396 Int. J. Web Engineering and Technology, Vol. 2, No. 4, 2006

Enforcing web services business protocols at
run-time: a process-driven approach

Biorn Biornstad*, Cesare Pautasso
and Gustavo Alonso

Department of Computer Science
ETH Ziirich

CH-8092 Ziirich, Switzerland
E-mail: bioernstad @inf.ethz.ch
E-mail: pautasso@inf.ethz.ch
E-mail: alonso@inf.ethz.ch
*Corresponding author

Abstract: Business processes provide abstractions for modelling business
protocols that define the correct interactions between two or more Web services
(WS). It has been shown that it is possible to automatically derive role-specific
processes from a global protocol definition and also statically verify the
compliance of a local process with the corresponding global business process.
In this paper, we show that a similar approach can be used at run-time.
We propose to employ process-based tools to enforce that the messages
exchanged between different WS comply with a given business protocol, both
in terms of sequencing constraints and data flow characteristics. Our solution
simplifies the implementation of WS because it helps to separate the concern
of business protocol compliance from the actual service implementation. To
do so, we show how to transparently add a protocol enforcement layer to the
WS messaging stack. Our experimental results indicate that this imposes a
minimal overhead.

Keywords: Web services (WS); choreography; run-time protocol enforcement;
business protocols; conversation controller.

Reference to this paper should be made as follows: Biornstad, B., Pautasso, C.
and Alonso, G. (2006) ‘Enforcing web services business protocols at run-time:
a process-driven approach’, Int. J. Web Engineering and Technology, Vol. 2,
No. 4, pp.396-411.

Biographical notes: Biorn Biornstad is a PhD student in the Department
of Computer Science at ETH Zurich. He received a degree in Computer
Science from ETH Zurich in 2002. His research interests are in the area
of workflow management and the intersection of message-based and
streaming communication.

Cesare Pautasso is a Senior Researcher in the Department of Computer Science
at ETH Zurich. He completed his graduate studies with a PhD from ETH
Zurich in 2004 and his undergraduate studies at Politecnico di Milano, Italy
with a Computer Science Engineering Degree (cum laude) in 2000. His
research interests focus at the intersection of autonomic computing, business
process management, cluster/grid computing and visual languages, with the
goal of exploring innovative techniques for building large-scale distributed
systems by means of software composition. His research ideas have been
driving the development of the JOpera for Eclipse system (www.jopera.org). In

Copyright © 2006 Inderscience Enterprises Ltd.

Enforcing Web Services business protocols at run-time 397

addition to doing research, Pautasso has been active giving lectures (both in
industry and at the university) on the topics of Middleware, Web Services and
Service-Oriented Architectures.

Gustavo Alonso is Professor in the Department of Computer Science at ETH
Zurich. He holds degrees in Telecommunications Engineering from the Madrid
Technical University (1989) and in Computer Science (MS 1992, PhD 1994)
from the University of California at Santa Barbara. After graduating, he was a
visiting scientist in the IBM Almaden Research Laboratory in San Jose,
California. His research interests include Web services, grid and cluster
computing, sensor networks, databases, workflow management, scientific
applications of database and workflow technology, pervasive computing and
dynamic aspect oriented programming.

1 Introduction

Web services (WS) standards and tools provide the basic infrastructure for supporting
service-oriented architectures (Weerawarana et al., 2005) in enterprise application
integration and electronic commerce. The idea is for WS to facilitate access to
applications by providing a standard interface. These WS are then combined into more
complex services. Combining simpler WS into more complex ones is often referred to as
composition. In this context, workflow processes have been successfully applied to
define WS compositions (Leymann et al., 2002; Curbera et al., 2003). Processes provide
high-level abstractions for modelling a conversation, i.e., a sequence of message
exchanges between a set of WS. Likewise, workflow processes have also been used to
model business protocols (Chiu et al., 2004; W3C, 2002), i.e., a set of rules which
defines a correct conversation with a WS (Alonso et al., 2004). Given the relationship
between a composition and a business protocol, many useful results concerning the static
validation of one in terms of the other have been presented (van der Aalst and Weske,
2001; Bussler, 2002; Schulz and Orlowska, 2004).

When several services interact, all of them must comply with a common protocol. In
general, and especially in an open WS composition scenario, a service cannot always
assume the correct behaviour of its communication partners. Thus, to protect itself, the
service must enforce the protocol before taking actions based on any received message.
In this paper, we use a process-based approach to enforce business protocols at run-time.
This entails the verification of every message received or sent by a WS participating in a
conversation. Messages are checked with respect to ordering and data format constraints.
Process-based modelling techniques provide a formal description of such constraints that
can be used to enforce the correctness of the interaction at run-time.

For the purposes of this paper, we assume that there exists a global model of the
business protocol that defines the rules followed by all of the partners involved in a
conversation. We then use a process-based system to enforce the business protocol. Every
partner involved in the conversation is associated with the public process describing its
view of the protocol (van der Aalst and Weske, 2001). This process defines the correct
messages to be received (or sent) at every stage of the conversation. For each ongoing
conversation, every partner maintains an instance of its public process. When a message
is exchanged between two partners, both update the state of their process instance to

398 B. Biornstad, C. Pautasso and G. Alonso

reflect the progress of the conversation. This makes it possible to check every message
against the current state of the process instance in order to accept or reject it without
requiring a centralised coordinator.

Given the existing work on verifying that a public process complies with a global
protocol (Benatallah er al., 2004) as well as on extracting role-specific views from a
global business protocol definition (Schulz and Orlowska, 2004), we assume that the
public process assigned to each WS correctly defines its behaviour in the conversation.
However, we do not assume that each of the WS is implemented with process-based tools
(Figure 1, left). If this had been the case, it would have been possible to apply some form
of static verification to ensure that the private process driving the implementation of the
WS complies with the aforementioned public process (Kindler et al., 2000). In practice,
most WS are still implemented using traditional programming languages (Figure 1,
right). Thus, the implementation includes both the private business logic and the logic
checking that clients of the WS comply with the public process.

Figure 1 WS with a process-based implementation (left) and an implementation in a traditional
programming language (right)

Web Service Web Service

Vl Vl M T Java

NET

A=k S+

In view of this, the paper makes the following contributions. First, we propose to
implement the run-time protocol enforcement in a component, which is logically
separate from the actual service implementation. This prevents invalid messages from
triggering possibly expensive operations. Second, since the protocol enforcement is done
transparently with respect to the service implementation, the conversation controller can
be used without modifying existing services. Or, if an existing service implementation is
changed, the conversation controller can be used to ensure the correctness of the new
implementation. By separating the protocol verification from the business logic, the
developer of the service can concentrate on the business logic rather than having to
deal with a potentially large set of exceptional cases (Kuno and Lemon, 2001). Third,
we show how to enforce protocols using a process-based conversation controller.
In doing so, an existing process-based specification of the protocol can be reused
and an error-prone manual translation to conventional code can be avoided. It is also
possible to reuse an existing process management infrastructure to keep the state of
conversations. Finally, we also show that our solution is efficient and does not introduce
a large overhead.

The paper is organised as follows. First, we introduce an example business protocol
and its role-specific views represented by processes (Section 2). The architecture of the
system is described in Section 3. In Section 4, we present a performance evaluation of the
architecture and show that it imposes only minimal overhead. Section 5 discusses related
work. In Section 6, we draw some conclusions.

Enforcing Web Services business protocols at run-time 399

2 Example

2.1 Purchase order protocol

The example protocol represents the placing of an order, payment and shipping of a
product. The protocol involves three partners: the client, the store and the supplier. The
store acts as a broker between the client and the supplier. The protocol is defined using
the Message Sequence Chart of Figure 2. The protocol is similar to the Web Services
Interoperability (WS-I) sample application (WSI, 2003).

Figure 2 Global view of the purchase order protocol. Message sequence chart listing all
messages exchanged by the three roles involved in the protocol

. 1: order = |
| \ 2: checkAvailability N
I I I
! ! 3: availabilityResponse !
| < |
e 4: orderResponse) |
| L 5: order >
I I I
I . I . I
| 6b: pay/cancel S 6a: ready |
I I I
| L 7: ship/cancel N
I I I
| _ 8: shippin ! !
< pping : :
I I I
L 9: received) |
I I 10: close >I

The protocol consists of two main phases. The first phase of the protocol is used to
determine the availability of the product. This phase starts with the client sending an
order request (1) to the broker. The message contains information on the product, which
is ordered. Since the store maintains no stock, it checks the availability of the product at
the supplier (2). Triggered by the checkAvailability message, the supplier checks its stock
and responds with a positive or negative answer according to the availability of the
product (3). The store forwards this information to the client (4). A negative answer to
the client means that the product is not available and the protocol terminates. A positive
answer indicates the product is available and the protocol enters into phase two.

In phase two, the client pays for the order and the supplier ships the product to the
client after receiving a confirmation by the store. The communication concerning the
preparation of the shipment consists of two messages. The store orders the product from
the supplier (5) and when the supplier has prepared the order for shipping it notifies the
store (6a). The payment is accomplished with a single message from the client to the
store (6b). Instead of paying, the client also has the possibility of cancelling the order.

Thus, after sending the order request to the supplier (5), the store waits for the
notification from the supplier (6a) and for the client to pay or to cancel the order (6b). In
the case of a cancellation, the store needs to notify the supplier about the client’s decision
by sending a cancel message (7). After cancelling, the protocol ends. Otherwise, the store
instructs the supplier to ship the goods to the client (7). Consequently, the supplier

400 B. Biornstad, C. Pautasso and G. Alonso

notifies the client that the goods are on their way (8). When the client has received the
product, it notifies the store (9), which in turn completes the protocol by sending a final
close message to the supplier (10).

2.2 Processes for the protocol participants

The control flow abstractions provided by a business process modelling language are
used to capture temporal constraints between its activities. In the context of business
protocols, the control flow dependencies between activities can be used to model which
set of messages must have been exchanged before a certain message is allowed to be
transferred. Figures 3, 4 and 5 show the processes involved in the Purchase Order (PO)
protocol in WS-BPEL (OASIS, 2005)." An additional graphical view of the public
processes using the BPMN (BPMI, 2004) syntax helps to understand the textual version.
For the client and supplier the graphical version also shows some activities of an
imaginary private process (dashed boxes), which is a specialisation of the corresponding
public process (van der Aalst and Weske, 2001).

Figure 6 unifies the message sequence chart of the PO protocol and the public
processes of the protocol participants. In the graphical processes, solid arrows represent
control flow dependencies while dashed arrows represent message exchanges. Control
flow dependencies can denote exclusive paths (XOR) or have a condition attached.

In all processes, a top-level sequence orders all the message exchanges. In the client
process, the first two messages are mapped directly to activities. The possibility to send
either a pay or a cancel message is modelled by a switch which branches based on
the black-box function clientWantsToCancel (). After cancelling, the protocol
ends. Otherwise, after paying, the shipping and received messages are exchanged
in sequence.

Figure 3 Public process of the client. The graphical view additionally shows activities from an
imaginary private processs (dashed boxes).

<process name="client"> lord
<sequence> -oraer

<invoke store.order/>
<receive store.orderResponse/>

- ¢ choose
<switch> [?orderResponse] H

<case condition= i different store

"clientWantsToCancel () ">

<invoke store.cancel/>
</case>
<otherwise>

<sequence>

<invoke store.pay/>

<receive supplier.shipping/>

<invoke store.received/>
</sequence>

</sequence>
</process>

</otherwise> N
</switch> ?shipping

l { addto
i__inventory

Ireceived

Enforcing Web Services business protocols at run-time

Figure 4 Public process of the store

401

<process name="store">

<sequence>
<receive client.order/>
<invoke supplier.checkAvailability/>
<receive supplier.availabilityResponse/>
<invoke client.orderResponse/>

<switch><case condition="productAvailable ()">

<flow>
<sequence>

IcheckAvailability

(?availabilityResponse}

<invoke supplier.order/>
<receive supplier.ready>
<source linkName="readyCancel"/>
<source linkName="readyShip"/>
</receive>
</sequence>
<pick>
<onMessage client.cancel>
<invoke supplier.cancel>
<source linkName="readyCancel"/>
</invoke>
</onMessage>
<onMessage client.pay>
<invoke supplier.ship>
<source linkName="readyShip"/>
</invoke>
<receive client.received/>
<invoke supplier.close/>
</onMessage>
</pick>
</£flow>
</case></switch>
</sequence>
</process>

available

lorder

lorderResponse

e
Y

available

(o) o>

Iship

?received

Figure 5 Public process of the supplier. The graphical view additionally shows activities from an
imaginary private process (dashed boxes).

<process name="supplier">
<sequence>
<receive store.checkAvailability/>
<invoke store.availabilityResponse/>
<switch>
<case condition="cancel () ">
<terminate/>
</case>
</switch>
<receive store.order/>
<invoke store.ready/>
<pick>
<onMessage store.cancel>
<terminate/>
</onMessage>
<onMessage store.ship>
<invoke client.shipping/>
<receive store.close/>
</onMessage>
</pick>
</sequence>
</process>

?checkAvailability

l check stock

EavailabilityResponseJ/

!

?order

!

ready
?pay_cancel

(P

[,,
?ship calculate ETA

(

(

ship

Ishipping J4/l
l ship goods

?close

~—

402 B. Biornstad, C. Pautasso and G. Alonso

Figure 6 Unification of the PO protocol and the corresponding public processes

Client Store Supplier

place order '— oo _liorder_ ______.

receive order

receive

availability request

send availability

receive
availabilit

receive order

notify about
prepared goods

cancel r

=~ - o A 4
- -4 receive shipping
7:ship __---T authorisation

authorize | _ - - - ship

receive shipping| cshipping _ _ _ _ _ _ ______ = t_o_ rl' __________________ 1 notify about
notification deliver

receipt

receive receipt
notification
A 4

close order| - - - - - - 1% close_____ -3 receive
close message

In the store process, after receiving the availability from the supplier, the store forwards
the information to the client. At the same time — and only if the product was available
— the store places the definitive order with the supplier and waits for the ready message,
and in parallel (using a Flow) waits for the client to pay or cancel using a pick. The
pick corresponds to the switch in the client process.

After reporting on the availability of the product, the store decides whether it should
terminate depending on the reported availability. When the order has been prepared
(ready message), the store uses a pICK to receive the decision of the store whether to
cancel the order or allow shipping of the goods.

3 System architecture

3.1 Overview

Our main goal is to enforce business protocols in a transparent manner. To do this, we
introduce a conversation controller component that intercepts messages to and from the
WS. The basic idea is to block messages that do not comply with the business protocol.
Figure 7 shows the architecture of the system. We assume that the WS is
implemented using the Apache Axis message processing framework (Apache Software
Foundation 2005b).? The controller is implemented as a message handler for Axis. As we
are going to describe, such a handler can transparently intercept, manipulate, and even
reject messages, which are exchanged by a service. The conversation controller contains
a process engine which tracks the conversations in which the WS is involved and decides

Enforcing Web Services business protocols at run-time 403

on the validity of messages, which pass through the controller. The following shows how
Axis, the service implementation, the conversation controller and the process engine
work together.

Figure 7 Transparent integration of a process-based conversation controller in the WS
messaging stack

. Service
receive send

r 4 . ¥
o intefcept >
3 Conversation o
Q Controller Q
=} =}
[¢] [¢]
= copy 5
: 2
o S

3 ~inhibit| Process | K
B Engine [inhibit 5
<Q Qe

copy
intercept
A
Inbound Transport Outbound Transport
Incoming Outgoing
Message Message

3.2 Axis architecture

The main concept in the Axis architecture (Apache Software Foundation, 2005a) is the
message handler, which can read and arbitrarily change a message. It can also abort
the further processing of the message by reporting an error to Axis. Messages directed
at a service, as well as messages sent by a service, are processed by the Axis engine
(Figure 7). The engine can be viewed as two chains of handlers, one for incoming and
one for outgoing messages. An incoming message is picked up by the inbound transport
and injected into the Axis engine. An outgoing message is generated by the service and
passed to the engine. The message is then processed in sequence by the applicable
handlers and either reaches the service implementation object or the outbound transport.

3.3 Integration of the conversation controller

When a service sends messages, it is important that these are also validated and tracked
by the conversation controller in exactly the same way incoming messages are checked.
Incoming messages are often a reply to previously sent messages, the validity of which
can only be determined if the controller knows the messages that triggered them. In our
example protocol, the very first message is an outgoing message from the client. In order
to correlate later answers (e.g., the acknowledgment received from the store), the process
engine needs to extract the correlation information from the message. Also, the shipping
message can only be processed if the client has sent a pay message before.

404 B. Biornstad, C. Pautasso and G. Alonso

Since the processing of incoming and outgoing messages with Axis is symmetric, the
conversation controller can intercept outgoing messages in the same way as incoming
ones. To do so, the conversation controller is added to the handler chains for both
incoming and outgoing messages (Figure 7). When it is invoked, the controller sends a
copy of the message to the process engine and indicates whether the message is incoming
or outgoing. Then it waits for the engine to accept or reject the message. If the message is
accepted, the conversation controller returns control to Axis and the message eventually
reaches the service (inbound message) or the outbound transport (outbound message). In
case the message is rejected, the conversation controller can act in different ways. It can
just discard the message and ignore it, or it can reject it by notifying the sender of the
message. In our implementation, we chose to reject the message. By discarding the
message, the service is protected from corrupt messages, but the client will not notice the
protocol violation and will keep resending incorrect messages. The explicit rejection thus
helps detect errors in remote applications. To do so, the conversation controller throws an
exception, which causes Axis to stop further processing of the message and to return a
fault to the originator of the message (the local service for outbound messages or a
remote service for incoming ones).

3.4 Managing the conversation life cycle

Every conversation is tracked by process instances running in the process engines located
at each participant. Thus, we do not rely on a centralised coordinator, but use a
distributed approach to enforce the protocol. At each participant, incoming messages are
delivered to the corresponding process instance in order to update its state. The life cycle
of a process instance corresponds to the life cycle of the conversation as seen from the
respective partner.

Process creation is accomplished by instantiating activities (WS-BPEL: receive
or onMessage with createlnstance="yes"). When a message for such an
activity arrives, the containing process is instantiated before the receipt. Each process
must have at least one instantiating activity among the initial activities in the control
flow. For each of the processes for the example protocol, the first activity is an
instantiating activity.

A process instance can terminate in two ways. It terminates implicitly if there are no
more active activities because, according to the protocol, there are no more messages,
which may be sent. The process may also be terminated explicitly by a special activity in
the process (terminate in WS-BPEL). This happens when a condition is met for
which the protocol explicitly states termination.

3.5 Processes for tracking conversations

The process representing the view of a protocol participant contains both sending and
receiving activities (Figures 3, 4 and 5). In contrast, the conversation controller only
intercepts messages, i.e., it never sends messages but rather receives a copy of messages
sent by the service. Thus, the process used to model the protocol cannot be directly
executed by the process engine inside the controller. This section shows how to derive
the process for the conversation controller from a public process. In general, a part of a

Enforcing Web Services business protocols at run-time 405

process, which cannot be executed directly, needs to be replaced by its dual construct.
We illustrate this with two examples of WS-BPEL activities in the client process:
invoke and switch.

An Invoke means the service will send a message which the conversation controller
should intercept, i.e., the process engine will receive a copy of it. For example, the
client of the PO protocol sends the order message with <invoke store.order/>.
The corresponding activity to intercept this message is <receive client.
order/> which is also used by the store to receive the message.

The client process uses a Switch activity to model alternative paths in the protocol
(Figure 3). However, the conversation controller cannot execute a Switch because it
should only detect the branching decisions made by the service. The dual construct is the
same pick activity as in the process of the store (Figure 4). This activity allows the store
to receive either a cancel or an order message from the client. Such a pick can also be
used in the conversation controller at the client to detect which message the client sends
to the store. This way, the controller may branch the execution of the process based on
the client’s decision.

3.6 Message validation in the process engine

In every state of the conversation, certain receive activities in the process are active.
They specify what message type they accept (portType and operation) and whether
it is an incoming or outgoing message (partnerLink). They also specify how
messages should be correlated with process instances (correlation sets in WS-BPEL).

Every message, which is passed to the process engine, is correlated with the process
instances. If there is an instance waiting for that message, the engine accepts it and
delivers it to the instance. If the message initiates a conversation, the process engine
creates a process instance for this conversation before accepting the message. When a
process instance receives a message, its state is updated accordingly, thus tracking the
progress of the conversation. This activates new activities in the process. These accept
messages which are valid in the new state of the conversation.

If the process engine cannot deliver the message to any of the process instances, the
message is rejected. The acceptance or rejection of each message is signalled to the
conversation controller, which acts accordingly.

3.7 Process engine

We briefly describe how processes are executed by introducing the architecture of JOpera
(Pautasso, 2004) (Figure 8), a general purpose process engine which was embedded into
the conversation controller. The execution of a process begins with a request sent through
the API of the engine or generated by an arriving message (see below). Such requests are
queued into the process execution request space (or process space). These requests are
handled by the navigator, which 1) creates a new process instance into the process
execution state space and 2) begins with the actual enactment of the process. To do so,
the navigator uses the current state of the execution of a process to determine which
activities should be invoked next, based on the control and data flow dependencies that
are triggered by the completion of the previous activities. Once the navigator determines
that a certain activity is ready to be invoked, the corresponding tuple is stored in the
activity execution request space (or activity space).

406 B. Biornstad, C. Pautasso and G. Alonso

Figure 8 Logical architecture of the JOpera process execution engine

Process Engine API

Process
Space

Process Navigator

Execution J Y| (Process
State Execution

messages

Conversation

Filter Controller

r/

rejections |
P

Activity
Space

criteria

Activity
Execution

Process Engine

The invocation of the activities is managed by the activity execution component. When a
receive activity is executed, it is registered in the filter component together with the
restrictions it imposes on the message to be received. In the case a process is to be
instantiated by a message, the corresponding criteria are registered together with the
instruction to create a process instance when a message is matched.

Every message coming from the conversation controller is checked by the filter
against all the criteria specified by receive activities. If the message matches the
criteria of an activity, it is assigned to the activity, which is then marked as finished, and
the navigator is notified through the event space. The activity completion events are
consumed by the navigator in order to update the state of the corresponding process
instance and carry on with its execution. If an arriving message does not match any of the
registered criteria, the conversation controller is instructed to reject the message.

4 System evaluation

In order to measure the impact of the conversation controller on the performance of a
WS, we have performed two different experiments. First, we used a very simple service
to measure the overhead of the different components in the system. Second, we used the
protocol of Section 2.1 to compare the conversation controller with a custom protocol
enforcement layer written in plain Java.

4.1 Setup

The measurements were done over the internet between three sites: McGill University,
Canada, Universidad Politecnica de Madrid, Spain, and ETH Zurich, Switzerland. McGill
and ETH were 18 hops apart, ETH and Madrid 13 hops and Madrid and McGill 17 hops.

The machine at McGill was equipped with an Intel Pentium 4 processor with
Hyper-Threading enabled running Linux 2.4.20-8smp at 3GHz and with 1GiB of main
memory. At ETH Zurich, the machines were powered by two AMD Athlon MP 1600+
processors running Linux 2.6.8-1.521smp at 1.4GHz and with 1GiB of main memory. In
Madrid, we used an AMD Athlon MP 1800+ machine running Linux 2.4.20-8smp at
1.5GHz and with 512MiB of main memory.

Enforcing Web Services business protocols at run-time 407

All SOAP processing was done with Apache Axis version 1.2alpha. All sites used
Sun’s Java HotSpot VM 1.4.

4.2 System overhead

This experiment measures the overhead of the conversation controller, which occurs
every time a message is intercepted. It uses a service with a single operation, which
returns a short string. Although the conversation is only one message long, the controller
can be used to filter invalid messages that do not satisfy data format constraints.

The service is deployed with and without conversation controller. When the
conversation controller is used, a single process instance continuously checks the
operation invocations. Technically speaking, this maps to a conversation with an
unlimited number of invocations of one operation. The overhead of instantiating a
process is not measured. The experiment uses different ratios of valid to invalid
messages. Valid messages are SOAP-RPC requests for the service operation, while
invalid messages are SOAP-RPC requests for a non-existing operation. A single-threaded
client calls the two operations at the appropriate ratio 1000 times in total.

The WS was running at ETH and the client at McGill. The response time for each
operation invocation and the throughput were measured.

Figure 9 shows the results. The overhead of the conversation controller ranges from
1.6% to 4.3% depending on the ratio of valid to invalid messages.

Figure 9 Average response time of the simple WS operation for different amounts of
invalid messages

— 250 T T T R T .
g Plain operation ——
° 240 Conversation controller --->--]
E 230 .
(]
g 220 tn%xnx”WX/77%77;;Xi7”XW"X7777><7"'X""x’’’’><’’’’><’’**><~~f><ffff><fff—><ff”><—f~><—w—><”,,_
o 210 F + t t + t t — t + t —
oq:) 200 1 1 1 1

0 20 40 60 80 100

Invalid messages [%]

4.3 Detailed analysis of the overhead

For the plain operation without conversation controller, the response time and throughput
remain constant regardless of the ratio of valid to invalid messages. This shows that the
time Axis takes to verify a message is constant. Axis only needs to check if the service
object implements the requested method and whether it is allowed to be called. Also, the
results show that the invocation of the operation and the generation of a fault take the
same time.

When the conversation controller is employed, the response time for valid messages
is larger than for invalid messages. The reason is the following. Every message is filtered
by the process engine. Invalid messages are rejected immediately. Valid messages cause
the state of the corresponding process instance to be updated, which imposes an
additional overhead.

408 B. Biornstad, C. Pautasso and G. Alonso

Figure 10 (left) shows the breakdown of the response time. The time is split into the
portions contributed by the three steps discussed above. ‘Plain operation’ (211.39 ms) is
the response time (including network delay, SOAP processing efc.) measured without
conversation controller. The ‘filter’ part (3.4 ms) is the additional time it takes to
correlate the message, regardless of its validity. Updating the state of a process instance
adds ‘state update’ time (5.71 ms) for valid messages. The total overhead for a valid
message is 4.3%.

Figure 10 (right) shows the throughput for the plain operation (4.72 messages/s), for
the case where all messages are invalid and are rejected after filtering (4.64 messages/s)
and for the case where all messages are valid and cause a state update (4.54 messages/s).

Figure 10 Overhead of the conversation controller. Processing delay per layer (left) and
throughout (right) for the simple operation

'g‘ 225) 6 7

< 220 @

E 215 - £ 4+ [] State update
'é 210 3 Il Filter

5 S 2] Plain operation
& 205 3

€ 200 F o

4.4 Comparison with handwritten controller

We have implemented the purchase order example protocol detailed in Section 2.1 with
Java. To simulate real PO participants who access back-end systems, each of them
always waits five seconds before sending a message. Thus, a complete run of the protocol
takes at least 45 seconds.

This basic implementation has no special provisions for checking the protocol
compliance of clients. The protocol enforcement is accomplished in two different ways.
The first approach wraps each operation with a Java guard. For this, the Java classes of
the protocol participants are sub-classed. Every published method is overridden to accept
or reject an invocation based on previous operation invocations. For valid messages, the
overridden method is invoked. The second approach uses the conversation controller as
discussed in Section 3.3. The controller contains the process definitions describing the
view of the business protocol from the guarded service.

We measured the performance of the two approaches. Each role of the protocol was
running on a machine at one of the sites described above. The client was running at
Madrid, the store at ETH and the supplier at McGill. A program on the client machine
was initiating conversations at different frequencies by sending start-messages to the
client service.

Figure 11 shows the duration of the purchase order protocol as seen from the store. At
30 conversation initiations per minute the duration is almost the same for the Java guard
(46.45s) and conversation controller (46.86s) (+0.88%). At 60 conversations per minute,
the durations for the protocol with Java guard (46.70s) and with controller (47.27s) are
still similar (+1.21%). At 120 per minute the overhead of the controller grows to 5.37%
(49.82s versus 47.28s).

Enforcing Web Services business protocols at run-time 409

Figure 11 Duration of the purchase order protocol as seen from the store. Conversations were
initiated with different frequencies

50
— 48
% 46 - [] Java Guard
5 .
2 441 [l Conversation
g 42 Controller
® 40 . .

30 60 120
Conversation initiation

frequency [1/minute]

4.5 Discussion

The measurements show that the overhead of the conversation controller is small when
used in a realistic setting. Even for very short operations, the overhead is acceptable.
Considering real operations, which last more than one second, the overhead is less than
1% for a single operation invocation. The purchase order experiment shows that for a
realistic workload of 30 to 90 concurrent conversations, the overhead is from 1% to 5%.

The results are encouraging, especially because JOpera is a general purpose process
support system, and hence, the performance of the system could be improved by tailoring
it to conversation tracking. Currently, JOpera employs a single navigator thread for
executing processes, which becomes a bottleneck when tracking many conversations in
parallel. By making the navigation multi-threaded, the navigation throughput of the
engine could be significantly increased. Another time-consuming step is the filtering
of messages. By employing an optimised XML message filter such as YFilter (Diao
et al., 2003) the overhead of the message correlation could be lowered.

5 Related work

This paper relies on previous work on the theory of protocol validation. For example,
(Benatallah er al., 2004) discuss the compatibility of different services in terms of their
protocol specifications. Several operators for the manipulation of protocols are
developed. Using these operators, compatibility and replaceability levels of services are
defined. For the public processes used with our conversation controller, we assume that a
similar validation has been applied to make sure they comply with the global protocol.
Public processes can also be derived from a global model of the protocol as described
by (van der Aalst and Weske, 2001). Private processes can be created by sub-classing
public processes, so that the correctness of the overall interaction can be guaranteed. In
our view, services are not implemented using processes and, therefore, cannot benefit
from such an approach.

Less work has been published regarding the validation of conversations at run-time.
Similar to our approach, separating the protocol enforcement from the actual service
implementation (Molina-Jimenez et al., 2004) describe how to convert conventional
contracts into executable contracts which are represented by Finite State Machines

410 B. Biornstad, C. Pautasso and G. Alonso

(FSM). These FSMs can be executed by a middleware to verify the behaviour of the
contracting parties. Kuno and Lemon (2001) describe a conversation controller, which
acts as a proxy to enable services to interact even if they do not support the same
protocols. The authors discuss a prototype, which uses HP’s Conversation Definition
Language (CDL) to describe the protocol. Unfortunately, the overhead incurred on the
communication when using this approach is unknown. Pavel et al. (2005) propose a
component model where software components are associated with protocols based on
Symbolic Transition Systems. A basic component and its protocol are composed into a
controlled component, which incorporates a mechanism to impose the specified protocol
on the communication with the software component. In this approach, messages are also
intercepted and validated based on the current state of the conversation.

6 Conclusion

In this paper, we have proposed to enforce business protocols at run-time using a
process-based approach. We have presented an architecture featuring a distributed
conversation controller, which is added transparently to the environment of a WS without
having to change a possibly existing application. The conversation controller intercepts
all messages sent or received by the service, updates its internal representation of the
conversation state and decides on the validity of the message. Incorrect messages may
thus be rejected without ever reaching the service implementation. Our approach lets the
developer of the WS focus on its business logic since the business protocol is enforced
from its specification. Our measurements show that the performance overhead of the
proposed architecture is low even though we used a general purpose process support
system to track the state of conversations.

References

Alonso, G., Casati, F., Kuno, H. and Machiraju, V. (2004) Web Services — Concepts, Architectures
and Applications, Springer.

Apache Software Foundation (2005a) Axis Architecture Guide, Version 1.2, http://ws.apache.org/
axis/java/architecture-guide.html.

Apache Software Foundation (2005b) Axis version 1.2, http://ws.apache.org/axis/.

Benatallah, B., Casati, F. and Toumani, F. (2004) ‘Analysis and management of Web Service
protocols’, Proceedings of the 23rd International Conference on Conceptual Modeling,
Shanghai, China, Vol. 3288 of LNCS.

BPMI (2004) Business Process Modeling Notation (BPMN), Version 1.0, http://www.bpmn.org/
Documents/BPMN V1-0 May 3 2004.pdf.

Bussler, C. (2002) ‘Public process inheritance for business-to-business integration’, Proceedings
of the 3rd International Workshop on Technologies for E-Services (TES 2002),
Hong Kong, China.

Chiu, D.K., Cheung, S., Till, S., Karlapalem, K., Li, Q. and Kafeza, E. (2004) ‘Workflow view
driven cross-organizational interoperability in a web service environment’, Information
Technology and Management.

Curbera, F., Khalaf, R., Mukhi, N., Tai, S. and Weerawarana, S. (2003) ‘The next step in Web
Services’, Communications of the ACM.

Enforcing Web Services business protocols at run-time 411

Diao, Y., Altinel, M., Franklin, M.J., Zhang, H. and Fischer, P.M. (2003) ‘Path sharing and
predicate evaluation for high-performance XML filtering’, ACM Trans. Database System.
Kindler, E., Martens, A. and Reisig, W. (2000) ‘Inter-operability of workflow applications: local

criteria for global soundness’, Business Process Management.

Kuno, H. and Lemon, M. (2001) ‘A lightweight dynamic conversation controller for e-services’,
Technical Report, Hewlett-Packard Laboratories.

Leymann, F., Roller, D. and Schmidt, M-T. (2002) ‘Web services and business process
management’, IBM Systems Journal, Vol. 41, No. 2, pp.198-211.

Molina-Jimenez, C., Shrivastava, S., Solaiman, E. and Warne, J. (2004) ‘Run-time monitoring and
enforcement of electronic contracts’, Electronic Commerce Research and Applications.

OASIS (2005) Web Services Business Process Execution Language Version 2.0 (Working Draft),
OASIS, http://www. oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel.

Pautasso, C. (2004) ‘A flexible system for visual service composition’, PhD Thesis, ETH
Dissertation Nr. 15608, http://www.iks.inf.ethz.ch/publications/cp_diss.html.

Pavel, S., Noye, J., Poizat, P. and Royer, J-C. (2005) ‘A Java implementation of a component
model with explicit symbolic protocols’, Proceedings of the 4th International Workshop on
Software Composition (SC 2005), Edinburgh, Scotland.

Schulz, K.A. and Orlowska, M.E. (2004) ‘Facilitating cross-organisational workflows with a
workflow view approach’, Data and Knowledge Engineering.

van der Aalst, W.M.P. and Weske, M. (2001) ‘The p2p approach to interorganizational workflows’,
Proceedings of the 13th International Conference on Advanced Information Systems
Engineering (CaiSE’01), Interlaken, Switzerland.

W3C (2002) Web Services Conversation Language (WSCL) 1.0, http://www.w3.org/TR/wscl10/.

Weerawarana, S., Curbera, F., Leymann, F., Storey, T. and Ferguson, D.F. (2005) Web Services
Platform Architecture, Prentice Hall PTR.

WSI (2003) Supply Chain Management Sample Application, http://www.ws-i.org/deliverables/
workinggroup.aspx ?wg=sampleapps.

Notes

1 To enhance the readability of our examples we compact the syntax of WS-BPEL as follows.
The invoke activity (which sends a message to a service) and the receive activity (which
receives a message from a service) have a portType and an operation parameter which
determine what message type is exchanged. The partnerLink parameter specifies the
partner with which the message is exchanged. We omit the portType and write the other
two parameters as partnerLink.operation. References to variables are omitted as well.

2 This assumption does not limit the applicability of our approach as several other web service
toolkits provide similar message interception mechanisms.

