
June 4th, 2008

Automatic Configuration of an Autonomic
Controller - An Experimental Study with Zero-Configuration

Policies

© ETH Zürich

Thomas Heinis1 and Cesare Pautasso2

heinist@inf.ethz.ch, cesare.pautasso@unisi.ch
1Systems Group, Department of Computer Science, ETH Zurich

2Faculty of Informatics, University of Lugano

June 4th, 2008 Thomas Heinis | heinist@inf.ethz.ch

Motivation

Autonomic controllers are added to systems to
enable self-configuration

Autonomic behavior often requires configuration

Configuring an autonomic system is very difficult
and requires expertise

Our initial experiments show performance
variation of up to 287%

2

June 4th, 2008 Thomas Heinis | heinist@inf.ethz.ch

Distributed Workflow Execution

3

Event Queue

Task Queue

Process
Execution

State

Navigators

(Process
Execution)

Dispatchers

(Task Execution)

JOpera API

Event Queue

Process Queue

June 4th, 2008 Thomas Heinis | heinist@inf.ethz.ch

Autonomic Configuration

Autonomic Controller monitors performance and
adjusts configuration:

Monitors performance
Calculates new configuration
Applies changes to configuration
Waits for changes to take effect

Acts upon:
Selection policy: Which nodes are reconfigured?
Information policy: What parameters should be monitored?
Optimization policy: How should the system be reconfigured?

4

June 4th, 2008 Thomas Heinis | heinist@inf.ethz.ch

Configuration Problem

Best-known (Growth policy) policy reconfigures
system once growth in either queue exceeds
configured threshold

5

June 4th, 2008 Thomas Heinis | heinist@inf.ethz.ch

Standard PID Controller

System is balanced if:
QProcess + QEvent = QTask
Control Error = (QProcess + QEvent) / QTask

Control Actions:
If QProcess + QEvent < QTask => more dispatchers need to be
added and vice versa
Control error [-∞, ∞] is mapped to the number of
required dispatchers [0, a], with a the size of the cluster

Still requires tuning of parameters

6

June 4th, 2008 Thomas Heinis | heinist@inf.ethz.ch

Balancing Zero-Configuration Policy

Balance producers and consumers given the
growth of the queues

Formally express growth in each of the queues:
Growth QEvent= #Dsps * #Msgs * Production Rate – #Navs * 1 * Consumption Rate

Growth QTask = #Navs * #Msgs * Production Rate – #Dsps * 1 * Consumption Rate

#Dsps = Size of Cluster - #Navs

Production and consumption rates are measured at
runtime

#Messages is determined analytically
7

June 4th, 2008 Thomas Heinis | heinist@inf.ethz.ch

Evaluation

Evaluation of the policies for 3 different workloads:
Busy workload:
•500 WF executions, 10 parallel tasks, 10s each

Burst workload:
•Sequential 1s, Parallel 0s, Sequential 1s, Parallel 0s with:

• Sequential 1s: 500 WF executions, 10 sequential tasks, 1s each
• Parallel 0s: 2000 WF executions, 10 parallel tasks, 0s each

fMRI workload:
•Medical workflow used for the post processing of

Functional Magnetic Resonance Imaging data
•10 fMRI workflows started 10s after each other

8

June 4th, 2008 Thomas Heinis | heinist@inf.ethz.ch

Busy Workload

9

DispatchersNavigatorsDispatchersNavigators

Event Queue
Task Queue
Process Queue

PID Controller Policy Balancing Policy

Time [s] Time [s]

Event Queue
Task Queue
Process Queue

N
um

be
r o

f N
od

es
Q

ue
ue

 S
iz

e

June 4th, 2008 Thomas Heinis | heinist@inf.ethz.ch

Burst Workload

10

DispatchersNavigatorsDispatchersNavigators

PID Controller Policy Balancing Policy

Time [s] Time [s]

Event Queue
Task Queue
Process Queue

Event Queue
Task Queue
Process Queue

N
um

be
r o

f N
od

es
Q

ue
ue

 S
iz

e

June 4th, 2008 Thomas Heinis | heinist@inf.ethz.ch

fMRI Workload

11

PID Controller Policy Balancing Policy

DispatchersNavigators DispatchersNavigators

Time [s] Time [s]

Event Queue
Task Queue
Process Queue

Event Queue
Task Queue
Process Queue

N
um

be
r o

f N
od

es
Q

ue
ue

 S
iz

e

June 4th, 2008 Thomas Heinis | heinist@inf.ethz.ch

Comparison

Execution time per policy and workload

12

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Busy Workload Burst Workload fMRI Workload

Ti
m

e
[s

]
i

Growth Policy
PID Controller Policy

Balancing Policy

June 4th, 2008 Thomas Heinis | heinist@inf.ethz.ch 13

Conclusions

Performance of an autonomic system is very
sensitive to its configuration

Difficult to set configuration parameters right

We have experimentally studied two zero-
configuration policies:

PID controller policy
Balancing policy

Both policies provide a performance gain

