. 225

[78] A. Fuggetta. Software process: A roadmap. In Proceedings of the 22nd International Con-
ference on Software Engineering (ICSE 2000) - Future of Software Engineering Track, pages
25–34, Limerick, Ireland, June 2000. 11

[79] A. Fukunaga, W. Pree, and T. D. Kimura. Functions as objects in a data flow based visual
language. In Proceedings of the 1993 ACM conference on Computer science, pages 215–220,
Indianapolis, IN, February 1993. 6

[80] E. Gamma and K. Beck. Contributing to Eclipse: Principles, Patterns, and Plug-Ins. Addi-
son Wesley, October 2003. 152

216

[81] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable
Object-oriented Software. Addison Wesley, Reading, 1996. 151

[82] D. Gelernter and N. Carriero. Coordination languages and their significance. Communica-
tions of the ACM, 35(2):97–107, February 1992. 7, 9, 43, 44

[83] D. Georgakopoulos, M. F. Hornick, and A. P. Sheth. An overview of workflow management:
From process modelling to workflow automation infrastructure. Distributed and Parallel
Databases, 3(2):119–153, April 1995. 5, 9, 11, 119

[84] D. Georgakopoulos and L. Maciaszek, editors. Proceedings of the 9th IEEE International
Workshop on Research Issues on Data Engineering: Information Technology for Virtual
Enterprises (RIDE-VE’99), Sidney, Australia, March 1999. 213

[85] A. Geppert and D. Tombros. Event-based distributed workflow execution with EVE. Tech-
nical Report 96.05, Dept. of Computer Science, University of Zurich, 1998. 15

[86] G. Gonnet, M. Hallett, C. Korostensky, and L. Bernardin. Darwin version 2.0: An interpreted
computer language for the biosciences. Bioinformatics, 16:101–103, 2000. 62

[87] G. H. Gonnet, T. F. Jenny, and L. J. Knecht. The Computational Biochemistry Server at
ETHZ, 2002. http://cbrg.inf.ethz.ch/Server/. 54

[88] Google. Google Web APIs. http://api.google.com/GoogleSearch.wsdl. 67

[89] K. Gottschalk, S. Graham, H. Kreger, and J. Snell. Introduction to Web services architecture.
IBM Systems Journal, 41(2):170–177, 2002. 8, 45

[90] M. C. Gouda, editor. Proceedings of the 19th International Conference on Distributed Com-
puting Systems (ICDCS’99), Austin, Texas, USA, June 1999. 213

[91] M. Govindaraju, S. Krishnan, K. Chiu, A. Slominski, D. Gannon, and R. Bramley. Merging
the cca component model with the ogsi framework. In CCGrid03 [137], pages 182–189. 5, 8

[92] P. Grefen and R. R. de Vries. A reference architecture for workflow management systems.
Journal of Data and Knowledge Engineering, 27(1):31–57, 1998. 15, 119

[93] B. Gropp, R. Pennington, D. Reed, M. Baker, M. Brown, and R. Buyya, editors. Proceed-
ings of the 2002 IEEE International Conference on Cluster Computing (CLUSTER 2002),
Chicago, IL, USA, September 2002. 214

[94] J. C. Grundy, R. Mugridge, J. G. Hosking, and P. Kendall. A visual language and environ-
ment for EDI message translation. In HCC 2001 [140], pages 330–331. 7

[95] X. Gu, K. Nahrstedt, R. N. Chang, and C. Ward. QoS-assured service composition in
managed service overlay networks. In Proceedings of the 23rd International Conference on
Distributed Computing Systems, pages 194–201, 2003. 16

[96] C. A. Gurr. Effective diagrammatic communication: Syntactic, semantic and pragmatic
issues. Journal of Visual Languages and Computing, 10(4):317–342, 1999. 22

[97] C. Hagen and G. Alonso. Exception handling in workflow management systems. IEEE
Transactions on Software Engineering, 26(10), October 2000. 17, 44

[98] C. J. Hagen. A Generic Kernel for Reliable Process Support. PhD thesis, Diss. ETH Nr.
13114, March 1999. 11, 12, 16, 49, 87, 97, 119, 123, 131

[99] J. Hahn and J. Kim. Why are some representations (sometimes) more effective? In Proceed-
ing of the 20th international conference on Information Systems, pages 245–259, Charlotte,
North Carolina, United States, 1999. 44

[100] D. Harel. Statecharts: A visual formalism for complex system. Science of Computer Pro-
gramming, 8(3):231–274, 1987. 6, 21

217

Bibliography

[101] G. T. Heineman and W. T. Councill, editors. Component-Based Software Engineering -
Putting the Pieces Together. Addison Wesley, 2001. epf bc CG 4354. 7

[102] P. Heinl and H. Schuster. Towards a highly scaleable architecture for workflow management
systems. In Proceedings of the 7th International Workshop on Database and Expert Systems
Applications, pages 439–444, 1996. 15

[103] G. Hencsey and B. White, editors. Proceedings of the Twelfth International World Wide
Web Conference, Budapest, Hungary, May 2003. 214

[104] D. D. Hils. Visual languages and computing survey: Data flow visual programming languages.
Journal of Visual Languages and Computing, 3(1):69–101, 1992. 6, 21, 43, 44, 102

[105] J. Hosking and P. Cox, editors. Proceedings of the 2003 IEEE International Symposium
on Human-Centric Computing Languages and Environments (HCC 2003), Auckland, New
Zealand, October 2003. 222

[106] IBM. BPEL4WS Java Runtime. http://www.alphaworks.ibm.com/tech/bpws4j. 15

[107] IBM. Emerging Technologies Toolkit (ETTK). http://www.alphaworks.ibm.com/tech/
ettk. 9

[108] IBM. TSpaces. http://www.almaden.ibm.com/cs/Tspaces/. 184

[109] IBM. Autonomic Computing: Special Issue. IBM Systems Journal, 42(1), 2003. 17, 161

[110] IBM and Apache Foundation. Web Service Invocation Framework (WSIF), 2003. http:
//ws.apache.org/wsif/. 9, 39

[111] IBM and BEA Systems. BPELJ: BPEL for Java technology, March 2004. http://www-106.
ibm.com/developerworks/webservices/library/ws-bpelj/. 13, 60

[112] IBM, Microsoft, and BEA Systems. Business Process Execution Language for Web services
(BPEL4WS) 1.0, August 2002. http://www.ibm.com/developerworks/library/ws-bpel.
9, 12, 13, 15, 45, 60, 83, 101, 114, 121, 125

[113] IBM, Microsoft, and BEA Systems. Web services Coordination (WS-Coordination), 2002.
http://www.ibm.com/developerworks/library/ws-coor. 9

[114] D. Ingalls, S. Wallace, Y.-Y. Chow, F. Ludolph, and K. Doyle. Fabrik: a visual programming
environment. In Proceedings of the Conference on Object Oriented Programming Systems
Languages and Applications (OOPSLA’88), pages 176–190, San Diego, CA, 1988. 5

[115] Ivyteam. Process modeling software. http://www.ivyteam.com. 17

[116] S. Iyengar. Business process integration using UML and BPEL4WS. In M. Glinz and H.-P.
Hoidn, editors, Components: the Future of Software Engineering? (SI-SE 2004), Zurich,
Switzerland, March 2004. 13, 21, 22

[117] A. Jackobs and F. Titsworth, editors. Proceedings of the 25th International Conference on
Software Engineering, Portland, Oregon, USA, May 2003. 220, 221, 224

[118] M. Jarke, M. J. Carey, K. R. Dittrich, F. H. Lochovsky, P. Loucopoulos, and M. A. Jeusfeld,
editors. Proceedings of 23rd International Conference on Very Large Data Bases (VLDB’97),
Athens, Greece, August 1997. Morgan Kaufmann. 213

[119] M. Jeckle and L.-J. Zhang, editors. Proceedings of the International Conference on Web
services (ICWS-Europe 2003), Volume 2853 of Lecture Notes in Computer Science, Erfurt,
Germany, September 2003. Springer. 213, 221, 226

[120] C. Jensen. Temperature Conversion Service. http://developerdays.com/cgi-bin/
tempconverter.exe/wsdl/ITempConverter. 179

[121] T. Jeweel and D. Chappell. Java Web services. O’Reilly, 2002. 9

218

[122] L. jie Jin, F. Casati, M. Sayal, and M.-C. Shan. Load balancing in distributed workflow
management system. In Proceedings of the ACM Symposium on Applied Computing, pages
522–530, 2001. 16

[123] S. Joosten. Why modelers wreck workflow innovations. In BPM2000 [238], pages 289–300.
10

[124] M. Kamath, G. Alonso, R. Guenthoer, and C. Mohan. Providing high availability in very
large workflow management systems. In EDBT’96 [14], pages 427–442. 15, 119, 129, 186,
189

[125] B. W. Kernighan and P. J. Plauger. Software Tools. Addison Wesley, 1976. ethbib 727584.
58

[126] J. D. Kiper, E. Howard, and C. Ames. Criteria for evaluation of visual programming lan-
guages. Journal of Visual Languages and Computing, 8(2):175–192, April 1997. 5

[127] A. Kleppe, J. Warmer, and W. Bast. MDA Explained - the Model Driven Architecture:
Practice and Promise. Addison-Wesley, 2003. ethbib 783375. 12, 143, 151

[128] R. Konopka. Developing Custom Delphi Components. Coriolis Group Books, 2nd edition,
1996. 1, 7

[129] A. Krause, P. Nicodeme, E. Bornberg-Bauer, M. Rehmsmeier, and M. Vingron. WWW
access to the SYSTERS protein sequence cluster set. Bioinformatics, 15:262–263, 1999. 54

[130] N. Krishnakumar and A. Sheth. Managing heterogeneous multi-system tasks to support
enterprise-wide operations. Distributed and Parallel Databases, 3(2):155–186, 1995. 132

[131] J. Kubiatowicz. Extracting guarantees from chaos. Communications of the ACM, 46(2):33–
38, 2003. 156

[132] H. S. Kunii, S. Jajodia, and A. Sølvberg, editors. 20th International Conference on Con-
ceptual Modeling (ER2001), Volume 2224 of Lecture Notes in Computer Science, Yokohama,
Japan, November 2001. Springer. 216

[133] T. Kunz. The influence of different workload descriptions on a heuristic load balancing
scheme. IEEE Transactions on Software Engineering, 17(7):725–730, July 1991. 112

[134] D. Lassner, D. De Roure, and A. Iyengar, editors. Proceedings of the 11th international
conference on World Wide Web (WWW’02), Honolulu, Hawaii, USA, May 2002. 216

[135] P. Lawrence, editor. Workflow Handbook. Wiley, 1997. 10

[136] A. Lazcano and G. Alonso. Process based e-services. In Proceedings of the Second Interna-
tional Workshop on Electronic Commerce (WELCOM 2001), Volume 2232 of Lecture Notes
in Computer Science, pages 1–10, Heidelberg, Germany, November 2001. Springer. 17

[137] S. Lee, S. Sekiguschi, S. Matsuoka, and M. Sato, editors. Proceedings of the 3rd IEEE/ACM
International Symposium on Cluster Computing and the Grid (CCGrid03), Tokyo, Japan,
May 2003. 214, 217

[138] T. J. Lehman, A. Cozzi, Y. Xiong, J. Gottschalk, V. Vasudevan, S. Landis, P. Davis,
B. Khavar, and P. Bowman. Hitting the distributed computing sweet spot with TSpaces.
Computer Networks, 35(4):457–472, March 2001. 156, 187

[139] C. Letondal. A Web interface generator for molecular biology programs in Unix. Bioinfor-
matics, 17(1):73–82, 2001. 54, 150

[140] S. Levialdi, editor. Proceedings of the 2001 IEEE International Symposium on Human-
Centric Computing Languages and Environments (HCC 2001), Stresa, Italy, September 2001.
215, 217, 222, 226

219

Bibliography

[141] F. Leymann. Web services and their composition. Lecture Notes in Computer Science,
2077:1–2, 2001. 9

[142] F. Leymann. Web services Flow Language (WSFL 1.0). IBM, 2001. 13

[143] F. Leymann. Web services: Distributed applications without limits. In BPM2003 [239],
pages 123–145. 9

[144] F. Leymann and D. Roller. Business process management with flowmark. In Proceedings of
the 39th IEEE Computer Society International Conference (CompCon ’94), pages 230–234,
February 1994. 49, 101

[145] F. Leymann and D. Roller. Building A robust workflow management system with persistent
queues and stored procedures. In ICDE98 [265], pages 254–258. 131

[146] F. Leymann and D. Roller. Production Workflow: Concepts and Techniques. Prentice Hall,
1999. 11

[147] F. Leymann, D. Roller, and M.-T. Schmidt. Web services and business process management.
IBM Systems Journal, 41(2):198–211, 2002. 11

[148] F. Leymann, H. J. Scheck, and G. Vossen. Transactional Workflows. Dagstuhl Seminar 9629,
1996. 11, 44

[149] B. Liskov. Data abstraction and hierarchy. ACM SIGPLAN Notices, 23(5):17–34, May 1988.
7

[150] M. J. Litzkow, M. Livny, and M. W. Mutka. Condor—A hunter of idle workstations. In
Proceedings of the 8th Int’l Conf. on Distributed Computing Systems, pages 104–111, 1988.
75

[151] P. Maes. Concepts and experiments in computational reflection. In Proceedings of the 2nd
Annual Conference on Object-Oriented Programming Systems, Languages and Applications
(OOPSLA’87), pages 147–155, Orlando, FL, October 1987. 6, 34

[152] J. Marks, editor. Proceedings of the 8th International Symposium on Graph Drawing (GD
2000), Volume 1984 of Lecture Notes in Computer Science, Colonial Williamsburg, VA, USA,
September 2000. Springer. 150

[153] R. McClatchey, J.-M. L. Goff, N. Baker, W. Harris, and Z. Kovacs. A distributed work-
flow and product data management application for the construction of large scale scientific
apparatus. In Nato ASI Series, vol. 164 [64], pages 18–34. 11

[154] M. D. McIlroy. Mass-produced software components. In WCSE’68 [170], pages 138–150. 1,
7

[155] B. Medjahed, A. Bouguettaya, and A. K. Elmagarmid. Composing Web services on the
semantic web. The VLDB Journal, 12(4):333–351, November 2003. 9

[156] N. Medvidovic and R. N. Taylor. A classification and comparison framework for software
architecture description languages. IEEE Transactions on Software Engineering, 26(1):70–
93, January 2000. 5, 8

[157] J. Meidanis, G. Vossen, and M. Weske. Using workflow management in DNA sequenc-
ing. In Proceedings of the 1st International Conference on Cooperative Information Systems
(CoopIS96) Brussels, Belgium, June 1996. 11

[158] D. G. Messerschmitt and C. Szyperski. Software Ecosystems: Understanding an Indispens-
able Technology and Industry. MIT Press, 2003. ethbib 783612. 7, 12

[159] B. Meyer. Object Oriented Software Construction. Second Edition. Prentice Hall, 1997. 7

[160] B. Meyer. The grand challenge of trusted components. In ICSE2003 [117], pages 660–667.
7

220

[161] Microsoft Corp. Web services Enhancements for Microsoft .NET (WSE) 2.0. http://msdn.
microsoft.com/webservices/building/wse/. 9

[162] R. Milner. Communicating and mobile systems: the π calculus. Cambridge University Press,
1999. ethbib 775144. 14, 44, 200

[163] K. Misue, P. Eades, W. Lai, and K. Sugiyama. Layout adjustment and the mental map.
Journal of Visual Languages and Computing, 6(2):183–210, 1995. 150

[164] C. Mohan. Recent trends in workflow management products, standards and research. In
Nato ASI Series, vol. 164 [64], pages 396–409. 11

[165] C. Mohan. Dynamic e-business: Trends in Web services. In TES 2002 [33], pages 1–5. 9

[166] M. Mosconi and M. Porta. Iteration constructs in data-flow visual programming languages.
Computer Languages, 26(2–4):67–104, July 2000. 6, 31

[167] M. Muench and A. Schuerr. Leaving the visual language ghetto. In Proceedings of the IEEE
Symposium on Visual Languages, pages 148–155, 1999. 5, 9, 21

[168] P. Muth, D. Wodtke, J. Weissenfels, A. Dittrich, and G. Weikum. From Centralized Workflow
Specification to Distributed Workflow Execution. Journal of Intelligent Information Systems,
10(2):159–184, 1998. 15, 119

[169] J. Myers and M. Rose. Post Office Protocol - version 3. IETF RFC 1939, 1996. 79

[170] P. Naur and B. Randell, editors. Proceedings of the Working Conference on Software Engi-
neering, Garmisch-Partenkirchen, Germany, October 1968. NATO Science Committee. 220

[171] O. Nierstrasz, S. Gibbs, and D. Tsichritzis. Component-oriented software development.
Communications of the ACM, 35(9):160–165, 1992. 62

[172] F. Nordsieck. Grundlagen der Organisationshlehre. Poeschel, Stuttgart, 1934. ethhdb
922941. 10

[173] Oasis. Universal Description, Discovery and Integration of Web services (UDDI) Version
3.0, 2002. http://uddi.org/pubs/uddi_v3.htm. 8

[174] J. Oberleitner and S. Dustdar. Constructing Web services out of generic component compo-
sitions. In ICWS-Europe 2003 [119], pages 37–48. 8, 46

[175] J. Oberleitner, T. Gschwind, and M. Jazayeri. The vienna component framework enabling
composition across component models. In ICSE2003 [117], pages 25–35. 8, 103

[176] Object Management Group. Unified Modeling Language (UML), 2004. http://www.uml.
org. 87

[177] Object Management Group (OMG). CORBA: Common Object Request Broker Architecture.
http://www.corba.org/. 7

[178] B. Omelayenko and D. Fensel. A two-layered integration approach for product information
in B2B e-commerce,. In K. Bauknecht, S.-K. Madria, and G. P. (eds.), editors, Proceedings
of the Second International Conference on Electronic Commerce and Web Technologies (EC
WEB-2001), Volume 2115 of LNCS, pages 226–239, Munich, Germany, September 2001. 73

[179] OpenStorm. Service Orchestrator, February 2004. http://www.openstorm.com. 15

[180] OSGi Alliance. Open Services Gateway Interface Service Platform Specification v3, March
2003. http://www.osgi.org. 7

[181] L. J. Osterweil. Software processes are software too. In Proceedings of the 9th International
Conference on Software Engineering, pages 2–13, Washington, DC, 1987. IEEE Computer
Society Press. 11

221

Bibliography

[182] J. K. Ousterhour. Scripting: Higher level programming for the 21st century. COMPUTER,
31(3):23–30, March 1998. 62

[183] M. P. Papazoglou and D. Georgakopoulos. Service-oriented computing. Communications of
the ACM, 46(10):25–28, October 2003. 8, 9

[184] D. L. Parnas. On the criteria to be used in decomposing systems into modules. Communi-
cations of the ACM, 15(12):1053–1058, 1972. 7

[185] C. Pautasso. JOpera: Process Support for Web services. http://www.iks.ethz.ch/jopera/
download. 16

[186] C. Pautasso. Resource Management and Scheduling for the BioOpera Process Support Sys-
tem. Master’s thesis, Politecnico di Milano, April 2000. 17

[187] C. Pautasso and G. Alonso. Visual composition of Web services. In HCC 2003 [105], pages
92–99. 6, 21, 87, 147

[188] L. Perrochon, G. Wiederhold, and R. Burback. A compiler for composition: CHAIMS. pages
44–51, June 1997. 7

[189] Persistence of Vision Development Team. POV-Ray 3.1, 2002. http://www.povray.org.
78

[190] J. L. Peterson. Petri Nets. ACM Computing Surveys (CSUR), 9(3):223–252, 1977. 6, 14,
21, 44

[191] M. Petre. Why looking isn’t always seeing: Readership skills and graphical programming.
Communications of the ACM, 38(6):33–44, 1995. 5, 21, 147

[192] E. Pietriga and J.-Y. Vion-Dury. VXT: Visual XML transformer. In HCC 2001 [140], pages
404–405. 6

[193] J. B. Postel. Simple Mail Transfer Protocol. IETF RFC 821, 1982. 79

[194] S. Raman and S. McCanne. A model, analysis, and protocol framework for soft state-based
communication. ACM SIGCOMM Computer Communication Review, 29(4):15–25, 1999.
173

[195] A. Ran. Software isn’t built from lego blocks. In Proceedings of the ACM Symposium on
Software Reusability (SSR), pages 164–169, 1999. 7

[196] J. Raskin. The Humane Interface: New directions for designing interactive systems. Addison-
Wesley, 2000. ethbib 779680. 5, 23

[197] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language Reference Manual.
Addison-Wesley, 1998. ethbib 774289. 5

[198] C. Rupp. Building an Application Server for BioOpera. Master’s thesis, ETH Department
of Computer Science, January 2003. 150

[199] J. Sametinger. Software Engineering with Reusable Components. Springer, 1997. ethbib
771777. 7

[200] T. Schael. Workflow Management Systems for Process Organisations. LNCS 1096. Springer,
Berlin, 1996. 11

[201] A. Schill and C. Mittasch. Workflow management systems on top of OSF DCE and OMG
CORBA. Distributed Systems Engineering, 3(4):250–262, 1996. 119

[202] A. Schmidt, T. Sindt, M. Tepegoez, and G. Joeris. FlowTEC - an information system sup-
porting virtual enterprises. In Proceedings of the 2nd International Conference on Concurrent
Multidisciplinary Engineering (CME’99), Bremen, 1999. 11

222

[203] J.-G. Schneider. Components, Scripts, and Glue: A Conceptual Framework for Software
Composition. PhD thesis, Universität Bern, 1999. 8, 62

[204] B. Schneier. Applied Cryptography. Wiley, 1994. ethbib 758537. page 242. 173

[205] M. Scholl and A. Voisard, editors. Proceedings of the 5th International Symposium on Ad-
vances in Spatial Databases, SSD’97, Volume 1262 of Lecture Notes in Computer Science,
Berlin, Germany, July 1997. Springer. 213

[206] H. Schuldt, G. Alonso, C. Beeri, and H.-J. Schek. Atomicity and isolation for transactional
processes. ACM Transactions on Database Systems (TODS), 27(1):63–116, 2002. 11, 17, 44

[207] C. Schuler, R. Weber, H. Schuldt, and H.-J. Schek. Peer to peer process execution with
OSIRIS. In Proceedings of the Service-Oriented Computing Conference (ICSOC 2003), pages
483–498, 2003. 16

[208] H. Schuster and P. Heinl. A workflow data distribution strategy for scalable workflow man-
agement systems. In Proceedings of the 1997 ACM symposium on Applied computing, pages
174–176, 1997. 15, 186, 189

[209] H. Schuster, S. Jablonski, P. Heinl, and C. Bussler. A general framework for the execution of
heterogeneous programs in workflow management systems. In Proceedings of the 1st IFCIS
International Conference on Cooperative Information Systems (CoopIS’96), pages 104–113,
Los Alamitos, CA, 1996. IEEE Computer Society Press. 11, 48

[210] M. Senger, T. Flores, K. Glatting, P. Ernst, A. Hotz-Wagenblatt, and S. Suhai. W2H: WWW
interface to the GCG sequence analysis package. Bioinformatics, 14(5):452–457, 1998. 54

[211] M. Shaw and P. Clements. A field guide to boxology: Preliminary classification of architec-
tural styles for software systems. In Proceedings of 21st International Computer Software
and Applications Conference, pages 6–13, Washington, D.C., August 1997. 7

[212] A. P. Sheth. Changing Focus on Interoperability in Information Systems: From System,
Syntax, Structure to Semantics, In Interoperating Geographic Information Systems, pages
5–30. Kluwer Academic Publishers, 1998. 65, 70

[213] B. A. Shirazi, A. R. Hurson, and K. M. Kavi, editors. Scheduling and Load Balancing in
Parallel and Distributed Systems. IEEE Computer Society Press, 1995. 172

[214] H. A. Simon. The Sciences of the Artificial. MIT Press, 3rd edition, 1996. ethbib 959423.
1

[215] H. Smith. Business process management, the third wave: business process modelling language
BPML and its pi-calculus foundations. Information and Software Technology, 45(15):1065–
1069, December 2003. 11

[216] H. Smith. Enough is enough in the field of BPM: We don’t need BPELJ: BPML semantics
are just fine, April 2004. http://www.bpm3.com/bpelj/BPELJ-Enough-Is-Enough.pdf. 13

[217] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek, F. Dabek, and
H. Balakrishnan. Chord: a scalable peer-to-peer lookup protocol for internet applications.
IEEE/ACM Transactions on Networking (TON), 11(1):17–32, 2003. 156

[218] M. Stonebraker and D. Dewitt, editors. Proceedings of the 1st Biennial Conference on
Innovative Data Systems Research (CIDR 2003), Asilomar, CA, USA, January 2003. 216

[219] S. Y. W. Su, editor. Proceedings of the 12th International Conference on Data Engineering
(ICDE 1996), New Orleans, Louisiana, February 1996. 213, 225

[220] Sun Microsystems. Java Message Service API version 1.1. http://java.sun.com/
products/jms/. 79, 80, 182

[221] Sun Microsystems. Java Web services Developer Pack 1.3. http://java.sun.com/
webservices. 9

223

Bibliography

[222] SUN microsystems. Sun Grid Engine. http://www.sun.com/software/gridware/. 75

[223] I. E. Sutherland. Sketchpad: A man-machine graphical communication system. In AFIPS
Conference Proceedings 23, pages 323–328, 1963. 5

[224] C. Szyperski. Component Software - Beyond Object Oriented Programming. Addison Wesley,
2nd edition, 2002. 7

[225] C. Szyperski. Component technology - what, where, and how? In ICSE2003 [117], pages
684–693. 1, 8, 85

[226] S. Tanimoto. VIVA: A visual language for image processing. Journal of Visual Languages
and Computing, 2(2):127–139, June 1990. 5, 144

[227] S. Thatte. XLANG: Web services for Business Process Design. Microsoft, May 2000. 9, 13

[228] G. Tortora, editor. Proceedings of the 1997 IEEE Symposium on Visual Languages, Capri,
Italy, September 1997. 213

[229] W. Tracz. Confessions of a Used Program Salesman. Addison-Wesley, 1995. ethbib 764161.
1, 5

[230] W. Tracz, editor. Proceedings of the International Conference on Software Engineering (ICSE
2002), Orlando, FL, USA, May 2002. 216

[231] E. R. Tufte. Envisioning Information. Graphics Press, Cheshire, CT, 1990. ethbib 750940.
5

[232] R. Valdes. Introducing interoperable objects. Dr. Dobbs Journal, 19(16):4–6, May 1994.
http://www.ddj.com/articles/1994/9416/. 7

[233] W. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and A. Barros. Workflow patterns.
Distributed and Parallel Databases, 14(3):5–51, July 2003. 11, 13, 22, 31, 40, 44, 101

[234] W. M. P. van der Aalst. The application of petri nets to workflow management. Journal of
Circuits, Systems and Computers, 8(1):21–66, 1998. 6, 21, 44

[235] W. M. P. van der Aalst. Process-oriented architectures for electronic commerce and interor-
ganizational workflow. Information Systems, 24(8):639–671, December 1999. 11

[236] W. M. P. van der Aalst. Don’t go with the flow: Web services composition standards exposed.
IEEE Intelligent Systems, 18(1):72–85, 2003. 8, 14

[237] W. M. P. van der Aalst and P. J. S. Berens. Beyond workflow management: Product-driven
case handling. In Proceedings of the 2001 International ACM SIGGROUP Conference on
Supporting Group Work, pages 42–51, 2001. 11

[238] W. M. P. van der Aalst, J. Desel, and A. Oberweis, editors. Business Process Management,
Models, Techniques, and Empirical Studies, Volume 1806 of Lecture Notes in Computer
Science. Springer, 2000. 219

[239] W. M. P. van der Aalst, A. H. M. ter Hofstede, and M. Weske, editors. Proceedings of the
International Conference on Business Process Management (BPM 2003), Volume 2678 of
Lecture Notes in Computer Science, Eindhoven, The Netherlands, June 2003. Springer. 10,
11, 215, 220

[240] G. van Rossum and F. L. Drake. The Python Language Reference Manual. Network Theory
Ltd, September 2003. http://www.python.org. 62

[241] R. Voigt, J. Saltz, and L. O’Connor, editors. Proceedings of the 1992 Scalable High Perfor-
mance Computing Conference (SHPCC-92), Williamsburg, Virginia, April 1992. 214

[242] G. M. Vose and G. Williams. Labview: Laboratory virtual instrument engineering work-
bench. Byte, 11(9):84–92, September 1986. 5

224

[243] W3C. Extensible Stylesheet Language Transformations (XSLT) 1.0, 1999. http://www.w3.
org/TR/xslt. 6, 65, 67

[244] W3C. XML Path Language (XPath) 1.0, 1999. http://www.w3.org/TR/xpath. 65, 67

[245] W3C. Simple Object Access Protocol (SOAP) 1.1, 2000. http://www.w3.org/TR/SOAP. 8,
50

[246] W3C. Web services Definition Language (WSDL) 1.1, 2001. http://www.w3.org/TR/wsdl.
8, 50

[247] W3C. XML Schema, 2001. http://www.w3.org/TR/xmlschema-0/. 65, 70, 87, 201

[248] W3C. Web services Choreography Interface (WSCI) 1.0, 2002. http://www.w3.org/TR/
wsci. 9

[249] W3C. Web services Conversation Language (WSCL) 1.0, 2002. http://www.w3.org/TR/
wscl10. 9

[250] L. Wall, T. Christiansen, and J. Orwant. Programming Perl. O’Reilly, 2000. http://www.
perl.org. 62

[251] R. Weber, C. Schuler, H. Schuldt, H.-J. Schek, and P. Neukomm. Web Service Composition
with O’GRAPE and OSIRIS. In VLDB2003 [77], pages 1081–1084. 16

[252] M. Weske, G. Vossen, and C. Medeiros. Scientific workflow management: WASA architecture
and applications. Technical Report 03/96-I, Universitat Munster, 1996. 11

[253] WFMC. The workflow reference model. Technical Report WFMC-TC-1003, Workflow Man-
agement Coalition, Bruxelles, Belgium, January 1995. 119

[254] G. Wiederhold, P. Wegner, and S. Ceri. Towards megaprogramming: A paradigm for
component-based programming. Communications of the ACM, 35(11):89–99, 1992. 5, 7

[255] N. Wirth. On the design of programming languages. In Proceedings of the Information
Processing Congress (IFIP 74), pages 386–393, Stockholm, Sweden, 1974. 2, 4

[256] G. Wirtz, M. Weske, and H. Giese. Extending UML with workflow modeling capabilities. In
CoopIS 2000 [72], pages 30–41. 5, 6, 10, 21, 44

[257] D. Wodtke, J. Weissenfels, G. Weikum, and A. Kotz-Dittrich. The mentor project: Steps
toward enterprise-wide workflow management. In ICDE 1996 [219], pages 556–565. 6, 15,
21

[258] P. Wohed, W. M. P. van der Aalst, M. Dumas, and A. H. M. ter Hofstede. Pattern-based
analysis of BPEL4WS. Technical Report FIT-TR-2002-04, Queensland University of Tech-
nology, Brisbane, 2002. 12, 13

[259] L. Wood, A. Hors, V. Apparao, L. Cable, M. Champion, J. Kesselman, P. Hegaret, T. Pixley,
J. Robie, P. Sharpe, and C. Wilson. Document Object Model (DOM), 1999. http://www.
w3.org/TR/DOM-Level-2/. 151

[260] W. Wulf and M. Shaw. Global variable considered harmful. ACM SIGPLAN Notices,
8(2):28–34, February 1973. 102

[261] XMethods. Currency Exchange Rate Service. http://www.xmethods.net/sd/2001/
CurrencyExchangeService.wsdl. 55

[262] XMethods. Delayed Stock Quote Service. http://services.xmethods.net/soap/urn:
xmethods-delayed-quotes.wsdl. 55

[263] J. Yang and M. P. Papazoglou. Service components for managing the life-cycle of service
compositions. Information Systems, 29(2):97–125, April 2004. 9

225

Bibliography

[264] D. C. Young, editor. Proceedings of the 17th International Conference on Data Engineering
(ICDE2001), Heidelberg, Germany, April 2001. 213

[265] P. Yu, editor. Proceedings of the 14th International Conference on Data Engineering (ICDE
98), Orlando, Florida, USA, February 1998. 220

[266] J. Zawinski. Unity of Interface, 1998. http://www.mozilla.org/unity-of-interface.
html. 85

[267] U. Zdun, M. Voelter, and M. Kircher. Design and implementation of an asynchronous
invocation framework for Web services. In ICWS-Europe 2003 [119], pages 64–78. 39

[268] K. Zhang, D.-Q. Zhang, and Y. Deng. A visual approach to XML document design and
transformation. In HCC 2001 [140], pages 312–319. 6

[269] L.-J. Zhang and M. Jeckle. The next big thing: Web services collaboration. In ICWS-Europe
2003 [119], pages 1–10. 8, 9

[270] M. D. Zinsman. Representation, Specification and Automation of Office Procedures. PhD
thesis, University of Pennsylvania, Warton School of Business, 1977. 10

226

Index

Abstract, 95
AccessMethod, 113
Activity, 23, 100
Architecture, 121, 147, 150, 154
Arrow, 107

Binding, 104
BioOpera, 17, 76
Box, 109
BPEL, 13, 45, 83, 114
BPML, 13, 45, 114

Comments, 33
Compiler, 119
Component Type Modeling, 47, 113
ComponentType, 113
Conditions, 25
Control Flow, 6, 25

Data Flow, 6, 23, 48, 101

Echo, 73
email, 80
Exception Handling, 26

Flexibility, 160, 163, 178

GroupBox, 108

HTTP, 54

Interface, 97
Iteration, 6, 31

Java
Java Scripts, 60, 180
Mapping, 129
Method Calls, 60, 180
Programs, 61

JMS, 80

JOpera Visual Composition Language
(JVCL), 21, 105

Late Binding, 36

Model Driven Architecture, 12, 143

NamedObject, 96

Object, 95
OCR, 87, 123
OML, 87

Parameter, 103
Peer to Peer, 156, 176
Portable Batch System, 75
Process, 23, 97

Instantiation, 130, 188
Modeling Language, 11
Navigation, 129

Parallel, 162
Plugin, 137
State, 136

Program, 112
Program Library, 112

Recursion, 33
RefBox, 110
Reflection, 6, 34
Reliability, 186
Root, 94

Scalability, 188
Service, 8
Shell Commands, 58
SOAP, 50
Software Composition, 7
SQL, 63
SubProcess, 23, 74, 101
Synchronization, 26

227

Index

System Parameters, 48

Task, 23, 97
State, 25, 132, 133

TextBox, 110

View, 106
ViewObject, 107
Visual Adaptation, 6, 57, 69, 183
Visual Programming Languages, 5
Visual Scalability, 150

Web Services, 8, 45, 50, 180
Workflow, 10, 84

Patterns, 12

XML, 6, 65
X-Path, 67
XSLT, 67

228

Curriculum Vitae: Cesare Pautasso

9.12.1975 Born in Como, Italy

Education

5.1993 Carroll High School Diploma, Southlake, Texas (USA)
7.1994 Maturita’ scientifica (60/60)

Liceo Scientifico “Giovio”, Como, Italy
9.1994–4.2000 Undergraduate studies

Computer Science Engineering at Politecnico di Milano
9.1999–3.2000 ERASMUS exchange program with ETH Zürich

4.2000 Laurea in Ingegneria Informatica (100/100 cum laude)
from Politecnico di Milano

6.2000– Doctorate
Department of Computer Science of ETH Zürich

Work Experience

7.1997–8.1997 PC Support Analyst at
7.1998–9.1998 Prudential-Bache International (UK) Ltd

(9 Devonshire Square, London EC2M 4HP)
6.2000– Research assistant at the

Department of Computer Science of ETH Zürich

