
Autonomic Resource Provisioning for
Software Business Processes

Cesare Pautasso Thomas Heinis Gustavo Alonso

Department of Computer Science, ETH Zurich, 8092 Zurich, Switzerland

Abstract

Software development nowadays involves several levels of abstraction: starting
from the programming of single objects, to their combination into components, to
their publication as services and the overall architecture linking elements at each
level. As a result, software engineering is dealing with a wider range of artifacts
and concepts (i.e., in the context of this paper: services and business processes)
than ever before. In this paper we explore the importance of having an adequate
engine for executing business processes written as compositions of Web services.
The paper shows that, independently of the composition language used, the overall
scalability of the system is determined by how the run time engine treats the pro-
cess execution. This is particularly relevant at the service level because publishing a
process through a Web service interface makes it accessible to an unpredictable and
potentially very large number of clients. As a consequence, the process developer is
confronted with the difficult question of resource provisioning. Determining the op-
timal configuration of the distributed engine that runs the process becomes sensitive
both to the actual number of clients and to the kinds of processes to be executed.
The main contribution of the paper is to show how resource provisioning for soft-
ware business processes can be solved using autonomic computing techniques. Tthe
engine separates execution in two stages (navigation and dispatching) and uses a
controller to allocate the node of a cluster of computers to each one of those stages
as the workload changes. The controller can be configured with different policies
that define how to reconfigure the system. To prove the feasibility of the concept,
we have implemented the autonomic controller and evaluated its performance with
an extensive set of experiments.

Key words:
Service Oriented Architectures, Web Service Composition, Autonomic Computing,
Distributed Business Process Execution Engines

Email addresses: pautasso@inf.ethz.ch (Cesare Pautasso),
heinist@inf.ethz.ch (Thomas Heinis), alonso@inf.ethz.ch (Gustavo Alonso).

Preprint submitted to Information and Software Technology 7 September 2007

1 Introduction

In the pursuit of ever higher level abstractions for developing applications,
software engineering has recently adopted the notion of Service Oriented Ar-
chitectures (SOA) as the next step towards improving support for application
integration and the development of large scale enterprise software. Services
follow the tradition of objects and components in terms of dealing with mod-
ularity and composition through the description of entities that have a well
defined interface. However, the transition from object oriented development
to component based development to service oriented architectures represents
not only a shift in terms of the scale of the entities manipulated but also an
increasing reliance on the underlying infrastructure (e.g., middleware) to de-
termine the properties of the resulting software artifact. In other words, what
the software does and how it behaves are less determined by the language used
and the way the program is constructed than by the infrastructure where the
actual program is deployed for execution. This reliance on a relatively large
and complex infrastructure plays a crucial role in developing reusable software
to be delivered as a service [1–3].

In Service Oriented Architectures, there is growing consensus that a good
way to develop software is through business process modeling languages [4–
6]. Processes provide well suited abstractions for modeling business protocols,
conversation rules and the information flow linking a set of services [7–9].
Processes support a form of component based software engineering where the
recursive nature of software composition plays a major role [10,11]. In this
context, a Web service implemented through the reuse and composition of a
set of existing Web services (using a business process) is published to be further
composed into larger distributed applications (Figure 1). This simple idea has
a number of implications on the run-time infrastructure used to execute such
language when the composite service is published on the Web.

The first such implication is that the developer has to deal somehow with
the problem of resource provisioning for the execution of the business process.
Services published on the Web have the potential to be concurrently invoked by
a very large number of clients with surges of requests arriving at unpredictable
times [12]. Whenever a new client contacts the service, a new conversation is
started and a new process instance must be created to keep track of the state
of the interaction. Then, for every message exchanged with the service, the
state of the underlying process has to be updated to reflect the progress of
the conversation [13]. A common way to provide the necessary infrastructure
to support these operations is to partition the correlation of the messages and
the management of their corresponding business process instances among a
distributed execution environment, for example, a cluster of computers [14].

2

Component
Service

Interface

Component
Service

Interface

Component
Service

Interface

Service
Composition

Service
Composition

Interface

Interface

Client

Fig. 1. Web service composition is recursive

Although such a distributed process execution environment can scale to handle
large workloads, the provisioning and configuration of such cluster-based sys-
tems is difficult to determine a priori, especially when facing an unpredictable
workload. This is an important systems management problem. Its solution
requires to dynamically reconfigure the engine [15]. This way, the size and the
configuration of the distributed engine can be adapted to keep the balance be-
tween servicing its workload with optimal performance and ensuring efficient
resource allocation.

In this paper we address the problem of autonomic engine reconfiguration for
service composition based on processes. The paper makes two main contribu-
tions. One conceptual, regarding how to organize the execution of a software
business process according to a stage-based architecture. With it, the nav-
igation over the structure of the process is separated from the dispatching
of messages to perform the actual invocation of the services involved in the
process. As a practical consequence, this opens up the possibility for the de-
veloper to delegate to the run-time infrastructure the decision on how many
execution threads should be dedicated to each stage. Building on this result,
we also show how to implement such architecture by distributing it over a
cluster of computers to deal with the execution of a very large number of
concurrent processes. The second contribution of this paper is the idea of
applying autonomic computing techniques to automatically solve the man-
agement problem for such distributed process execution engine [16,17]. The
relevance and novelty of the contribution lies in the fact that most existing
systems tackle the scalability problem by statically and manually partitioning
the business process across different sites (e.g., [18]). Instead, our approach
uses the current workload to dynamically and autonomously determine the
optimal configuration of the system at run-time.

To demonstrate the validity of these ideas, as part of the JOpera project [19],

3

we have designed and implemented a distributed engine for running Web ser-
vice compositions that achieves scalability by replicating its key components
across a cluster of computers. Additionally, the engine employs an autonomic
controller that monitors the current workload and state of the system. It uses
this information to determine whether the system is running in the optimal
configuration or, alternatively, if some reconfiguration actions have to be car-
ried out. To do so, the autonomic controller uses different policies which can
be chosen according to different goals (e.g., minimize resource allocation or
minimize response time). Our extensive experiments show the feasibility of
the approach, demonstrate that the autonomic controller can reconfigure the
system automatically and compare the behavior of alternative control policies.

The paper is organized as follows: Section 2 discusses related work. Section 3
describes the basic architecture of the JOpera distributed engine, emphasizing
how it can be extended with autonomic features. In Section 4 we define the
requirements for autonomic resource provisioning in the context of a process
execution engine and state what the assumptions regarding the applicabil-
ity of our solution are. Section 5 introduces the control algorithm and its
policies that drive the self-management actions of the autonomic controller,
whose implementation is described in more detail in the following Section 6.
Throughout the paper, we also include experimental results concerning the
manual configuration of the engine (Section 3.4), the comparison of the ef-
fect of different control policies (Section 5.4) and the overall evaluation of the
autonomic resource provisioning capabilities of the system (Section 6.4). We
draw some conclusions in Section 7.

2 Related Work

Distributed execution of process-based Web service compositions is an im-
portant area of research (e.g., [20,6,18,21,14,22]). However, to the best of our
knowledge, very little research has been published towards applying auto-
nomic computing principles to solve the management problem opened up by
the distributed design of such engines.

Distributed engines are typically motivated by the need to support business
processes across companies without having to use a centralized entity [23]. This
type of decentralization introduces several problems on its own such as the lack
of a global view over the process [24]. It neither addresses the scalability and
reliability problems per se since the problem is simply translated to each node
that executes parts of the process. Moreover, given the design of a distributed
engine, the management problem of how to configure it in order to guarantee
that clients are serviced with a satisfactory level of performance under different
workload conditions is still poorly understood.

4

This problem has been addressed by introducing tools (e.g., GOLIAT [25]) that
use the expected characteristics of the workload to make predictions about the
performance of a certain configuration of the engine. At deployment time, this
kind of tools help system administrators to determine interactively on how
many resources the engine should be distributed in order to achieve the de-
sired level of performance. As a natural extension of this approach, autonomic
computing [26–28] techniques can be used to replace such manual (and static)
configuration steps. In this paper we argue that an autonomic controller should
be applied to determine the configuration of the distributed engine automat-
ically, taking into account measurements of the system’s performance under
the actual (and unpredictable) workload.

The problem of adaptively replicating functionality to achieve higher through-
put has also been identified in the database community (e.g. [29–31]): the chal-
lenge consists of replicating specific functional components depending on the
workload, but doing so only when this leads to performance improvements. As
we are going to show, the concept of staged architecture, applied to databases
in [32], has also influenced the design of the distributed JOpera engine. With
the results presented in this paper we confirm that a staged architecture can
be suitable for building a self-managing system.

Distributing the execution of a workload over a cluster of computers to achieve
scalability inevitably overlaps with the problem of load sharing, load balanc-
ing, resource management and scheduling [33,34]. As we are going to show in
Section 5.3, as part of the algorithm carried out by the autonomic controller,
several results from the resource management literature can be applied to op-
timally choose which resource should be allocated to the autonomic engine.
Furthermore, it is important that an architecture which undergoes automatic
reconfigurations supports the rebalancing of the workload in the newly config-
ured system. While it is a necessary condition to have such kind of adaptability
in the processing of the workload, we believe that an autonomic system goes
beyond that. Whereas a dynamic scheduler attempts to fit the workload to
the available resources, the goal of the autonomic controller is to adapt the
configuration of the resources to service the workload better.

3 Background

In this section we first present how business process modeling languages satisfy
the requirements of recursive Web service composition. This requirement also
affects the architecture of the corresponding run-time infrastructure, which
should be capable of publishing processes as Web services and, as a conse-
quence, should feature good scalability when such Web services are invoked
by a large number of clients. The design presented in this section has been

5

Component
Service

Interfaces

Client

In
te

rf
a
ce

Process

receive

reply

invoke

invoke

invoke

Fig. 2. Publishing a process as a Web service

implemented in the JOpera distributed engine [22]. A brief evaluation of its
scalability is included at the end of this section.

3.1 Recursive Web Service Composition with Business Process Models

Business processes model the interactions between different tasks by defining
their data flow and control flow dependencies. The data flow defines data
exchanges between tasks, whereas the control flow constrains the order of task
execution [35]. In the case of processes applied to Web service composition,
the tasks of a process are typically bound to service invocations, i.e., they
represent the exchange of messages between the process and a remote service.

Given the existing literature on the subject (e.g., see [7–9,36,37] as starting
point) and the current standardization efforts (e.g., WS-BPEL [38]) in this
paper we do not further elaborate on details of such process-driven composition
languages. Instead, we focus on how they satisfy the requirement of recursive
composition. Processes interact with external services in two ways (Figure 2).
They play an active role with tasks sending messages to a component service
and also a passive role with tasks receiving and replying to messages sent by
clients.

In the active role, the process orchestrates the invocation of one or more
external services. As part of the execution of each task, a message is sent from
the process to the service and – in case of synchronous invocation – the task
will block until the corresponding response message is received.

To publish a process as a reusable Web service involves defining a mapping

6

between the process and a Web service interface [39]. This way, the process
becomes accessible to clients that do not necessarily have to know that they
are dealing with a process, or, in general, a composite service. Clients simply
invoke the operations provided by the service interface and their messages will
be routed to the appropriate process instance.

In the simplest of such mappings, such an interface provides only one opera-
tion. This is used by clients to initiate the execution of a new process instance
with a request message. Once the process completes its execution, a response
is returned to the client. A more complex and flexible mapping is prescribed
in the WS-BPEL standard, where messages sent to a process are received by
a specific task that can trigger the execution of a new process instance (in-
stantiating receive) or simply deliver the content of the message to an existing
process instance which is waiting for it.

3.2 Running Web Service Compositions

The execution of processes is controlled through the engine’s API, so that
processes can be started by clients that send messages to the engine, by users
– through their service composition tools – as well as from other processes.
As shown in Figure 3, the API of the engine queues such requests into the
process space. These requests are consumed by the navigator, which 1) creates
a new process instance and 2) begins with the actual execution of the process.
To do so, the navigator uses the current state of the execution of a process
to determine which tasks should be invoked, based on the control and data
flow dependencies that are triggered by the completion of the previous tasks.
A navigator can execute multiple process instances as their state is stored
separately and will be retrieved to navigate each process found in the process
space. Once the navigator determines that a certain task is ready to be invoked,
the corresponding requests are stored in the task space.

The invocation of the tasks is managed by the dispatcher component. The
name of this component is derived from its function of executing tasks by
dispatching messages to and from different kinds of service providers through
the corresponding adapters. These include, e.g., worklist handlers for tasks
that should be carried out by human operators, but also adapters to invoke
standard compliant Web services, as well as many other kinds of services [40].
In this design, each dispatcher supports the execution of 64 tasks in parallel.
Still, this is not a scalability limitation, because multiple dispatchers can be
run in parallel, e.g., using a pool of threads, as we are going to present in the
next section. After the execution of the task has been finished, the dispatcher
notifies the navigator through the process space. More precisely, the dispatcher
packages the results of the invocation into a task completion tuple, which is

7

Task
Space

Process
Space

Process
State

Dispatcher
JOpera
Distributed
Engine External

Service
Provider

Navigator

Adapter

Compiled
Process

API

Fig. 3. Logical architecture of the JOpera distributed composition engine

put into the process space. Such tuples are then consumed by the navigator
in order to update the state of the execution of the corresponding process and
to carry on with its execution.

The main reason for separating the navigation over the process from the dis-
patching of its tasks lies in the observation that these operations have a dif-
ferent granularity. It is to be expected that the execution of a task performed
by the dispatcher may last significantly longer than the time taken by the
navigator for scheduling it [22]. With our approach, a slow task does not af-
fect the execution of other concurrently running processes because these two
operations are handled by different threads. Likewise, the engine supports
the parallel invocation of multiple tasks belonging to the same process. The
asynchronous interaction between process execution and task invocation is an
important departure from the design of existing engines where navigation and
dispatching are serially executed by a single thread.

3.3 Distributed Execution with Tuple Spaces

Decoupling process navigation from task invocation enables the system to
scale along two orthogonal directions. In case a large task invocation capacity
is required, the dispatcher thread can be replicated to manage the concurrent
invocation of multiple tasks. Likewise, if many processes have to be executed
concurrently, the navigator can also be replicated.

By using tuple spaces, the navigator and dispatcher threads are loosely coupled
into two distributed pools. This makes it possible to scale the system to run
on a cluster of computers, as navigators and dispatchers can be physically

8

located on different nodes.

The flexibility provided by tuple spaces makes it also feasible to dynamically
reconfigure the system, as the number of navigators and dispatchers can be
increased or decreased without having to interrupt the entire system. The
system offers a reconfiguration API to control which thread is running on
each node of the cluster. Tuple spaces also offer a convenient mechanism for
instrumenting the system in order to gather performance information that can
be fed back into the self-tuning algorithm of the autonomic controller.

3.4 Performance Evaluation of a Statically Configured Engine

As a motivation for introducing the autonomic features of the distributed
engine presented in the rest of this paper, in this section we evaluate the
performance of the engine running over a cluster of computers with a static
configuration. Our goal is to show that the optimal configuration of the dis-
tributed engine (in terms of the number of navigator and dispatcher threads
that are used) is highly sensitive to its workload. Thus, it is important to
be able to dynamically change the configuration of the engine in order to
optimally service workloads with different characteristics.

3.4.1 Experimental setup

Since there are not yet standardized benchmarks for autonomic process ex-
ecution engines, we have defined a simple workload to evaluate the system
under extreme conditions. The workload imposed on the system is a peak of
concurrent client requests to start the execution of a certain number of new
processes. Thus, the size of the workload can be characterized by the number
of processes to be executed concurrently. Although the number of tasks and
the structure of the processes also influence the performance of the system,
for the experiments included in this paper we have focused on a homogeneous
workload, consisting of processes composed by 10 parallel tasks with fixed (and
controllable) invocation time. This simplifies the analysis of the results of our
experiments. We plan to continue evaluating the system with heterogeneous
and continuous workloads as part of future work.

For all of the experiments presented in this paper, JOpera has been deployed
on a 32 node cluster. Each node is a 1.0GHz dual P-III, with 1 GB of RAM,
running Linux (Kernel version 2.4.22) and Sun’s Java Development Kit version
1.4.2.

The traces of the engine’s configuration (number of dispatchers and naviga-
tors) and performance indicators (size of the process and task queue) have

9

been sampled at regular intervals of 1 second so that it is possible to closely
follow the dynamics of the system.

3.4.2 Static Resource Allocation

The execution traces shown in Figure 4 demonstrate that the engine’s behavior
depends on how the 32 nodes of the cluster are allocated between navigators
and dispatchers. In Figure 4a, the workload (800 processes of 10 parallel tasks
lasting 8 seconds) runs in 68 seconds using 10 navigators and 22 dispatchers.
However, with the symmetric configuration (22n, 10d, Figure 4b) the execution
time significantly increases by 42.9 seconds (or 60.2%). This discrepancy can
be explained by observing how the size of the process and task spaces evolves
over time (Figure 4 left). In Figure 4a, the task execution capacity is balanced
with the amount of resources allocated to process execution. In other words,
22 dispatchers can keep up with the execution of the tasks that are produced
by 10 navigators that are handling the workload peak. This is not the case
for Figure 4b. 22 navigators quickly consume the processes queued in the
process space but overwhelm the 10 dispatchers with task tuples. With this
configuration, the task spaces reaches a plateau of 3000 tuples (as opposed to
the first configuration, where it oscillates up to 800 tuples).

These simple results already give an intuition of the difficulty of manually con-
figuring the distributed engine. A misconfiguration can lead to longer process
execution times and suboptimal resource allocation.

Static Configuration with 10 Navigators, 22 Dispatchers (Cluster of 32 nodes)

Static Configuration with 22 Navigators, 10 Dispatchers (Cluster of 32 nodes)

0

200

400

600

800

1000

1200

0 20 40 60 80 100 120
0

5

10

15

20

25

30

0 20 40 60 80 100 120

Time [s] Time [s]

0

500

1000

1500

2000

2500

3000

3500

0 20 40 60 80 100 120
0

5

10

15

20

25

30

0 20 40 60 80 100 120

Time [s] Time [s]

T
u
p
le

S
p
a
c
e

S
iz

e
T

u
p
le

S
p
a
c
e

S
iz

e

N
o
d
e
s

N
o
d
e
s

a)

b)

Tasks# Processes NavigatorsDispatchers

Fig. 4. Execution traces of the size of the process and task spaces (left) for a workload
of 800 processes with two different static configurations (right).

10

3.4.3 Finding the Optimal Configuration

In order to find the configuration which minimizes the response time of the
system for a given workload, we have carried out an exhaustive search of the
configuration space. In this experiment, we used a cluster of 15 nodes and
all possible configurations starting with 14 navigators and 1 dispatcher up to
14 dispatchers and 1 navigator were tested. For each configuration, Figure 5
depicts the total execution time and the speedup of two different workloads:
1000 concurrent processes containing 10 parallel tasks of the duration of 0
seconds (workload 0) and 1000 processes containing 10 parallel tasks of the
duration of 20 seconds (workload 20). Similar results can be obtained with
processes having different control flow structures.

S
p
e
e
d
u
p

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of Dispatchers

Number of Navigators

15 14 13 12 11 10 9 8 7 6 4 3 2 1 05

0

1

2

3

4

5

6

T
im

e
[s

]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of Dispatchers

Number of Navigators

15 14 13 12 11 10 9 8 7 6 4 3 2 1 05

0

200

400

600

800

1000

1200

1400

1600

1800

0 seconds
20 seconds

Task Duration

Fig. 5. Time required to execute two different workloads of 1000 processes using
all possible static configurations (left) and speedup achieved relative to the slowest
configuration (right)

The speedup profiles shown on the right side of Figure 5 clearly illustrate
that the optimal configuration for the two workloads is not the same. For
workload 20 the optimal configuration is the one using 9 dispatchers and
6 navigators while for workload 0 the best configuration is the one using 5
dispatchers and 10 navigators. On the one hand, in the worst case the penalty
of a misconfigured system is a factor of 5 in performance. On the other hand,
if the system is optimally configured to handle one workload, its performance
will suffer when it is subjected to a different one.

Configuring the system statically therefore has two main problems. First,
static configuration potentially leads to inefficient resource allocation, since
the engine could release part of the cluster after processing a surge of re-
quests. Second, a given configuration may not be optimal to deal with all
kinds of workloads, hence reconfiguration is still required. In practice, such re-
configuration is quite difficult to perform manually. With the approach based
on autonomic computing techniques presented in the rest of the paper, we
show how it can be done automatically.

11

4 Requirements for an Autonomic Engine

After introducing the problem of resource provisioning in a distributed en-
gine for executing software business processes, in this section we describe the
requirements and the assumptions to satisfy in order for the engine to be
considered “autonomic”.

4.1 Self-Management Capabilities

An autonomic system must feature self-configuration, self-tuning and self-
healing capabilities [41].

Self-configuration entails changing the system’s configuration on the fly with-
out manual intervention and without disrupting normal system operation.
This requires the engine to provide mechanisms to expose the current state
of its configuration as well as to support means to dynamically and efficiently
change the configuration.

The self-tuning capabilities should ensure that such changes lead to a config-
uration which is close to the optimal, given the current workload. In order to
provide self-tuning capabilities, the composition engine must give access to its
internal state, such that control algorithms can analyze current and past per-
formance information in order to plan configuration changes. Our assumption
is that the characteristics of the workload affect the system’s performance and
that the self-tuning algorithm can optimally adapt the system to the workload
by monitoring key performance indicators.

Finally, the system also needs to provide self-healing capabilities [42]. This
means that it should be able to detect configuration changes due to external
events, such as failures of nodes. If a discrepancy between the model of the
configuration and the actual configuration is detected, the self-healing func-
tionality should perform the necessary recovery actions. From this, we identify
the requirement to support mechanisms for detecting failures and configura-
tion changes of the cluster and to query the composition execution state in
order to determine how the running processes have been affected.

4.2 Architectural Constraints

To describe how to address the above requirements, we begin by defining the
relationship between the autonomic controller and the rest of the engine (Fig-
ure 6). The autonomic controller component encapsulates all control decisions

12

JOpera
Distributed

Composition
Engine

performance
indicators

control
variables

reconfiguration
actions

workload

external
configuration

changes

current
configuration

controlled
variables

Autonomic
Controller

co
n
tr

o
l

p
o
lic

y

Fig. 6. Relationship between the Autonomic Controller and the rest of the engine

affecting the configuration of the system that are automatically carried out in
response to changes in the workload conditions. A clear understanding of this
relationship is very important, as the interface between the controller and the
controlled system affects both the performance and the autonomic capabilities
of the whole system [43].

The autonomic controller acts as a closed feedback-loop controller [44]. It
periodically monitors the state of the engine and, based on different policies, it
decides to apply control actions to adjust the configuration of the system. More
precisely, the controller periodically reads the values of controlled variables,
which include both the current system configuration and a set of performance
indicators.These provide information about the current level of performance
of the system (e.g., in terms of throughput and response time).

The system also contains and provides access to a model of its current config-
uration. This information is mainly used by the controller to plan reconfigura-
tion actions, as it describes the available resources and their current utilization
state.

After gathering this information, the controller runs the self-tuning algorithm
to determine whether the current configuration needs some adjustment. This
algorithm can be configured to use different optimization policies, which de-
termine the goals that drive the controller to determine the reconfiguration
actions. In order to implement its decisions (self-configuration), the controller
acts upon a set of control variables. Changes in the control variables will result
in reconfiguration actions applied to the engine.

13

In addition to the information flowing between the controller and the engine,
Figure 6 also shows that the engine is influenced by two different external
factors. On the one hand, a certain workload can be applied to it, i.e., whenever
clients send messages to the processes run by the engine. On the other hand,
the configuration may change independently of the will of the controller, e.g.,
if a failure occurs. The controller detects these conditions indirectly as they
affect the values of the controlled variables (self-healing).

4.3 Workload Assumptions

The workload consists of a collection of concurrent process instances which
represent running Web Service compositions. In general, users may define an
arbitrary composition and initiate its execution at any time. In our evaluation,
we focus on a worst case scenario where a large number of processes is submit-
ted for execution simultaneously. However, neither the size nor the structure
of the composition is taken into account when designing the self-tuning algo-
rithm, which should be able to deal with any process that can be normally
executed by the engine. Furthermore, in this paper we do not deal with work-
load prediction issues [45]. The autonomic engine observes the current load
and reacts to it. A pro-active system would try to anticipate workload changes
before they occur [46]. Since JOpera collects a detailed history of past execu-
tions, a data mining algorithm could analyze it and use it to predict future
composition arrival times. We will pursue that option as part of future work.

5 Control Algorithm and Policies

In this section we present the control algorithm of the autonomic controller and
discuss several control policies that can be employed to adjust its behaviour.
At the end of the section we study the effect of different policies by presenting
the results of an experimental comparison.

The control algorithm can be seen as an infinite loop along the following three
stages (Figure 7). We will discuss a concrete implementation in the following
section.

(1) During the monitoring phase, a snapshot of the current state of the system
configuration is taken. The information policy defines what information
is collected at this stage and what the strategy is for keeping it up-to-date
(i.e., how often it should be sampled).

(2) During the planning phase, the controller uses the collected information
to determine whether the system is balanced or whether a configuration

14

State of the
Configuration

Optimization Policy

Information Policy

Selection Policy

Monitor

Change

Plan Act

1

2 3

controlled
variables

control
variables

Fig. 7. Control algorithm executed by the autonomic controller

change is necessary. The optimization policy determines the criteria (e.g.,
thresholds) and the outcome (e.g., a certain number of idle nodes of the
cluster can be released).

(3) The actual configuration changes are carried out during the third phase,
which is simply skipped if no such actions are required. The selection
policy is used to convert the general reconfiguration plan to a concrete
change in the configuration, using additional information collected during
the monitoring phase. For example, if a certain number of cluster nodes
must be released, the selection policy chooses which ones are the most
likely candidates according to a specific criteria (e.g., they are the slowest
ones which are currently idle).

5.1 Information Policy

The information policy defines which performance indicators and which part
of the configuration information are fed back as controlled variables into the
autonomic controller.

5.1.1 Modeling the system configuration

As we have previously discussed, one of the requirements for autonomic archi-
tectures consists of managing a model of the system configuration. This opens
up different issues concerning the model itself, i.e., what is the minimal infor-
mation to be captured in order to describe the configuration of the system,
as well as where this information should be stored and how often it should be
updated.

15

We begin by introducing a simple model of the system configuration, which
describes the cluster of computers to be used (listing the IP addresses of each
node) and the set of the threads which are currently running on each of the
nodes. For each kind of thread (dispatcher or navigator), at most one can
be running on the same node. This simple model can be augmented with
information describing the characteristics of each node (e.g., its speed, its
current load or the amount of available memory) which can then be used as
a basis for a more sophisticated node selection policy. Additional statistics
can be collected for each thread, allowing – for example – to detect whether
a thread is idle or not. More precisely, each navigator reports the number of
processes that is currently running and each dispatcher counts the number of
tasks that have been assigned to it.

Depending on the information to be collected for the specific policy, it is worth
noting that it may be expensive to perform some kinds of measurements as
well as to ensure that all information is kept up-to-date. Thus, we identify
an important trade-off between the cost of maintaining fresh and detailed
configuration information and the potential benefits that may derive from it
in terms of more accurate control decisions.

In our approach, we employ a mix of push and pull strategies for transferring
and storing the configuration information. The list of cluster nodes assigned
to the engine is stored into the configuration space, so that it is easy to access
and to modify. The navigator and dispatcher threads register themselves with
this registry as soon as they are started or stopped on a particular node. How-
ever, the rest of the state information describing, e.g., the load of each node
or whether a thread is idle, is measured and stored locally on each node. Dur-
ing the execution of the control algorithm, the autonomic controller collects
such information by directly querying each node as specified by the informa-
tion policy in use. This way, it is possible to reduce network traffic as the
information is only transferred at the time it is needed by the controller.

5.1.2 Performance Indicators

An indication of the performance of the system can be gathered by reading
the process execution logs which contain the starting and finishing time of
each process. From this information, it is possible to compute the average
process turnaround time, i.e., the wall-clock time required by the system in
order to execute a certain type of process. This value is influenced both by
the invocation time of the services composing the process as well as by the
overhead imposed by the system. If the system is overloaded, processes take
longer to run.

By considering the architecture of the distributed composition engine (Figure

16

3), there are several points that can be instrumented to provide performance
indicators. For example, since the navigator and dispatcher threads communi-
cate asynchronously through tuple spaces, it is possible to sample the current
space size in order to detect whether the system is balanced. In case the size
of the space grows, it is likely that there are not enough consumers processing
its tuples and too many producers of tuples. Conversely, if the size of a space
decreases, there may be too many consumers (or too few producers). The in-
formation policy therefore defines that the variation in the size of the tuple
spaces of tasks and processes should be monitored to detect imbalances in the
system’s configuration.

In order to compare the performance of different optimization policies, it may
also be useful to measure their corresponding resource allocation. To do so, the
system can track for how long it has been using a certain node of the cluster.
These utilization logs are kept as part of the configuration information. They
also form the basis for more advanced information policies, which take into
account estimates about the economic cost of using one more node of a cluster,
compared to the potential performance boost [47].

5.2 Optimization Policy

The optimization policy specifies how to achieve certain goals in terms of
mapping a combination of the previously defined controlled variables onto
a set of reconfiguration actions. In general, the controller addresses multiple
(and contradictory) goals. First of all, it should ensure that the system reacts
with reasonable performance under a given workload. The simplest way to
achieve this points to a policy that configures the system to always provide
excess capacity so that unpredictable peaks in the workload can be absorbed
promptly. Although this approach maximizes the performance of the system
measured in terms of its process execution capacity, it turns out to be wasteful
in terms of resource allocation. Thus, the optimization policy must provide
support for both of these goals: maximizing the system’s throughput and
minimizing the resource utilization.

5.2.1 Simple Optimization Policy

The simplest optimization policy we have considered uses a single threshold T
compared to a certain non-negative controlled variable v. Whenever the sam-
pled value of the variable is higher than the threshold (v > T) the controller
decides to grow the size of the system by one thread. This ensures that peaks
in the workload causing the controlled variable to increase, will be detected
and taken care of by extending the system. If v = 0, the outcome is to shrink

17

the size of the system by one thread. This action follows from the second goal,
whereby the resource allocation is reduced if the controlled variable indicates a
reduction in the workload. No reconfiguration action is planned if 0 < v ≤ T .
The symmetry in the actions that can be taken (start one, stop one, or do
nothing) ensures that the system can reach any configuration. More concretely,
we have applied this simple control policy by binding the controlled variable v
to the size q of the space consumed by the navigators and the dispatchers and
by introducing different thresholds (Td, Tn) for each kind of thread. Thus, the
same policy can be used to control both navigator and dispatcher threads, as
long as their characteristics are taken into account. To tune their values, the
thresholds can be interpreted as the number of tuples that is expected to be
handled by each kind of thread. Typically Tn > Td, as navigators can handle
a larger volume of tuples than dispatchers.

This policy can be made more complex along several directions [48]. On the
one hand, it is possible to increase the set of reconfiguration actions. On the
other hand, different controlled variables can be used. We have experimented
with both of these possibilities by extending the previously described simple
control policy.

5.2.2 Differential Optimization Policy

As opposed to reading the current size of the process space, the differential
control policy uses the first order variation (∆q = q(t) − q(t − 1)) of the
space size to make its decisions. Still, the possible outcomes and the decision
policy are the same as in the simple threshold policy. We introduced this
policy because the size of the process spaces is a good indicator of the internal
activity of the system. Its variations can be used to detect whether the system
is lagging behind (when ∆q > 0 the space is accumulating tuples) or whether
the number of events to be processed is diminishing (∆q < 0). Thus, two
different thresholds are used to determine whether a new thread should be
started (∆q > Tstart > 0) or stopped (∆q < Tstop < 0).

5.2.3 Proportional Optimization Policy

The proportional control policy uses a set of thresholds to determine whether
one or more threads should be started or stopped, proportionally to ∆q. To
avoid instability problems, we set a limit to the maximum number of threads
that can be started or stopped at once. This policy also uses the previously
described ∆q as controlled variable, since it provides both positive and nega-
tive values that can be used as input to the control decisions. Compared to the
simple and differential policies, we expect this policy to be more reactive, as
it can plan to start many threads at once if a large variation in the workload

18

is detected.

5.3 Selection Policy

Once the optimization policy has determined the new configuration of the
system, the selection policy compares the new configuration with the current
one in order to establish what nodes should be affected by the planned con-
figuration change.

The goal of this policy is to define how to map abstract reconfiguration deci-
sions to concrete actions affecting the current system configuration. Given a
planned reconfiguration action (e.g., stop one thread) and a pool of candidate
nodes, one node should be chosen so that the action can be applied to it (e.g.,
the thread running on the node is stopped).

One of the reasons for separating the planning of the configuration change
from the actual modification actions is that, depending on the current state
of the configuration, it may not always be possible to follow the plan. For
example, when the system is overloaded, there may not be any spare capacity
available to start new threads. Similarly, when the outcome of the optimization
policy consists of a decision to shrink the size of the system, it may not always
be possible to do so. For example, the selection policy may not yet find idle
threads that can actually be stopped.

Deriving a concrete configuration to be fed into the self-configuration compo-
nent from an abstract configuration plan is done by prioritizing nodes accord-
ing to different criteria. In general, these criteria quantify how well a node is
suited for a certain configuration change. For example, if there are idle nodes
available and threads need to be started, the idle ones get the highest priority
and are selected for the configuration change.

The simplest selection policy is non-deterministic: candidate nodes are chosen
randomly. This reduces the information that is associated with each node
and works quite well assuming that the available resources are homogeneous.
Otherwise, the nodes should be ranked according to some criteria (e.g., their
speed, their current load or the amount of free memory) so that the controller
is able to use a more sophisticated selection policy.

If all threads are busy and there are no more idle nodes, some need to be
selected in order to apply the configuration change. For example, if an addi-
tional navigator thread needs to be started, a dispatcher thread will have to be
stopped and vice versa. Stopping non-idle threads may be expensive and the
selection policy therefore needs to take this reconfiguration cost into account
when deciding which thread should be stopped. Again, the simplest selection

19

policy chooses the threads randomly, regardless of the resulting rescheduling
overhead. We also experimented with a smart selection policy that chooses
threads with the goal of minimizing the overhead caused by rescheduled tasks
and migrated processes. In this case, threads are further prioritized by the
number of tasks (or processes) that they are currently executing. With this
heuristic, threads which are running many processes (or many tasks) are less
likely to be interrupted, thus less work will have to be migrated to a different
node.

5.4 Comparison of the optimization policies

In this section we compare the three optimization policies with the baseline
of the two static configurations presented in Section 3.4. The setup described
in Section 3.4.1 also holds for these experiments.

5.4.1 Results

We have measured both the total execution time as well as the average resource
allocation for three different workload sizes: 400, 800, 1600 processes (Figure
8).

The total execution time has been measured as the time between the arrival
of the first client request in the process space and the time the execution of
the last process has been completed. The average resource allocation has been
measured as the sum of the time each of the nodes has been running a thread,
divided by the total execution time.

0

5

10

15

20

25

30

35

400 800 1600

Client Requests

N
u

m
b

e
r

o
f

D
is

p
a

tc
h

e
rs

+
N

a
vi

g
a

to
rs

T
im

e
(s

e
co

n
d

s)

static 10d, 22n simple differential proportional static 22d, 10n

0

50

100

150

200

250

400 800 1600

Client Requests

Control Policy

Resource Allocation Batch Execution Time

Fig. 8. Comparison of the policies: resource allocation and process execution time

20

Not surprisingly, the average resource allocation for the two static configu-
rations, with 22 dispatchers and 10 navigators and vice versa, is 32. A more
interesting result is that, although the same number of nodes is used, the time
to execute the same workload is between 50% (workload size 400) and 82%
(workload size 1600) larger. This difference implies that the static configura-
tion using 22 dispatchers and 10 navigators is more suitable to run the work-
load. Thus, configuring the system manually and statically potentially leads
to a suboptimal configuration both in terms of performance and resource al-
location. The static 22d, 10n configuration serves as a good example for this
behavior: while it is between 10% and 62% faster than the autonomic policies
tested, it also uses the most resources (between 108% and 262% more).

The effect of the policies on the system configuration can also be compared
by observing Figure 9. This graph traces the evolution of the configuration
in terms of the number of nodes allocated to run navigators and dispatch-
ers. For each policy, the traces begin with an “empty” system, where neither
dispatchers nor navigators are running. As soon as the workload arrives, the
controller allocates nodes to the engine’s components. Once the peak has been
processed, the engine shrinks back to the original configuration. Whereas the
simple policy allocates an equal number of nodes to each component until it
reaches saturation, the differential and proportional policies tend towards a
configuration closer to the static 10n, 22d configuration. As shown earlier in
Figure 4a, this configuration balances the number of dispatchers and naviga-
tors to provide good performance (Figure 8). This representation also shows
an advantage of using the proportional policy, which modifies the configura-
tion in leaps of several nodes, and thus can react faster than the other policies
which can only grow or shrink the system’s configuration by one node at a
time.

0

5

10

15

20

25

0 5 10 15 20 25

Number of Navigators

N
u

m
b

e
r

o
f

D
is

p
a

tc
h

e
rs

Simple
Proportional
Differential

Control Policy

Static

Fig. 9. Configurations reached by different control policies

21

5.4.2 Discussion

Using the simple strategy of monitoring the size of process and task space in
order to determine reconfiguration actions has already led to very promising
results. As expected however, it is difficult to determine a globally optimal
policy. The policies we evaluated offer different characteristics along the trade-
off between execution time and resource allocation. Thus, a policy can be
chosen to drive the automatic configuration of the system according to the
overall goal within this trade-off. In order to control this, each policy can
also be tuned by setting its threshold parameters. In the experiments, we did
so heuristically by observing the behavior of the system and estimating the
capacity of each type of thread (i.e., we observed that a navigator can handle
5 times more tuples than a dispatcher).

In general, setting these thresholds appropriately tends to be difficult and mis-
configuring them may also result in a performance penalty [49]. The problem
is partly related to the low level of abstraction of these policies which need to
understand the internal behavior of the engine in order to properly configure
them. It would be desirable to specify goals in more abstract terms [50] (e.g.,
in terms of the required level of performance of the engine) and let the con-
troller take care of mapping these to the appropriate optimization policies. As
part of future work we plan to explore this issue in more detail.

6 Autonomic Controller

After describing the control algorithm and comparing the performance of its
different policies, in this section we present the most important design deci-
sions regarding the architecture of the autonomic controller.

Although it would be possible to implement the algorithm described in Sec-
tion 5 directly, where the main control loop (measure, plan and act) is followed
sequentially by a single component, the dynamics of the distributed compo-
sition engine make it impractical to do so. Instead, the various stages of the
algorithm have been implemented by different components (self-healing, self-
tuning and self-configuration), which interact asynchronously (Figure 10). As
we are going to discuss, decoupling the gathering of new information about
the state of the engine from the planning and reconfiguration ensures that the
controller does not block when the interaction with the rest of the engine be-
comes problematic (e.g., when one of the nodes of the cluster does not respond
due to failure or overload).

In addition to the autonomic controller we have also developed a visual moni-
toring tool by extending the Eclipse TPTP platform [51]. As it can be seen in

22

JOpera
Distributed

Engine

JOpera Autonomic Controller

Configuration
Information

plan

change
recover

refresh

actual configurationperformance information

Self
Tuning

Self
Healing

Self
Configuration

Monitoring
Tool

Fig. 10. Internal Architecture of the Autonomic Controller

Fig. 11. Screenshot of the monitoring tool

Figure 11, the monitoring tool displays the history of the configuration of the
distributed engine and the current values of the performance indicators which
are updated in real-time.

23

6.1 Self-Healing

This component is in charge of updating the model of the system’s configu-
ration with respect to the “real” system. The primary task of the self-healing
component is to ensure that the composition engine remains in a consistent
state in spite of external events affecting its configuration. To do so, the com-
ponent periodically monitors the nodes of the cluster, checks their availability
and compares their state with the information stored in the configuration
space. In addition to this pull strategy, we also keep the configuration in-
formation up-to-date by having the newly started threads register with the
configuration state autonomously.

A failure is detected as a mismatch between the known configuration and the
actual configuration of the cluster. If a failure occurs, the component ensures
that the affected processes and tasks are correctly recovered by the rest of the
composition engine.

6.2 Self-Tuning

The self-tuning component needs to determine whether the current system
configuration is optimal. This evaluation is carried out whenever a change in
the configuration is reported by the self-healing component as well as when
the performance of the engine changes significantly. This information is evalu-
ated according to one of the previously described optimization policies, which
defines how to achieve an optimal configuration of the cluster based on the
current performance.

In case an imbalance is detected and a change of configuration is needed, the
self-tuning component submits a reconfiguration plan to the self-configuration
component so that the changes can be carried out asynchronously. Given that
producing a new plan may take a significantly shorter time from implementing
it, we assign these concerns to two separate components. This way, it is not
necessary to wait for a reconfiguration to take place in its entirety before the
self-tuning component can once more evaluate the current configuration.

6.3 Self-Configuration

As outlined in the previous section, the self-tuning component suggests a new,
optimal configuration for the cluster. It is up to the self-configuration compo-
nent to execute the actual reconfiguration of the cluster. For this purpose the
self-configuration component captures the current configuration of the clus-

24

ter and applies changes to it. Implementing the new configuration, however,
requires time (in the order of seconds) and the result may not be available
immediately.

In order to execute the reconfiguration plan, the self-configuration component
takes as input the suggested configuration of the self-tuning component as well
as the current configuration, as it is reported by the self-healing component.
As threads are being stopped (or started) on remote nodes, this component
periodically checks the progress of these reconfiguration actions and ensures
that the new configuration is reached. If, in the meantime, the self-tuning
component has suggested another reconfiguration plan, the execution of the
current one will be interrupted.

6.4 Evaluation: Self-Healing and Self-Configuration

The goal of this final evaluation is to show the autonomic process execution
engine in action, where its configuration is automatically adapted to work-
loads having different characteristics (self-configuration) and also to unex-
pected changes in the execution environment (self-healing).

This experiment demonstrates the self-configuration and self-healing capabil-
ities of the autonomic engine. The engine is subjected to repeated peaks of
workload (500 processes started every 100 seconds) and its autonomic con-
troller reacts accordingly by allocating 15 nodes of the cluster (initially idle)
to 6 navigators and 9 dispatchers (Figure 12c). The engine is also subjected to
external configuration changes, where the number of nodes of the cluster grows
and shrinks over time. Once 5 additional nodes become available (t=100), the
controller immediately makes use of this additional resources to process the
second peak of workload.

The removal of nodes from the cluster (t=140, t=230) demonstrates the self-
healing capabilities of the engine. Not only is the execution of the tasks and
processes recovered (Figure 12d), but the number of navigators and dispatch-
ers is adjusted to make optimal use of the remaining resources.

This experiment reflects a common situation in the lifetime of a cluster-based
system, where nodes are rotated as some of them may have to be taken off-line
for maintenance. With traditional systems, such intervention would require
to manually determine which parts of the engine would be affected by the
reconfiguration and manually stop the components running on the nodes to
be replaced. The autonomic controller was able to immediately detect the
newly assigned nodes and could also recover and reconfigure the engine when
some of the nodes were taken off-line.

25

0

100

200

300

400

500

600

700

0 50 100 150 200 250 300 350 400 450

0

1000

2000

3000

4000

5000

6000

0 50 100 150 200 250 300 350 400 450

Tasks restarted
Processes migrated

d)

c)

b)

a)

T
u
p
le

S
p
a
ce

S
iz

e
T

u
p
le

S
p
a
ce

S
iz

e
N

o
d
e
s

T
u
p
le

s

Time [s]

0
20
40
60
80

100
120
140
160

0 50 100 150 200 250 300 350 400 450

0

5

10

15

20

25

30

0 50 100 150 200 250 300 350 400 450

Navigators
Dispatchers
Idle Nodes

Processes

Tasks

Fig. 12. Self-Configuration and Self-Healing of the autonomic engine as nodes are
added and removed from the cluster

.

26

7 Conclusion

Service Oriented Architectures rely heavily on the underlying infrastructure
to determine the actual properties of software developed in the form of a busi-
ness process. In existing systems, this imposes additional constraints to the
programmer who is the one made responsible for the scalability of the pro-
cess and the necessary provisioning of resources. For instance, distribution is
used in many composition engines to improve scalability and reliability. How-
ever, very little attention has been paid to the need for properly configuring
such systems. This, in practice, remains a difficult, error-prone, manual, and
time-consuming operation, especially when deploying the system to face an
unpredictable workload.

To address this problem, in this paper we have presented the design of an au-
tonomic process execution engine that can deal with resource provisioning on
its own. The provisioning is also not just done statically but dynamically ad-
justed as conditions change. The engine runs on a cluster of computers and can
automatically reconfigure itself to assign more or less computers to different
tasks associated with process execution. This is done taking into account in-
ternal system failures and external modifications to the system configuration.
Automatic self-configuration and self-healing of the engine greatly reduces the
administrative overhead of manually monitoring and reconfiguring the system.
In addition, we described the control algorithm and policies followed by the
autonomic controller, the key component implementing the autonomic recon-
figuration capabilities. As the performance evaluation indicates, the controller
outperforms the manual, static configuration by achieving a good trade-off
between two different goals: minimizing resource allocation while guarantee-
ing good performance. Furthermore, we have shown that the performance of
the controller depends on the actual information, optimization and selection
policies that are used.

These results show the feasibility of applying autonomic computing principles
in order to automatically adapt the configuration of a distributed process
execution engine in response to unexpected variations in its workload. An
important additional contribution of the paper is to show that such autonomic
engine can only be implemented by a careful analysis of the way processes are
executed and the operations involved. In the case of the solution we propose,
the key idea is the separation of navigation (determining what to invoke) and
dispatching (actual service invocation) into two separate stages that can be
distributed across a cluster of computers.

27

Acknowledgements

Part of this work is funded by the European IST-FP6-004559 project SODIUM
(Service Oriented Development In a Unified fraMework) and the European
IST-FP6-15964 project AEOLUS (Algorithmic Principles for Building Effi-
cient Overlay Computers).

References

[1] F. Leymann, Web services: Distributed Applications without Limits, in: Proc.
of the International Conference on Business Process Management (BPM 2003),
Eindhoven, The Netherlands, 2003, pp. 123–145.

[2] L.-J. Zhang, M. Jeckle, The Next Big Thing: Web services Collaboration, in:
Proc. of the International Conference on Web services (ICWS-Europe 2003),
Erfurt, Germany, 2003, pp. 1–10.

[3] J. Hündling, M. Weske, Web Services: Foundation and Composition, Electronic
Markets 13 (2).

[4] F. Leymann, D. Roller, M.-T. Schmidt, Web services and business process
management, IBM Systems Journal 41 (2) (2002) 198–211.

[5] B. Benatallah, M. Dumas, Q. Z. Sheng, A. H. H. Ngu, Declarative Composition
and Peer-to-Peer Provisioning of Dynamic Web services, in: Proc. of the 18th
International Conference on Data Engineering (ICDE 2002), San Jose, CA,
2002, pp. 297–308.

[6] G. Shegalov, M. Gillmann, G. Weikum, XML-enabled workflow management for
e-services across heterogeneous platforms, VLDB Journal 10 (1) (2001) 91–103.

[7] W. M. P. van der Aalst, Process-oriented architectures for electronic commerce
and interorganizational workflow, Information Systems 24 (8) (1999) 639–671.

[8] F. Casati, M.-C. Shan, Dynamic and Adaptive composition of e-services,
Information Systems 26 (2001) 143–163.

[9] K. Vidyasankar, G. Vossen, A Multi-Level Model for Web Service Composition,
in: Proc. of the Second International Conference on Web Services (ICWS2004),
2004, pp. 462–469.

[10] U. Assmann, Invasive Software Composition, Springer, 2003.

[11] C. Szyperski, Component technology - what, where, and how?, in: Proc. of
the 25th International Conference on Software Engineering, Portland, Oregon,
USA, 2003, pp. 684–693.

28

[12] J. Norris, K. Coleman, A. Fox, G. Candea, OnCall: Defeating Spikes with a
Free-Market Application Cluster, in: Proc. of the 1st International Conference
on Autonomic Computing (ICAC’04), New York, New York, 2004, pp. 198–205.

[13] G. Alonso, F. Casati, H. Kuno, V. Machiraju, Web services: Concepts,
Architectures and Applications, Springer, 2003.

[14] L. jie Jin, F. Casati, M. Sayal, M.-C. Shan, Load Balancing in Distributed
Workflow Management System, in: G. Lamont (Ed.), Proc. of the ACM
Symposium on Applied Computing, Las Vegas, USA, 2001, pp. 522–530.

[15] K. Whisnant, Z. T. Kalbarczyk, R. K. Iyer, A system model for dynamically
reconfigurable software, IBM Systems Journal 42 (1) (2003) 45–59.

[16] C. Pautasso, T. Heinis, G. Alonso, Autonomic Execution of Service
Compositions, in: Proc. of the 3nd International Conference on Web Services,
Orlando, FL, 2005.

[17] T. Heinis, C. Pautasso, G. Alonso, Design and Evaluation of an Autonomic
Workflow Engine, in: Proc. of the 2nd International Conference on Autonomic
Computing, Seattle, WA, 2005.

[18] G. Chafle, S. Chandra, V. Mann, M. G. Nanda, Decentralized Orchestration of
Composite Web Services, in: Proc. of the 13th World Wide Web Conference,
New York, NY, USA, 2004, pp. 134–143.

[19] C. Pautasso, JOpera: Process Support for more than Web services,
http://www.jopera.org.

[20] T. Bauer, P. Dadam, A Distributed Execution Environment for Large-Scale
Workflow Management Systems with Subnets and Server Migration, in: Proc.
of the 2nd IFCIS International Conference on Cooperative Information Systems
(CoopIS’97), Kiawah Island, South Carolina, USA, 1997, pp. 99–108.

[21] P. Heinl, H. Schuster, Towards a Highly Scaleable Architecture for Workflow
Management Systems, in: R. R. Wagner, H. Thoma (Eds.), Proc. of the 7th
International Workshop on Database and Expert Systems Applications, Zurich,
Switzerland, 1996, pp. 439–444.

[22] C. Pautasso, G. Alonso, JOpera: a Toolkit for Efficient Visual Composition
of Web Services, International Journal of Electronic Commerce (IJEC) 9 (2)
(2004/2005) 104–141.

[23] W. M. P. van der Aalst, M. Weske, The P2P Approach to Interorganizational
Workflows, in: Proc. of the 13th International Conference on Advanced
Information Systems Engineering (CAiSE’01), 2001, pp. 140–156.

[24] K. A. Schulz, M. E. Orlowska, Facilitating cross-organisational workflows with
a workflow view approach, Data and Knowledge Engineering 51 (1) (2004)
109–147.

[25] M. Gillmann, W. Wonner, G. Weikum, Workflow Management with Service
Quality Guarantees, in: Proc. of the ACM SIGMOD Conference, Madison,
Wisconsin, 2002, pp. 228–239.

29

[26] IBM, Autonomic Computing: Special Issue, IBM Systems Journal 42 (1).

[27] J.-P. Martin-Flatin, J. Sventek, K. Geihs, Special Issue on Self-Managed
Systems, ACM Communications 49 (3).

[28] J. O. Kephart, Research Challenges of Autonomic Computing, in: Proc. 27th
International Conference on Software Engineering (ICSE2005), 2005, pp. 15–22.

[29] G. Weikum, A. Moenkeberg, C. Hasse, P. Zabback, Self-tuning Database
Technology and Information Services: from Wishful Thinking to Viable
Engineering, in: Proc. of the 8th International Conference on Very Large Data
Bases, Hong Kong, China, 2002.

[30] M. P. Consens, D. Barbosa, A. M. Teisanu, L. Mignet, Goals and Benchmarks
for Autonomic Configuration Recommenders, in: SIGMOD Conference,
Baltimore, USA, 2005.

[31] S. Elnaffar, W. Powley, D. Benoit, P. Martin, Today’s DBMSs: How autonomic
are they?, in: Proc. of the 14th International Workshop on Database and Expert
Systems Applications (DEXA’03), 2003, pp. 651–655.

[32] S. Harizopoulos, A. Ailamaki, A Case for Staged Database Systems, in: Proc.
of the 2003 CIDR Conference, Asilomar, CA, 2003.

[33] D. G. Feitelson, L. Rudolph, U. Schwiegelshohn, K. C. Sevcik, P. Wong, Theory
and Practice in Parallel Job Scheduling, in: Proc. of the Workshop on Job
scheduling strategies for parallel processing (IPPS’97), Vol. 1291 of Lecture
Notes in Computer Science, Springer-Verlag Inc., 1997, pp. 1–34.

[34] B. A. Shirazi, A. R. Hurson, K. M. Kavi (Eds.), Scheduling and Load Balancing
in Parallel and Distributed Systems, IEEE Computer Society Press, 1995.

[35] D. Georgakopoulos, M. F. Hornick, A. P. Sheth, An Overview of Workflow
Management: From Process Modelling to Workflow Automation Infrastructure,
Distributed and Parallel Databases 3 (2) (1995) 119–153.

[36] C. Pautasso, G. Alonso, The JOpera Visual Composition Language, Journal of
Visual Languages and Computing 16 (1–2) (2004) 119–152.

[37] R. Khalaf, A. Keller, F. Leymann, Business Processes for Web Services:
Principles and Applications, IBM Systems Journal 45 (2) (2006) (to appear).

[38] OASIS, Web Services Business Process Execution Language (WSBPEL) 2.0
(2006).

[39] T. Heinis, C. Pautasso, O. Deak, G. Alonso, Publishing Persistent Grid
Computations as WS Resources, in: Proc. of the 1st IEEE International
Conference on e-Science and Grid Computing, 2005, pp. 328–335.

[40] C. Pautasso, G. Alonso, From Web Service Composition to Megaprogramming,
in: Proc. of the 5th VLDB Workshop on Technologies for E-Services (TES-04),
Toronto, Canada, 2004, pp. 39–53.

30

[41] J. O. Kephart, D. M. Chess, The Vision of Autonomic Computing, Computer
36 (1) (2003) 41–50.

[42] M. Shaw, ”Self-Healing”: Softening Precision to Avoid Brittleness, in: Proc.
of the first Workshop on Self-Healing Systems (WOSS’02), Charleston, South
Carolina, 2002, pp. 111–114.

[43] P. Oreizy, M. M. Gorlick, R. N. Taylor, D. Heimbigner, G. Johnson,
N. Medvidovic, A. Quilici, D. S. Rosenblum, A. L. Wolf, An Architecture-
Based Approach to Self-Adaptive Software, IEEE Intelligent Systems 14 (3)
(1999) 54–62.

[44] N. S. Nise, Control systems engineering, 4th Edition, Wiley, 2004.

[45] R. Vilalta, C. V. Apte, J. L. Hellerstein, S. Ma, S. M. Weiss, Predictive
algorithms in the management of computer systems, IBM Systems Journal
41 (3) (2002) 461–474.

[46] L. W. Russell, S. P. Morgan, E. G. Chron, Clockwork: A new movement in
autonomic systems, IBM Systems Journal 42 (1) (2003) 77–84.

[47] R. Buyya, D. Abramson, J. Giddy, H. Stockinger, Economics Paradigm for
Resource Management and Scheduling in Grid Computing, Concurrency and
Computation: Practice and Experience 14 (13–15) (2002) 1507–1542.

[48] J. L. Hellerstein, Y. Diao, S. Parekh, D. M. Tilbury, Feedback Control of
Computing Systems, Wiley-IEEE Press, 2004.

[49] D. Breitgand, E. Henis, O. Shehory, Automated and adaptive threshold setting:
Enabling technology for autonomy and self-management, in: Proc. of the 2nd
International Conference on Autonomic Computing, Seattle, WA, 2005.

[50] S. Aiber, D. Gilat, A. Landau, N. Razinkov, A. Sela, S. Wasserkrug, Autonomic
Self-Optimization According to Business Objectives, in: Proc. of the 1st
International Conference on Autonomic Computing (ICAC’04), New York,
USA, 2004, pp. 206–213.

[51] T. Thessin, H. Sluiman, M. Norman, S. Lucio, J. Saliba, M. Woods, Eclipse
Test and Performance Tools Platform Project, http://www.eclipse.org/tptp/.

31

