
Towards Scalable Service Composition
on Multicores

Daniele Bonetta, Achille Peternier, Cesare Pautasso, and Walter Binder

Faculty of Informatics, University of Lugano (USI)
via Buffi 13, 6900 Lugano, Switzerland

first.lastname@usi.ch

Abstract. The advent of modern multicore machines, comprising sev-
eral chip multi-processors each offering multiple cores and often featuring
a large shared cache, offers the opportunity to redesign the architecture
of service composition engines in order to take full advantage of the un-
derlying hardware resources. In this paper we introduce an innovative
service composition engine architecture, which takes into account spe-
cific features of multicore machines while not being constrained to run
on any particular processor architecture. Our preliminary performance
evaluation results show that the system can scale to run thousands of
concurrent business process instances per second.

1 Introduction

Service-oriented architectures promote the creation of new applications by or-
chestrating existing Web services by means of service composition languages [2].
Since compositions are themselves made accessible as Web services, composition
runtime engines may have to handle a large number of concurrent service re-
quests. Assuming that the composed services are designed to scale (e.g., they
are hosted in a cloud environment), composition runtime engines can easily be-
come performance bottlenecks. Existing engines rely on distribution and replica-
tion techniques in order to ensure scalability in peer to peer environments (e.g.,
OSIRIS [8]) or over clusters of computers (e.g., JOpera [6]). Other approaches
(like Lu et al. [5]) propose an optimized architecture for service compositions
based on event-driven patterns and message passing interactions.

Modern multicore machines offer a promising alternative to clusters or server
farms, respectively allow to build a sufficiently powerful infrastructure with less
machines. However, modern multicore architectures are fundamentally different
from previous micro-processor architectures [4]. Since it has become difficult to
further increase the clock rate of processors, nowadays chip manufacturers are
delivering more processing power by increasing the number of cores per CPU.
Recent chip multi-processors combine several cores with a hierarchy of caches
on a single processor. Typically, each core has its own small L1 and L2 caches,
while several or all cores on a chip share a larger L3 cache. Examples include
Intel Nehalem, AMD Opteron, and IBM Power7 processors.



In order to take full advantage of the hardware resources on modern multicore
machines, it becomes important to explicitly consider the characteristics of the
multicore architectures in the design of the process execution engine.

In this paper we introduce the SOSOA process execution engine, an innova-
tive service composition middleware based on a multicore-aware design. While
we take into account the specifics of multiprocessor architectures in the design
of process execution engines, we do not resort to any low-level implementation
and optimization techniques. The resulting engine is thus platform-independent,
but capable of adapting according to the actual hardware configuration.

The main contributions of this paper are to take emerging multicore archi-
tectures of modern processors into account for the design of process execution
engines, and also to demonstrate the clear impact of multicore-awareness on
their performance with some preliminary results.

The paper is organized as follows. Section 2 describes the main requirements
and architectural characteristics of the process execution engine and how it has
been designed to target multicore machines. Section 3 describes the evaluation
testbed and presents the results of our first measurements. Section 4 concludes
the paper and presents future research directions.

2 Architecture

This section gives an overview of the architecture of the SOSOA service compo-
sition engine and how it can adapt to run across different configurations of the
underlying hardware resources.

2.1 Components

The logical architecture of the engine is designed following a multi-stage pipeline,
comprising three components: the Request Handler, the Kernel, and the Invoker
(Fig. 1). The Request Handler makes the composite Web services available to
clients. The Kernel performs the actual execution of the processes and manages
the state of multiple active instances of the running compositions. The Invoker
takes care of interacting with the composed services.

The execution of a composition begins with a request from a client to instan-
tiate a new instance (1). This request is forwarded by the Request Handler to
a queue (2) which is read by the Kernel. The Kernel is in charge of retrieving
pending requests from the queue (3) and then instantiating and executing the
corresponding compositions, while keeping their state up-to-date. In order to in-
teract with the composed Web services, the Kernel delegates the actual service
invocations to the Invoker via a second queue (4).

The three components in the SOSOA process execution engine are decoupled
using shared queues in order not to slow down the execution of compositions,
due to the natural delay involved in the invocation of remote Web services.
Once the Web service invocation completes (5), its results are enqueued by the
Invoker into the queue shared with the Kernel, so that they can be used to



Execution
State

(1)

Thread Pool

Request
 Handler Kernel

Thread Pool Thread Pool

Invoker

(2) (3)

(4)
(6)

(5)

(7)

Queue

Web
Services
Provider

Client
Workload
Generator

Service Composition Engine

Queue

Fig. 1. Architecture of the SOSOA engine for Web service composition

continue the execution of the corresponding instance (6). Once the execution of
an entire instance completes, the Kernel component notifies the Request Handler
component which sends results to the client (7).

At this level of abstraction, the architecture does not yet define how its
three execution stages are mapped to the available execution resources (i.e., OS
threads). The goal is to define a scalable system architecture, where a limited
number of operating system threads can be leveraged to execute a much larger
number of composition instances. Thanks to the separation of the execution
stage from the Web service publishing and invocation stages, this architecture
makes it possible to use only three execution threads to run any number of pro-
cess instances that may involve the parallel invocation of any number of Web
services. Clearly, allocating at least one thread per component is necessary to
make sure the system can operate and run its workload, but is not sufficient
to provide an acceptable level of performance. If we need to implement paral-
lel constructs commonly found in most service composition languages, we need
to assign a larger number of threads to the Invoker component. Likewise, the
Request Handler component needs a pool of worker threads to serve incoming
concurrent requests from many clients. The same concerns also apply to the
Kernel: as it acts as a bridge between two thread pools, it may become a per-
formance bottleneck unless it can also rely on multiple threads to execute the
composition instances.

This design thus adopts thread pools to assign more than one thread to
each component. Thread pools not only have the potential to increase overall
system throughput, but also provide a straightforward mechanism to leverage the
underlying hardware parallelism [3]. In addition, thread pools provide a number
of useful performance tuning knobs as well. For example, increasing the size of
a thread pool may increase the system throughput for some workloads. In this
way, the architecture can efficiently distribute work on the available cores to
increase overall throughput.

2.2 Deployment on Multicore

The three-stage architecture characterizing the SOSOA engine should be flexible
enough to be deployed on different hardware configurations, ranging from single-



core single CPU machines all the way to multi-processor multicore environments.
The main constraints driving the deployment decisions of the architecture con-
cern data locality, cache sharing, and the minimization of thread migrations,
as these have measurable effects on a system performance [7, 9, 10]. Another
important design aspect is portability. Given the wide variety of multicore ar-
chitectures that are appearing on the market, it is important to avoid making
too many assumptions about specific characteristics of the hardware.

As previously discussed, a thread pool is assigned to each component in
order to let the threads of each pool execute common code paths. Thread pools
communicate through queues, reducing contention, as the number of shared data
structures is reduced and can be specifically optimized for concurrent access.
For example, only the threads of the Kernel can access the state of the running
composition instances. Also, only a subset of the threads of the engine performs
I/O operations (in the Invoker and the Request Handler components). This
means that when some thread gets blocked (e.g., waiting for a remote Web service
to reply), the rest of the engine continues the execution of other composition
instances.

Concerning the mapping of threads to cores, we do not assume that each
thread pool should simply run on a separate core. Instead, our deployment is
based on a replication of the entire engine, where each replica runs on a different
set of cores. Given an incoming request, the Request Handler locates an avail-
able replica of the engine. The replica manages then the execution of the newly
created composition instance on its cores.

Based on this strategy, the engine scans the hardware configuration to deter-
mine the structure of the system memory, the total number of CPUs, and the
number of available cores. In more detail, the engine identifies sizes and levels of
processor caches, finding out (when available) cores under a common cache (usu-
ally a L2 or L3). In this way, the engine creates affinity groups composed by core
IDs accessing the same last-level cache. According to the information collected,
the engine replicates itself while forcing the OS scheduler to constrain the exe-
cution of all threads of a replica within a specific affinity group. The replication
phase keeps the total number of threads and memory usage constant: the more
replicas are instantiated, the less amount of threads and memory is assigned to
each of them. Then, after all replicas have started, client requests are forwarded
to each replica using a round-robin policy.

This adaptive deployment procedure, based on the ability to “pin” the threads
of each replica to the corresponding cores, allows the SOSOA architecture to
adapt to different hardware configurations, from a single-CPU setup to a multi-
processor multi-core deployment.

3 Preliminary Evaluation

In order to compare the performance of the different configurations of the SOSOA
execution engine, we follow the approach presented in [1]. In this preliminary
evaluation we focus on a limited set of workload types (based on 4 composition



(a)

Sequential

(b)

Foreach

(c)

Parallel

(d)

Loop

......

Fig. 2. Benchmark patterns executed by the service composition engine

patterns) and use the overall system throughput as the main evaluation and
comparison metric.

3.1 Testbed Setup

The testbed environment has been configured to stress the service composition
engine while minimizing the effect of the composed Web services running on the
back-end. In this way, the components Workload Generator (WG) and Web Ser-
vice Provider (WSP) never become performance bottlenecks and measurements
are mostly influenced by SOSOA’s behavior.

Workload Generator. Each test begins with the activation of the WG client
component. This component drives the test generating a pseudo-random stream
of service requests to the SOSOA engine. The component internally executes
a specified number of clients, each one performing concurrent service requests
according to a simple finite state machine composed of two states, “idle” and
“busy”. When “idle”, a client sleeps for a random amount of seconds determined
by a Gaussian distribution (fixed at µ = 1.0 and σ2 = 0.5). When the sleep time
elapses, the client wakes up, moving to state “busy”. In this state, the client
makes a service request to the SOSOA engine, starting a new composition in-
stance. The client then waits for the response message. Once the execution com-
pletion acknowledgement is received (or a timeout fixed at 30 seconds occurs),
the client moves back to state “idle”. This procedure is executed concurrently for
the desired number of clients and repeated for a given number of iterations, in or-
der to effectively measure the system throughput under reproducible conditions
and to reduce the observed variance.

Benchmark Patterns. The second component of the testbed is the SOSOA
service composition engine. The engine has been tested with four different com-
posite Web services, chosen because each represents a common pattern used also
in other benchmarking contexts (such as [1,5]). All compositions executed in the
experiments contain the same number (N = 6) of service invocations and have
the following control flow structures (see Fig. 2):



(a) Sequential — Each service invocation depends on the previous one, thus the
engine invokes services sequentially. This is equivalent to a BPEL <sequence>

block.

(b) ForEach — The composite service performs a parallel invocation of a variable
number of services. This pattern occurs when data needs to be scattered to
a number of independent services for parallel processing. Then, results are
gathered by the composite service which aggregates them and continues the
processing until all services have replied. In terms of BPEL, this is equivalent
to a <foreach> block.

(c) Parallel — In this case, each service invocation is fully independent from
the others and therefore they can be invoked in parallel. This is equivalent
to a BPEL <flow> block without any control flow links between its child
elements.

(d) Loop — The control flow of this composite service executes a loop for a
fixed number of times (6 iterations), invoking a service at each iteration. It
corresponds to a BPEL <while> block.

Web Service Provider. The third component of the testbed, WSP, is a com-
mon Web Server hosting the Web services invoked by the SOSOA engine. The
component is deployed to an independent machine hosting N = 6 services. In
order not to influence the overall execution time with delays caused by the Web
Server, each service responds to any request with the same message after a con-
trolled time interval. The size of each request and response message is negligible.
In this way, we can ensure that the measured throughput is not limited by the
WSP component.

Multicore Hardware and Software Environment. We measured the be-
havior of the SOSOA engine with different workloads and configurations by
deploying it on a multicore machine equipped with 64GB RAM and two 2.6GHz
Six-Core AMD Opteron processors, for a total of 12 cores. Each CPU comes
with a high-capacity last-level cache (6MB L3 cache) shared by all cores. Each
core also features 512KB L2 and 64KB L1 caches. This machine exploits a cache-
coherent non-uniform memory access (cc-NUMA) architecture. To avoid interfer-
ences, the WG and WSP components are deployed on two additional dedicated
machines with the following specifications: single-CPU Intel Core2-Quad desk-
top machine with a 3.0GHz processor (12MB L2 cache, 32KB L1 cache per core)
and a total of 4GB RAM.

The whole testbed is connected through a private 100MBit LAN, with an
average message round-trip time of 0.5 milliseconds. All machines in our testing
environment run on the Ubuntu Linux Server 10.04 64bit distribution. We also
used the standard Oracle Hotspot JVM 64bit Server version 1.6.20, since the
SOSOA engine prototype is written in Java.



 300

 600

 900

 1200

 1500

 1800

 2100

 300  600  900  1200  1500  1800  2100  2400  2700  3000  3300

T
h

ro
u

g
h

p
u

t 
(I

n
s
ta

n
c
e
s
/s

e
c
)

Number of Clients

1 Replica
2 Replicas
6 Replicas

12 Replicas

Fig. 3. Average throughput for an increasing number of clients

3.2 Test Configurations

For each machine, we first fix the total number of execution threads that are ded-
icated to run each replica of the SOSOA engine. Then we allocate the available
threads to the pools associated with each engine component. Since the Request
Handler uses non-blocking I/O, we observed that it does not require a large
number of threads to handle client requests. Thus, we kept their total amount
fixed at 32. The remaining number of threads are allocated equally among the
other engine components. For replicated configurations where we run multiple
instances of the engine, we reduce the number of threads of each replica in or-
der to keep the total amount of threads constant. The same policy has been
adopted for memory allocation. Since the total amount of available memory is
constant, we reduce each replica’s JVM maximum heap size as the number of
them increases.

CPUs Number of Threads used by Total
(cores) Replicas Kernel Invoker Threads

2 (12)

1 12 12 24
2 6 6 24
6 2 2 24
12 1 1 24

Table 1. Deployment configurations: the fixed amount of computational resources per
machine (Total Threads) are allocated to a variable number of replicas of the engine’s
components.



 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

Foreach Parallel Sequential Loop Geomean

T
h

ro
u

g
h

p
u

t 
(I

n
s
ta

n
c
e
s
/s

e
c
)

Benchmark pattern

1 Replica
2 Replicas
6 Replicas

12 Replicas

Fig. 4. Throughput for different patterns at the saturation point

3.3 Results

The results of our experiments show the average throughput scalability for the
engine configurations summarized in Table 1. In order to minimize the noise
introduced by the Java runtime, we repeated all test runs 10 times and show the
average.

Fig. 3 shows the average throughput (Y axis) of the four patterns for an
increasingly large number of clients (X axis). The charts help to compare the
scalability of the engine for different numbers of replicas. Fig. 4 shows a more de-
tailed performance comparison, breaking down the average throughput obtained
for each workflow and each engine configuration fixing the number of clients at
the saturation point.

Different replicas increase the throughput by approximately 20% when com-
pared to the baseline configuration. Results can ben explained considering the
architecture of the machine: on NUMA systems, memory is allocated on the
optimal RAM slot connected to the CPU where threads are running on. Hence,
constraining the execution of each JVM to a specific CPU makes sure that
threads do not migrate across different processors. This helps to reduce latency
times due to unoptimized memory accesses. Among the several configurations
tested, the best results are obtained when the number of replicas is equivalent
to the number of physical CPUs available. Since the two CPUs share a large L3
cache among all cores, data confirm that two replicas make the most efficient
usage of the available computing resources.

Overall, these preliminary results highlight the potential benefits of our repli-
cation based approach, where on the tested hardware configuration and for some
types of patterns we observed performance gains of more than 20%. Our experi-



ments support the validity of the multicore-aware approach under the following
viewpoints. This improvement is due to the partitioning of a set of threads across
multiple replicas, which have been tied to a specific CPU. Using a finer grained
partitioning (where replicas are tied to individual cores) also provides better per-
formance compared to the baseline, but does not improve over the configuration
with two replicas.

4 Conclusion

Modern multi-processor machines have very heterogeneous and sophisticated
architectures, featuring several cores aggregated into various hardware configu-
rations with hierarchic, shared or privileged caches and memory access paths.
These newer architectures offer higher computational power through improved
parallelism but also require specific software optimizations to maximize perfor-
mance gains.

In this paper we have presented the SOSOA process execution engine for
service composition designed to scale on multi-processor multi-core machines.
Our design allows the engine to adapt to the different processor architectures at
deployment time. This is performed taking into account the number of available
processors and the way cores and caches are physically mapped. This hardware
analysis process is performed at startup to let the engine automatically decide
if and how many replicas should be started.

Our results show that this approach is significantly faster (up to about 20%)
when compared to the baseline design, which uses the same number of execution
threads, but keeps all of them within a single JVM. Our experiments also show
that overhead introduced by the replication of the engine components is com-
pensated by the speedup gains obtained on multi-processor architectures when
replicas correctly exploit the locality of the underlying hardware.

We plan to extend our work to target other complex scenarios. Regarding
future work, we plant to take QoS aspects into account. We also plan to per-
form additional experiments on a broader range of multicore architectures with
different cache configurations in order to validate our claims of portability. An-
other important extension concerns the work sharing policy between the replicas.
Adding a more sophisticated dispatching policy (e.g., based on work-stealing)
could potentially improve the load-balancing among replicas and further increase
performance.

Acknowledgment

We gratefully acknowledge the financial support of the Swiss National Science
Foundation for the project “SOSOA: Self-Organizing Service-Oriented Architec-
tures” (SNF Sinergia Project No. CRSI22 127386/1).



References

1. Bianculli, D., Binder, W., Drago, M.L.: Automated performance assessment for
service-oriented middleware: a case study on BPEL engines. In: Proceedings of the
19th International Conference on World Wide Web (WWW 2010), Raleigh, NC,
USA. pp. 141–150. ACM (April 2010)

2. Dustdar, S., Schreiner, W.: A survey on web services composition. Int. J. Web and
Grid Services 1(1), 1–30 (August 2005)

3. Goetz, B., Peierls, T., Bloch, J., Bowbeer, J., Holmes, D., Lea, D.: Java Concur-
rency in Practice. Addison-Wesley (2006)

4. Hill, M.D., Marty, M.R.: Amdahl’s law in the multicore era. IEEE Computer 41(7),
33–38 (2008)

5. Lu, W., Gunarathne, T., Gannon, D.: Developing a concurrent service orchestra-
tion engine in ccr. In: Proceedings of the 1st international workshop on Multicore
software engineering. pp. 61–68. ACM (2008)

6. Pautasso, C., Alonso, G.: JOpera: a toolkit for efficient visual composition of web
services. International Journal of Electronic Commerce (IJEC) 9(2), 107–141 (Win-
ter 2004/2005 2004), http://www.gvsu.edu/business/ijec/v9n2/

7. Rajagopalan, M., Lewis, B., Anderson, T.: Thread scheduling for multi-core plat-
forms. In: Proceedings of the 11th USENIX workshop on Hot topics in operating
systems. pp. 1–6 (2007)

8. Schuler, C., Weber, R., Schuldt, H., Schek, H.J.: Peer to peer process execution
with OSIRIS. In: Proc. of the Service-Oriented Computing Conference (ICSOC
2003). pp. 483–498 (2003)

9. Teng, Q., Sweeney, P.F., Duesterwald, E.: Understanding the cost of thread mi-
gration for multi-threaded Java applications running on a multicore platform. In:
ISPASS ’09: Proceedings of the IEEE International Symposium on Performance
Analysis of Systems and Software. pp. 123–132 (Apr 2009)

10. Zhang, E.Z., Jiang, Y., Shen, X.: Does cache sharing on modern cmp matter to the
performance of contemporary multithreaded programs? In: PPoPP ’10: Proceed-
ings of the 15th ACM SIGPLAN symposium on Principles and practice of parallel
programming. pp. 203–212. ACM, Bangalore, India (2010)


