
Visual Composition of Web Services

Cesare Pautasso, Gustavo Alonso
Department of Computer Science

Swiss Federal Institute of Technology (ETHZ)

ETH Zentrum, 8092 Zürich, Switzerland�
pautasso,alonso � @inf.ethz.ch

Abstract

Composing Web services into a coherent application can be a
tedious and error prone task when using traditional textual script-
ing languages. As an alternative, complex interactions patterns
and data exchanges between different Web services can be effec-
tively modeled using a visual language. In this paper we discuss
the requirements of such an application scenario and we present
the design of the BioOpera Flow Language. This visual composi-
tion language has been fully implemented in a development envi-
ronment for Web service composition with usability features em-
phasizing rapid development and visual scalability.

1 Introduction

Although they may not solve all application integration
problems, Web service technologies show great promise in
reducing the complexity of interconnecting heterogeneous
software components across the Internet. Yet, Web services
can realize their full potential only through the ability to
compose complex services out of agglomerations of basic
services [8]. Especially in E-Business scenarios, the stan-
dardization efforts that integrate Web services into business
processes have recently produced many non visual, XML
oriented proposals [10, 14, 15, 16, 21, 26, 27]. However,
none of these is yet well established in practice [23].

As we suggest in this paper, a visual approach may very
well be a natural complement to such composition stan-
dards. The order of execution of services, the data ex-
changes between them and the necessary failure handling
behaviour can all be specified with a simple visual syn-
tax. In this paper we present in depth our visual com-
position language called BioOpera Flow Language (BFL).
The language is intended to be used as a generic glue lan-
guage [11] for coordinating collections of coarse-grained
software components. Nevertheless, its development and
runtime environment has been tailored to specifically sup-
port the composition of Web services.

With this, the paper makes several significant contribu-

tions. First, it proposes the application of visual program-
ming to the domain of Web services composition. Second, it
introduces the syntax and semantics of the BFL visual com-
position language, which is expressive enough to be applied
to realistic settings. Third, in discussing the usability fea-
tures of the development environment, the paper illustrates
our approach to improve the visual scalability of the lan-
guage [7] by using nesting constructs, multiple views and
automatic support for graph layout and diagram navigation.

To prove the feasibility of the approach, an editor, a com-
piler, and other monitoring and debugging tools for the Bio-
Opera Flow Language have been developed within the Bio-
Opera system [4], a middleware infrastructure for coordi-
nating distributed processes with applications in bioinfor-
matics [1] as well as in cluster and grid computing [3]. In
extending the BioOpera system with a visual language our
main goal was to provide an intuitive graphical syntax for
the purpose of rapidly developing, executing and monitor-
ing distributed applications composed out of a library of
Web services. To avoid misinterpretation problems [12] we
reduced the number of ad hoc constructs and extensions to a
minimum, keeping the balance between the need for expres-
sive features and the underlying semantics and constraints
imposed by the BioOpera runtime platform.

This paper is structured as follows. First, Section 2 in-
troduces the Web services composition application domain.
Section 3 presents the syntax and semantics of the BFL vi-
sual language. Section 4 describes the most innovative fea-
tures of our integrated development environment. In Sec-
tion 5 we prove the feasibility of the approach with some
examples. Section 6 covers related work and Section 7 con-
cludes the paper.

2 Web services composition

Before describing in detail the visual language, we
present our model for building applications by composing
different Web services. This way, we both motivate the lan-
guage’s design and give an overview of its major features.



2.1 Web services

Web services technologies provide open standards for in-
teraction among heterogeneous applications running on dif-
ferent platforms across the Internet. XML based mecha-
nisms have been standardized for describing service inter-
faces (WSDL [25]), for publishing and discovering services
(UDDI [20]) and for invoking them using different commu-
nication protocols (SOAP [24]).

Once it is possible to interact with individual services,
the ability to compose and describe relationships between
basic services becomes important. Furthermore, a single
Web service may export multiple operations, which may
need to be invoked following a certain interaction pattern.
To denote these ideas various terms have been proposed:
choreography [26], orchestration [14], automation [21], co-
ordination [15], collaboration [10], and conversation [27].

In our case we prefer the term composition, since we are
interested in developing applications by composing existing
and reusable building blocks. Not all of these blocks need
to be Web services: thanks to the flexible runtime architec-
ture of BioOpera we can integrate components accessible
through a wide variety of invocation mechanisms. For ex-
ample, a component can represent the execution of a com-
mand in a UNIX shell, a remote procedure call, a job sub-
mitted to a cluster scheduling system, or a request to per-
form a grid computation. In the rest of the paper we will
focus on components modeling individual calls to a Web
service and use the terms program, component and service
as synonyms.

2.2 Composition through processes

To model the composition of independent but related
software components we use the notion of process. A pro-
cess is composed of a set of tasks, which can represent ei-
ther a service invocation (activities) or a call to other pro-
cesses (sub-processes). All the information necessary to in-
stantiate and execute a task is derived at runtime to support
a form of late binding, where the actual implementation of
a service is located at the latest possible moment based on
constraints imposed on the task.

In general, a task involves the execution of an operation
which may require some input data and may produce some
output results. Similarly, to exchange data with other pro-
cesses or with the user, a process has input and output pa-
rameters. To describe the connections between the input
and output parameters of its tasks, a process includes a data
flow graph. From the data flow graph of a process, it is
possible to derive its control flow graph defining the par-
tial order of execution of the tasks. Like in data-driven data
flow languages a task cannot be started until all of its data
dependencies are satisfied [13]. Unlike in traditional data

flow models we include an explicit description of the con-
trol flow of a process. This is useful to get an overview of
the order of execution of the tasks and allows users to spec-
ify additional control dependencies that cannot be derived
from the data flow. As we will describe later, the devel-
opment environment enforces the appropriate editing con-
straints to keep the two graphs synchronized.

Finally, the various services and processes to be com-
posed as tasks of a process are chosen from a library of
existing, reusable components. BioOpera provides a set of
tools to manage this component library. For example, it is
possible to look up external services in UDDI registries and
to automatically import their interfaces. This is done by
translating the corresponding WSDL descriptions into the
BFL visual notation: each service’s operation is imported
as a separate activity whose input and output parameters
match the corresponding parts of the request and response
messages. In the case of services offering more than one
operation, if one is provided, the WSCL [27] description
of the conversation is automatically mapped to a process,
defining the basic sequence of invocations and information
exchanges between the various operations.

3 BioOpera Flow Language

Since a process and the relationships between its tasks
and parameters can be modeled using control and data flow
graphs, it is possible to describe a process directly with a vi-
sual programming language instead of using a textual syn-
tax. This section informally defines the visual syntax and
semantics of the BFL language used to to compose a set
of Web services into a coherent application. This graphi-
cal notation is used both during the development phase to
design the processes and, augmented with color coded in-
formation, during the monitoring phase, at runtime, to track
the state of the execution of the processes.

A process is programmed by drawing a set of directed
graphs. The nodes of a graph represent tasks and their data
parameters. The edges of the graph represent control flow
or data flow dependencies. As shown in Figure 1, a task is
drawn as a box with its name inside. An activity box has a
single border; boxes for sub-processes have a double border
to indicate nesting.

3.1 Data flow

Each task has a set of input and output data parame-
ters. An input parameter is used to pass information to
the task when it is started. An output parameter is filled
with the information returned from the task once it is fin-
ished. This property is reflected in the graph with incoming
edges connecting input parameters to their tasks and outgo-
ing edges connecting tasks to their output parameters (Fig-



ure 2). These edges are not removable, since there cannot
exist a parameter box without its task.

To improve readability, the input and output parameters
of a process are displayed linked to two separate boxes. The
two gray shapes in Figure 2 represent the input and the out-
put interface of a process to which the corresponding pa-
rameters are attached. The input parameters can be initial-
ized by the user starting the process, or receive their data
from the calling process. The output parameters can be read
as soon as the process has finished its execution.

Data parameters may contain values of any data type en-
coded as string. Optionally, the user may associate a type
identifier to a parameter and turn on the static type checking
facilities of the development environment. This way, con-
nections between parameters of mis-matching data types
will be rejected.

Activities representing a call to a Web service have input
and output parameters. In this case, each input parameter
corresponds to a part of the SOAP request message, while
each output parameter is extracted from the SOAP response.
Thus, it is possible to model in detail the information ex-
changed with the Web service.

3.1.1 Data bindings

Data flow relationships between the parameters define how
the data is transferred between tasks: a data flow binding
is represented as an edge going from an output parameter
box of a task to an input parameter box of another task.
Furthermore, as shown in Figure 2, constant values can be
bound to input parameters of tasks.

Multiple data bindings to and from the same parameter
are allowed. One output parameter box can be linked to
multiple input boxes. On the other hand, edges from multi-
ple output boxes of different tasks that converge on the same
input box are only useful in case of a loop or when the corre-
sponding control flow merges from two or more alternative
execution paths. The BioOpera runtime environment uses
a last writer wins semantic: the value of the input box will
be copied from the output box attached to the task finishing
last.

The development environment enforces a set of editing
rules, which prevent the user from drawing invalid bindings

Activity1

SubProcess1

Activity2

Activity3

Activity4

SubProcess2

Process1

Figure 1. Sample control flow syntax

Process input parameter

Process Input

Process output parameter

Process Output

Activity input parameter

Activity output parameter

Activity input parameter

Activity

SubProcess input parameter

SubProcess output parameter

SubProcess

Constant Value

Process - DataFlow

Figure 2. Sample data flow syntax

and explain with an error message why an edge is not al-
lowed. For example, data always flows from output to input
parameters of tasks. In the case of processes, input parame-
ters of processes can only be connected to input parameters
of tasks, and output parameters of processes may receive
data only from output parameters of tasks. Furthermore,
the same constant can be connected to multiple input pa-
rameters, but an input parameters bound to a constant value
cannot have any other incoming data flow edge. Thus, the
consistency of the data flow graph is maintained at all times.

3.1.2 System parameters

In addition to the user defined data flow parameters, each
task has a set of system parameters and properties which
can be used for a variety of purposes. They contain meta-
data about the execution of the process and are generated
automatically by the runtime environment. The same visual
syntax applies to both system and user data flow parameters,
with the only difference that the former are colored in gray
and their name always begins with the SYS prefix. Connec-
tions between user and system parameters are supported.

Figure 3 shows some examples. In the case of activi-
ties representing Web service calls, the two system param-
eters called xmlin and xmlout give direct access to the
XML content of the SOAP request and response messages
(3.a). To specify additional scheduling constraints the host
and priority system parameters can be used. The host
parameter may be used, for example, when composing a
stateful conversation out of a set of operations belonging
to the same Web service. In this case, the first operation
may be scheduled to contact any of the available service



SYS.xmlout

SYS.xmlin

SOAPActivity

SYS.proc

SubProcess

SYS.prog

ActivitySYS.host

Task

SYS.host

Task2

high

SYS.priority

Activity

(a) (b) (c) (d)

Figure 3. Example of system parameters

providers, but the rest of the operations should be forced
to interact with the same service provider as the first one.
This scheduling constraint can be visually modeled by con-
necting the host system parameter of the first task to the
same parameter of the others (3.b). The priority sys-
tem parameter may be used to manually raise (or lower) the
scheduling priority of critical tasks with respect to the other
tasks of the process (3.c). System parameters can also be
used to support late binding of tasks to services. The choice
of which service (or process) to invoke when executing a
certain activity (or sub-process) is done dynamically based
on the value of the prog (or proc) system parameter (3.d).

3.2 Control flow

Control flow defines the partial execution order between
the components inside a process. Each Process has one
Control Flow graph, with tasks as nodes and control flow
dependencies as directed edges.

A control flow edge from node � to node � is used to
show that task � cannot start until task � has reached a
specified execution state. Valid states are: finished (by de-
fault), failed (when an error occurs), or aborted (after an
user kills the task). Figures 1 and 4 show examples of con-
trol flow graphs.

By definition, a data flow connection between two tasks
implies a control flow dependency. The reason is that it is
not possible to transfer data from task � to task � unless
task � has successfully finished execution and � has not
yet been started. It follows that a subset of control flow de-
pendencies can be derived from the data flow specification.
Furthermore, extra control flow dependencies can be intro-
duced directly in the control flow graph to model constraints
that are not explicit in the data flow.

The development environment is responsible for keeping
the two graphs synchronized. Whenever a new data flow
binding is established, the necessary control flow depen-
dency is added. Conversely, when deleting a control flow
dependency all of the corresponding data flow bindings are

Task2

failed

finished

finished

finished

ExceptionHandlerTask3

Task1

Figure 4. Control flow with exception handler

removed. The user may be notified with optional warning
messages of the consequences of these actions, which oth-
erwise are carried out in a transparent manner.

If there is more than one incoming control flow edge to
a node � , the semantic is to and all dependencies. For ex-
ample, if there is a dependency coming from service � and
another from � , task � cannot be started until both tasks

� and � have finished. One exception to this rule is when
the incoming connector is part of a loop in the graph, in
which case the semantic is to or the loop dependency with
the others.

In order to model alternative execution paths, a start con-
dition may be associated to each node. This is a boolean
expression referencing the value of some data parameters.
A task can only be started when this condition evaluates to
true. Currently, start conditions may be specified only tex-
tually as one of the task properties.

As shown in Figure 4, failure handling behavior is spec-
ified in the control flow graph by using connectors which
fire on failure of a task. An exception handling task may
be added to a process by drawing such connection from one
or more tasks to it. With start conditions it is possible to
discriminate between different types of failures and activate
the appropriate exception handler. By setting a link from
the exception handler back to the failed task is possible to
retry its execution after the exception handler has finished.

3.3 Iteration

Supporting iteration in a language based on the data
flow paradigm requires to introduce some auxiliary con-
struct [18]. In our approach we rely on two constructs with
a different degree of generality. First, we introduce a spe-
cial data flow connector used to perform either sequential
or parallel operations on lists. Second, we have been ex-
perimenting with explicit arbitrary loops in the control flow
graph.

List-based loops can be used to repeat the same opera-
tion on a given set of values. When no data dependencies
hold, the operation can be performed in parallel. Other-
wise, the task must be applied sequentially on each value.
To achieve this, we introduce a pair of special data flow con-
nectors, called split and merge. Like in other graph rewrit-



ing schemes [5], the overall effect at runtime is to replicate
a set of nodes for each value of the input parameter list (Fig-
ure 8). In the case of a sequential split connector, the appro-
priate control flow dependencies between each task of the
sequence are automatically inserted when the loop is un-
rolled. If the tasks produce output, the merge connector can
be used to conveniently concatenate it into a single param-
eter when the execution of all replicas has completed.

Arbitrary cycles in the control and data flow graphs may
be used to explicitly model loops in the execution of a pro-
cess. To avoid endless iteration, the user should assign the
correct conditions to enter and exit the loop.

Another possible way of modeling repeated behaviour is
through recursion. In the simplest case, this can be achieved
with a sub-process referring to itself. This way, the tasks
composing the process will be repeated as long as the con-
dition associated to the sub-process holds true.

4 Visual development environment

The BioOpera visual process development environment
provides an integrated toolkit to manage the whole lifecy-
cle of a process (Figure 5). This begins with the program
library, where Web services can be imported as reusable
components. The user can search the library, select a set
of services and drag them into a process. Then, the data
flow graph needs to be specified. This operation is partially
automatic, since the editor can bind parameters with match-
ing names. Manual intervention is only required to resolve
ambiguities and connect parameters that could not be au-
tomatically matched. To get an overview over the order of
execution of the tasks and add additional constraints, the
user may view and edit the control flow graph anytime. The
editor automatically keeps the two graphs synchronized.

Once all of the services have been connected the pro-
cess may be compiled and uploaded to a BioOpera runtime
environment for execution1. While monitoring a running
process the user may watch its progress indicated by the
color of the task boxes, and click on the parameters to in-
spect their content. The user may interact with a running
process or its tasks, and abort, pause, continue, and restart
them at will. More than one copy of a process may be run
concurrently. Once a process has completed its execution,
the user may access the content of all parameters as well as
measurements about the execution time of each task, until
the process is explicitly deleted from the system.

4.1 Visual scalability

One of the advantages of using a visual programming
language is that the data and control flow of a process can

1Please refer to [3] and [4] for more information on the process execu-
tion and monitoring features of BioOpera.

Figure 5. BioOpera process developer

be specified directly by drawing graphs. In practice, how-
ever, some manual effort may be required in order to obtain
a readable diagram, even for small sized graphs. Thanks to
the automatic layout facilities built into the development en-
vironment, the amount of work necessary to re-arrange the
graph layout is significantly reduced. We have adapted sev-
eral hierarchical layout algorithms to take into account the
syntactial relationships between the graph elements. Fur-
thermore, these algorithms are intended to be used incre-
mentally in order to preserve the user’s mental map of the
process [17].

Although the automatic layout features already improve
the user’s productivity, better support is required to visu-
alize realistic graphs having a large number of elements.
Therefore our development environment provides the user
with other features that increase the scalability of the vi-
sual language. First of all, thanks to the sub-process con-
struct, parts of the graph may be collapsed into single nodes
and the user may easily navigate back and forth between
the various levels of nesting. This allows the user to design
processes following both a top-down progressive refinement
and a bottom-up aggregation approach. Second, the envi-
ronment provides the ability to create and work with mul-
tiple views over the same data flow graph. In this case, the
user may easily extract a subset of the data flow graph, for
example, to analyze the data flowing through a particular
task, or to focus on the tasks receiving data from a certain
parameter. This way, the user may interactively navigate
through a complex data flow graph and is always presented
with an uncluttered view over the relevant information. The
development environment also allows the user to edit the
data flow graph from any of the views by enforcing the re-
quired consistency constraints. For example, when deleting
a redundant data flow connection which is present in more
than one view, the user will be warned about it and may
decide to remove the connection from all views.



5 Example

As an example, we discuss a process used to compare the
prices of books sold at various Internet stores. This process
receives as input an ISBN number and returns as output an
URL for a report containing the price comparison for the
book. Since stores at different countries return prices in
their own currency, the user may supply the currency to be
used in the report as optional input parameter. The process
contains the necessary steps to perform the currency con-
version. The report also contains the book’s author and ti-
tle, retrieved from a library database, and a listing of the top
5 results returned by a web search engine looking for the
author and the title of the book. All tasks of the example
processes involve performing calls to actual Web services.

5.1 Process BookPrices

Figure 6 shows the control flow graph for the price
comparison process. The process is composed of 3 ac-
tivities (Library, GoogleSearch, MergeReport) and 1
sub-process (QueryBookPrice). As its name suggests,
QueryBookPrice involves contacting a book store to in-
quire about the price of a certain book identified by its
ISBN. While this happens, the Library activity retrieves
the author and title of the book. When the library query fin-
ishes, the web search is started and when all of the previous
tasks are finished the report is generated.

The data flow graph of this Process has been partitioned
into two different views to enhance its readability. Figure 7
shows one view with data parameters and bindings of the
Library, GoogleSearch, and MergeReport activities.
While the second view in Figure 8 shows the data flowing
through the QueryBookPrice sub-process.

The first view (Figure 7) shows one of the input parame-
ters of the process (isbn) passed both to the Library and
MergeReport activities. Given the isbn as input param-
eter, the Library activity returns the corresponding au-

thor and title. These two parameters are passed on to

Library

GoogleSearch MergeReport

QueryBookPrice

BookPrices - ControlFlow

Figure 6. Control flow graph of the
BookPrices process

isbn

BookPrices Input

reporturl

BookPrices Output

isbn

authortitle

Library

isbnauthortitle

url

results

MergeReport

authortitle

results

GoogleSearch

BookPrices - DataFlow/Search

Figure 7. First data flow view of the
BookPrices process

the GoogleSearch activity, which will run a web search
using them as keywords and return the top 5 results. The
MergeReport activity receives the title, the web search
results, the author and isbn of the book, it uses it to
generate a report and returns a url where it can be found.
When the process is finished this value is returned as the
reporturl output parameter of the process.

The rest of the data flow is shown in the view of Figure 8,
which shows an example of the parallel split and merge it-
eration constructs. This allows the process to call in parallel
different services having the same interface. Both isbn and
destination currency process input parameters are passed
to the processQuery sub-process, which also receives the
identifier of the bookshop service to be called and the
source currency of the price returned by the service. At
runtime, a parallel copy of the processQuery sub-process
will be executed for each element found in these two input
parameters. In the example, the service and source pa-
rameter are bound to constants with a list of four strings,
which contain service identifiers (BooksCH, AmazonCOM,
AmazonDE, BNCOM) and the corresponding currency iden-



isbn currency

BookPrices Input

reporturl BookPrices Output

prices

url

services MergeReport

price

isbn dest

service

source

QueryBookPrice

BooksCH AmazonCOM AmazonDE BNCOM

CHF USD EUR USD

BookPrices - DataFlow/Query

Figure 8. Second data flow view of the
BookPrices process with parallel split and
merge operations

tifiers (CHF, USD, EUR, USD). The prices returned by the
parallel instances of the processQuery sub-process are
merged into the prices input parameter of the MergeRe-
port activity. Both views show the same data flow connec-
tion binding the output of the last activity with the output of
the process.

5.2 Process QueryBookPrice

The QueryBookPrice process is called from within the
BookPrices process. It contacts two Web services in or-
der to inquire for the book’s price and to convert it to the
desired currency. Figure 9 shows its data flow graph. This
process contains two activities: QueryBookPrice, Cur-

rencyConvert. The input and output parameters of the
process match the ones of the processQuery sub-process.
The isbn of the book is passed to the QueryBookPrice

activity. To choose the services to call, the actual ser-
vice name is assigned to the SYS.prog parameter of the
activity, resulting in the invocation of the corresponding ser-
vice. After the query has completed, the resulting price
and the source and destination currencies are passed to
the CurrencyConvert service, which will return the cor-
responding amount. When the process finishes, the con-
verted price is returned to the caller. It should be noted
that the CurrencyConvert service is not invoked when
the currencies are the same, in this case the price is returned
directly from the result of the query.

isbndest source service

QueryBookPrice Input

price

QueryBookPrice Output

isbn

price

SYS.prog QueryBookPrice

amountsourcedest

amount

CurrencyConvert

QueryBookPrice - DataFlow

Figure 9. Main data flow view of the query
process

6 Related Work

The idea of developing large scale applications by com-
posing coarse grained, reusable component modules has
been pioneered by [28]. A formal model for software based
on traditional CORBA, EJB and COM components has
been developed in [9], while an overview over established
component based visual languages can be found in [19]. A
good argument on the need for a composition “glue” lan-
guage, different from traditional programming languages
has been presented in [11].

A similar, two-step approach has been proposed in the
parallel computing domain [6]. In this case, sequential pro-
cedures are first written in Fortran or C, and afterward they
are composed into a parallel structure using a control flow
based graphical notation, where the data flow is derived im-
plicitly by matching parameter names [5].

In the past, there have been many contributions concern-
ing the problem of extending data flow languages with it-
eration constructs. A survey can be found in [18]. An ex-
ample of iteration through vector operators and conditional
switches is [2].

Finally, graphical formalisms have also been used as a
modeling tool in the workflow community. Examples in-
clude State Charts, used in the the Mentor project [30] to
achieve distributed execution of the various workflow steps,
or Petri Nets [22] and variations such as Object Coordina-
tion Nets (OCoN) [29].



7 Conclusion

This paper presents the BioOpera Flow Language: a vi-
sual programming language for Web service composition.
With a simple syntax the language offers the following fea-
tures: conditional execution, failure handling, optional type
safety, implicit (list based) and explicit iteration, nesting
and recursion, as well as the visual specification of late
binding and scheduling constraints. The BioOpera develop-
ment environment supports the user in rapidly building pro-
cesses from a library of existing component services and in
monitoring their execution. We have not only developed an
integrated set of tools for component library management,
automatic layout of graphs, static type checking, process
compilation, execution profiling, analysis and optimization,
but have also successfully tried the system with both com-
puter science students developing small application integra-
tion projects and bioinformaticians working on large scale
computations based on Web service technologies [3].

Acknowledgments Part of this work is supported by grants
from the Hasler Foundation (DISC Project No. 1820).

References

[1] G. Alonso, W. Bausch, C. Pautasso, M. Hallett, and A. Kahn.
Dependable Computing in Virtual Laboratories. In Proc.
of the 17th International Conference on Data Engineering
(ICDE2001), Heidelberg, Germany, 2001.

[2] M. Auguston and A. Delgado. Iterative Constructs in the
Visual Data Flow Language. In Proc. of the IEEE Symposium
on Visual Languages, pages 152–159, 1997.

[3] W. Bausch, C. Pautasso, and G. Alonso. Programming
for Dependability in a Service Based Grid. In the 3rd
IEEE/ACM International Symposium on Cluster Computing
and the Grid (CCGrid03), Tokyo, Japan, 2003.

[4] W. Bausch, C. Pautasso, R. Schaeppi, and G. Alonso. Bio-
Opera: Cluster-aware computing. In Proc. of the 4th
IEEE International Conference on Cluster Computing (Clus-
ter2002), Chicago, IL, 2002.

[5] A. Beguelin, J. J. Dongarra, A. Geist, R. Manchek,
K. Moore, R. Wade, and V. S. Sunderam. Hence: Graphi-
cal development tools for network-based concurrent comput-
ing. In Scalable High performance Computing Conference
(SHPCC-92), pages 129–136, 1992.

[6] J. C. Browne, S. I. Hyder, J. Dongarra, K. Moore, and
P. Newton. Visual programming and debugging for paral-
lel computing. IEEE parallel and distributed technology:
systems and applications, 3(1):75–83, 1995.

[7] M. M. Burnett, M. J. Baker, C. Bohus, P. Carlson, S. Yang,
and P. van Zee. Scaling up visual programming languages.
Computer, 28(3):45–54, 1995.

[8] F. Casati and M.-C. Shan. Dynamic and Adaptive composi-
tion of E-services. Information Systems, 26:143–163, 2001.

[9] P. T. Cox and B. Song. A formal model for component-based
software. In Proc. of the IEEE Symposium on Human Centric
Computing, pages 304–311, 2001.

[10] ebXML. ebXML Business Process Spec-
ification Schema (BPSS) 1.01, 2001.
http://www.ebxml.org/specs/ebBPSS.pdf.

[11] D. Gelernter and N. Carriero. Coordination languages and
their significance. Communications of the ACM, 35(2):97–
107, Feb. 1992.

[12] C. A. Gurr. Effective diagrammatic communication: Syntac-
tic, semantic and pragmatic issues. Journal of Visual Lan-
guages and Computing, 10(4), 317–342 1999.

[13] D. D. Hils. Visual languages and computing survey: Data
flow visual programming languages. Journal of Visual Lan-
guages and Computing, 3(1):69–101, 1992.

[14] IBM, Microsoft, and BEA Systems. Business Process Ex-
ecution Language for Web Services (BPEL4WS) 1.0, 2002.
http://www.ibm.com/developerworks/library/ws-bpel.

[15] IBM, Microsoft, and BEA Systems. Web Ser-
vices Coordination (WS-Coordination), 2002.
http://www.ibm.com/developerworks/library/ws-coor.

[16] F. Leymann. Web Services Flow Language (WSFL 1.0).
IBM, 2001.

[17] K. Misue, P. Eades, W. Lai, and K. Sugiyama. Layout ad-
justment and the mental map. Journal of Visual Languages
and Computing, 6(2), 183–210 1995.

[18] M. Mosconi and M. Porta. Iteration constructs in data-flow
visual programming languages. Computer Languages, 26(2–
4):67–104, July 2000.

[19] M. Muench and A. Schuerr. Leaving the visual language
ghetto. In Proc. of the IEEE Symposium on Visual Lan-
guages, pages 148–155, 1999.

[20] Oasis. Universal Description, Discovery and Inte-
gration of Web Services (UDDI) Version 3.0, 2002.
http://uddi.org/pubs/uddi v3.htm.

[21] S. Thatte. XLANG: Web Services for Business Process De-
sign. Microsoft, 2001.

[22] W. M. P. van der Aalst. The Application of Petri Nets to
Workflow Management. The Journal of Circuits, Systems
and Computers, 8(1):21–66, 1998.

[23] W. M. P. van der Aalst. Don’t go with the flow: Web services
composition standards exposed. IEEE Intelligent Systems,
18(1):72–85, 2003.

[24] W3C. Simple Object Access Protocol (SOAP) 1.1, 2000.
http://www.w3.org/TR/SOAP.

[25] W3C. Web Services Definition Language (WSDL) 1.1, 2001.
http://www.w3.org/TR/wsdl.

[26] W3C. Web Services Choreography Interface (WSCI) 1.0,
2002. http://www.w3.org/TR/wsci.

[27] W3C. Web Services Conversation Language (WSCL) 1.0,
2002. http://www.w3.org/TR/wscl10.

[28] G. Wiederhold, P. Wegner, and S. Ceri. Towards megapro-
gramming: A paradigm for component-based programming.
Comm. ACM, 35(11):89–99, 1992.

[29] G. Wirtz, M. Weske, and H. Giese. Extending UML with
Workflow Modeling Capabilities. In 7th International Con-
ference on Cooperative Information Systems (CoopIS-2000),
Filat, Istrael, 2000.

[30] D. Wodtke, J. Weissenfels, G. Weikum, and A. Kotz-Dittrich.
The Mentor Project: Steps Toward Enterprise-Wide Work-
flow Management. In Proc. of the 12th International Con-
ference on Data Engineering, pages 556–565, Feb. 1996.


