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Motivation

Autonomic controllers are added to systems to 
enable self-configuration 

Autonomic behavior often requires configuration

Configuring an autonomic system is very difficult 
and requires expertise

Our initial experiments show performance 
variation of up to 287% 
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Distributed Workflow Execution
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Autonomic Configuration

Autonomic Controller monitors performance  and 
adjusts configuration:

Monitors performance
Calculates new configuration
Applies changes to configuration
Waits for changes to take effect

Acts upon:
Selection policy: Which nodes are reconfigured?
Information policy: What parameters should be monitored?
Optimization policy: How should the system be reconfigured?
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Configuration Problem

Best-known (Growth policy) policy reconfigures 
system once growth in either queue exceeds 
configured threshold
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Standard PID Controller

System is balanced if:
QProcess + QEvent = QTask
Control Error = (QProcess + QEvent ) / QTask

Control Actions:
If QProcess + QEvent < QTask => more dispatchers need to be 
added and vice versa
Control error [-∞, ∞] is mapped to the number of 
required dispatchers [0, a], with a the size of the cluster

Still requires tuning of parameters
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Balancing Zero-Configuration Policy

Balance producers and consumers given the 
growth of the queues 

Formally express growth in each of the queues:
Growth QEvent= #Dsps * #Msgs * Production Rate – #Navs * 1 * Consumption Rate

Growth QTask = #Navs * #Msgs * Production Rate – #Dsps * 1 * Consumption Rate

#Dsps = Size of Cluster - #Navs

Production and consumption rates are measured at 
runtime

#Messages is determined analytically
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Evaluation

Evaluation of the policies for 3 different workloads:
Busy workload: 
•500 WF executions, 10 parallel tasks, 10s each

Burst workload:
•Sequential 1s, Parallel 0s, Sequential 1s, Parallel 0s with:

• Sequential 1s: 500 WF executions, 10 sequential tasks, 1s each
• Parallel 0s: 2000 WF executions, 10 parallel tasks, 0s each

fMRI workload:
•Medical workflow used for the post processing of 

Functional Magnetic Resonance Imaging data
•10 fMRI workflows started 10s after each other
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Busy Workload
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Burst Workload
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fMRI Workload
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Comparison

Execution time per policy and workload
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Conclusions

Performance of an autonomic system is very 
sensitive to its configuration

Difficult to set configuration parameters right

We have experimentally studied two zero-
configuration policies:

PID controller policy
Balancing policy

Both policies provide a performance gain


