
Multi-Device Complementary View Adaptation
with Liquid Media Queries

Andrea Gallidabino, Cesare Pautasso

Software Institute
Faculty of Informatics
Università della Svizzera italiana
Lugano, Switzerland
andrea.gallidabino@usi.ch, c.pautasso@ieee.org

http://liquid.inf.usi.ch

Abstract

Responsive Web applications assume that they run on a single device at a
time. Developers use CSS3 media queries to declare how the Web application
user interface adapts to specific capabilities (e.g., screen size or resolution) of
individual devices. As users own and use multiple devices across which they
attempt to run the same Web application at the same time, we propose to
extend CSS media queries so that developers can also use them to dynami-
cally adapt so-called liquid Web applications as they are seamlessly deployed
across multiple devices. In this paper we present the concept of liquid media
queries. They support features to detect the number of connected devices, the
number of users running the application, or the role played by each device
during the application execution. The liquid media query types and features
defined in this paper are designed for component-based Web applications,
and they enable developers to control the deployment and dynamic migration
and cloning of individual Web components across multiple browsers. Fur-
thermore we present the design of how liquid media queries are implemented
within the Liquid.js for Polymer framework and the corresponding distributed
adaptation algorithms. We discuss the implications of multi-device adaptation
from the perspective of the developers and also the users of a liquid Web ap-
plication. Finally we showcase the expressiveness of the liquid media queries

River Journal, 1–39.
© 2020 River Publishers. All rights reserved.



2 A. Gallidabino, C. Pautasso

to support real-world examples and evaluate the algorithmic complexity of
our approach.

Keywords: Liquid Software, CSS Media Queries, Multi-device adaptation,
Responsive user interface, Complementary view adaptation.

1 Introduction

Liquid software [20] is a metaphor [28] that associates the shape and behavior
of liquids with software: as a liquid is able to flow into and adapt its shape
to its container, liquid software is able to flow across and adapt itself to fit
across all the devices it is deployed on. Liquid software allows to seamlessly
migrate parts of a running application (e.g., individual components of the user
interface) or the whole application from a device to another. Liquid applica-
tions are responsive (e.g., they are able to adapt to the specific device running
it [18]), but more importantly they are also able to adapt to the set of devices
simultaneously running the application. Finally liquid applications can share
their state across multiple devices while keeping it synchronized [24].

Nowadays, due to the improvement of Web technologies with the release
of new Web standards (e.g. supporting full-duplex, direct communication
between clients), we are witnessing the shift towards more complex and de-
centralized Web architectures [6], which in turn enable developers to create
Web applications featuring support for improved liquid user experiences.

In our previous works we showed how we designed liquid abstractions
for the data and logic layers in liquid Web architectures [10]. In this paper
we focus on the user interface layer as we discuss in detail liquid media
queries, an extension to standard CSS3 media queries [5] that allows the
developers to create their own CSS style sheets that get activated when their
Web applications are deployed across multiple devices. While as part of the
liquid user experience, end users can control which user interface components
are deployed on each device (e.g., by swiping or drag and drop), developers
can use liquid media queries to declaratively describe how their applications
can automatically react to changes in the execution environment. The concept
was originally proposed in [8]. In this paper we give a complete presentation
of liquid media features and types with examples, discuss in more detail the
decentralized adaptation and deployment algorithm, as well as introduce a
debugger tool for liquid styles.

The developers of liquid applications should be able to offer to the users
an automatic rule-based deployment mechanism for populating all of the



Multi-Device Complementary View Adaptation with Liquid Media Queries 3

users’ devices with pieces of the application they are running, because a
misuse of the manual liquid user experience may lead to non-intuitive de-
ployments which contradict with the developer expectations and intent. For
example, in the case of a picture sharing application, it should be possible to
constrain the component in charge of taking and selecting pictures to smart-
phones, while the picture viewer component is deployed on a device with a
larger display. This way, users can select which picture to display from their
personal smartphone photo library and take advantage of a public device to
have a shared slideshow.

The rest of this paper is structured as follows. After reviewing related
work in section 2, we present the design of liquid media queries in sec-
tion 3 and show how they are encoded within the Liquid.js for Polymer [7]
framework (section 4). The presented queries drive the algorithms outlined
in Section 4.3, which are used to automatically adapt a distributed user in-
terface across multiple devices [19] – as shown in the example scenarios
of section 5 – making it possible to shift from the traditional responsive UI
adaptation [18], to a complementary one [21] able to automatically migrate
Web components across the set of heterogeneous devices running a liquid
Web application simultaneously. In the following sections, we discuss the
multi-device adaptation by taking into consideration the impact of the adap-
tation from the perspective of both the users and developers of a liquid Web
application (section 6). In section 7 and in section 8 we present our conclusion
and future work.

2 Related Work

In the literature we can find several research topics concerning adaptive multi-
device user interfaces [25], such as Distributed User Interfaces (DUI) [17]
or Cross-Device Interfaces [23]. All deal with distributed component-based
user interfaces deployed across multiple devices [4]. User interface elements
can be distributed across the devices either synchronously or asynchronously:
when we talk about asynchronous distribution, the devices do not need to be
connected in parallel when the UI elements are moved, while for synchronous
distribution the devices need to be simultaneously connected [4].

In this paper we deal only with synchronous distribution, and design the
automatic complementary view adaptation for the components of liquid web
applications. In our scenario multiple devices are used together to accomplish
a common task using the same Web application, however each device may
play a different role and thus display different and complementary visual



4 A. Gallidabino, C. Pautasso

components. If the set of connected devices changes, then the distributed
user interface should flow and adapt accordingly to the new execution device
configuration [16].

There have been several attempts to use rule-based approaches to describe
cross-device user interfaces [3]. Most rely on a centralised computation to
determine where to place the components. Zorrilla et al. [29] propose to
assign properties both to components and devices. The centralized server uses
these properties to score the best targets for the distribution, and then shows
and hides the corresponding components depending on which devices they
are deployed on. The liquid media queries we present in this paper can also
be seen as a rule-based approach, and we use the definition of the extended
media queries in order to assign a score to the devices that can be a target for
the distribution. However, the implementation of our algorithm is meant to
be decentralized and considers every device connected to the application, not
only the devices with assigned properties.

Husmann et al. [12] implement cross-device user interfaces in a decen-
tralized environment and define a similar rule-based approach. They do not
associate the rules to CSS media queries, nor they support multiple CSS style
sheets that need to be enabled or disabled on the target devices. Their ap-
proach deploys the whole application on all connected devices and then hides
the components that should not be displayed. Our approach is more fine-
grained as it moves across the devices only the components that need to be
deployed, migrating them directly from the device they are currently running
on, instead of deploying the entire application from a centralized server.

3 Liquid Media Types and Features

Choosing the appearance of a Web application and deciding how it should
dynamically adapt to the devices it is deployed on, is a mandatory task during
the design of a Web2.0 application [26]. Responsive design is the commonly
followed best practice used to create user interfaces able to adapt to the de-
vices’ specifications [18]. Responsive design requires developers to decide
how the UI is presented to the user and how it changes when deployed on
different devices with distinct input/output capabilities. The challenge of re-
sponsive Web design is to be able to adapt any Web application to any kind
of Web-enabled device, ranging from small and weak smart objects, to the
largest and more powerful computers connected to big screens [14]. While
in the past designing responsive Web applications was difficult, nowadays we
can easily design responsive Web applications with CSS3 and HTML5, which



Multi-Device Complementary View Adaptation with Liquid Media Queries 5

are the current standard used for creating responsive Web user interfaces.
Nevertheless, following the birth and evolution of the Internet of Things
during the last decade [2], developers face new challenges that responsive
Web design cannot solve on its own. Responsive UIs are meant to adapt to
a single device at the time, however, as the number of devices owned by
a user increases [11], developers need to develop Web applications which
can adapt their user interface taking into account the whole set of multiple,
heterogeneous connected devices (see Figure 1).

In particular, the goal is to allow developers to create their own comple-
mentary view adaptations, in which the users can take advantage of all their
simultaneously connected devices. A complex user interface can be scattered
and presented on multiple devices, in such a way that its users can have
immediate access to more information in comparison to single-device usage
scenarios [1]. In fact, with the design of a complementary view, we have the
opportunity to exploit companion devices and use them to extend the screen
size to display parts of the UI of an application which would not normally fit
the visible area of a single screen.

The multi-device adaptation needed for creating complementary views
can be decomposed in three essential sub-tasks:

• Adapt styles in a single device deployment: whenever the whole ap-
plication or a single component is deployed on a device, its user interface
needs to adapt. The appearance of the deployed software changes because
of the device hardware specifications (e.g., the screen size), or because the
user can interact with the application using different kind of interactions
more suitable to the device hardware (e.g., swiping on a smartphone). Con-
sequently some functionalities can be enabled or disabled depending on the
device capabilities (e.g., geolocation on location-aware devices). Considering
nowadays Web applications, the single device adaptation is already possible
with the help of standard HTML5 and CSS3 [5].
CSS3 media types and features can be used to adapt the user interface of an
application to multiple devices by associating a CSS style sheet with some
expected device characteristics. Standard media features consider qualities of
the Web browser and its environment (e.g., the screen size and resolution, the
output media, and the device orientation). If the media query matches what
the device supports, then the corresponding style sheet is activated.
Standard CSS3 media queries are at the foundation of responsive user inter-
faces that adapt to a single device at the time.

• Adapt styles in a multi-device deployment: the latest CSS3 standard
lacks sufficient expressiveness to describe the user interface adaptation in a



6 A. Gallidabino, C. Pautasso

Application
(Component 2)

Application
(Component 1)

Device 2

Application
(Component 1)

Application
(Component 2)

Device 1

Application
(Component 1)

Application
(Component 2)

(a) Static View / No Adaptation: the Web application is meant to fit on a single device
(Device 1) and when it is deployed on another one, it does not adapt. For example, if
the screen is smaller (Device 2) than the one it was originally designed for, the user
must scroll to see the entire application.

Device 2

App
(Comp 1) Ap

p
(C

om
p 

2)

Device 1

Application
(Component 1)

Application
(Component 2)

(b) Responsive View Adaptation: the Web application can adapt to different device
capabilities.

Device 1 Device 2

Application
(Component 1)

Application
(Component 

2)

(c) Complementary View Adaptation: multiple devices can be used concurrently to
run the Web application which scatters and adapts the user interface across multiple
devices. In a complementary view, each device displays different components of the
same application.

Figure 1: View adaptation options: (1a) no adaptation with static definition
of the appearance of the Web page; (1b) responsive view adaptation; (1c)
complementary view adaptation



Multi-Device Complementary View Adaptation with Liquid Media Queries 7

multi-device environment. CSS does not yet define media types and features
that can be used to describe a multi-device deployment, therefore we cannot
use it to describe multi-device views that can change styles whenever the user
is using multiple devices simultaneously (e.g. react when the user connects
a new device, or disconnects a previously connected device). Nevertheless,
CSS3 is a well-rooted tool in the Web and we believe that its expressiveness
for single device adaptations is very powerful, therefore we decided to extend
it. As we are going to show in the next section, the concepts of style sheets,
media features and media types can be used also for adapting the UI of an
application to multi-device deployments and in subsection 3.1 we define our
own liquid media features and types.
With the definition of new CSS3 media types and features we can dynami-
cally change the styles of an application at runtime and react in real time to
any change of the set of connected devices.

• Migrate components of an application between devices: since our
goal is to build fine-grained complementary view adaptations, we must be
able to deploy and migrate pieces of an application among the set of devices.
To do so, we need to define policies that can check the current deployment
and decide whether the components need to be migrated every time the set
of connected devices changes. The actual migration mechanisms and liquid
primitives are provided by the Liquid.js framework API [7].

3.1 Automatic Component Style Adaptation

In order to implement the multi-device adaptation, first the application must
be aware of when it is deployed on multiple devices. Additionally, it should
react when the deployment configuration changes. Since standard CSS3 me-
dia queries do not define media types and features that can be used to define
multi-device deployment, in this Section we introduce and describe new me-
dia types and features suitable for liquid web applications (Table 1). They can
be used by the developers to define cross-device user interface adaptations
by declaratively constraining on which devices the components should be de-
ployed on, and by controlling which style sheets should be enabled depending
on individual properties of the set of devices connected to the application.

We define the following liquid media features and types (see Table 1):
liquid and liquid-devices - In parallel screening scenarios [10] liquid

applications are deployed on multiple devices in parallel. Detecting whether
the liquid application is currently running on multiple devices is therefore
required for the adaptation. The liquid feature refers to any deployment with



8 A. Gallidabino, C. Pautasso

Table 1: Proposed media types and features for liquid media queries.

Name Description
Features
liquid Shortcut for min-liquid-devices: 2.
liquid-devices The number of connected devices.
liquid-users The number of connected users.
liquid-device-ownership Whether the device is private, shared or public.
liquid-device-role The application-specific role of a device.
Types
liquid-device-type The type of device(s) running the application.

at least two connected devices, while the liquid-devices feature makes it pos-
sible to create different views for specific numbers of connected devices.
Similarly to CSS3 media queries, it is also possible to define the minimum
and maximum values for the liquid-devices feature by setting the values for
min-liquid-devices and max-liquid-devices (e.g., min-liquid-devices:3
can be used to dynamically change the view of the liquid application when
there are at least three connected devices).

liquid-users - In multi-user parallel scenarios [10] the liquid application
is deployed across multiple devices and multiple users can interact with it at
the same time. The liquid-users media feature allows to adapt a user interface
depending on the number of users connected to the application. The features
min-liquid-users and max-liquid-users can also be used for creating styles for
single user applications (e.g., max-liquid-users: 1) and for multi-user
applications (e.g., min-liquid-users: 2).

liquid-device-ownership - The types of access granted to the devices
can be either private, shared, or public. A private device is owned and used
exclusively by one single user. Shared devices are owned by one user, but
they can be used by another. Public devices (e.g., public displays [22]) can
be used by both registered and authenticated users or by anonymous guests.

liquid-device-role - The device role is used to classify devices accord-
ing to application domain-specific features. Developers can declare which
roles they expect the devices used to deploy their application should play
(e.g., controller, console, or multimedia display). Users can assign one of the
predefined roles to their actual devices. To do so, the device-role property
can be used to assign styles to be activated on devices with the assigned
role. When the developers decide to use the liquid-device-role feature, the



Multi-Device Complementary View Adaptation with Liquid Media Queries 9

Listing 3.1: Component defining a style containing two liquid media queries
1 <component-example>

2 <style>

3 @media (liquid-devices: 2) {

4 :root {

5 background-color: red;

6 }

7 }

8 @media (min-liquid-devices: 3) {

9 :root {

10 background-color: blue;

11 }

12 }

13 </style>

14 <template> <!-- Component HTML --> </template>

15 <script> /* Component logic */ </script>

16 </component-example>

connected devices must be configured at runtime and a role must be assigned
to them. The role metadata associated with the device can change at any time.

liquid-device-type - The latest standard CSS3 media types only distin-
guish between screen, print, and speech devices. Depending on the context
of the application, it can be useful to have a more fine-grained distinction the
types of screen devices connected, so that they can be assigned to perform
certain kind of tasks (e.g., desktop computers are used more for working in
an office) [15], while other devices are more convenient in certain social sit-
uations (e.g., smartphones as opposed to laptops are more convenient during
meals) [13]. In our current implementation liquid-device-type can be set to
Desktop, Laptop, Tablet, Phone.

Listing 3.1 shows an example of the definition of a Web component
which defines multiple liquid media queries. The component named component-
example contains a style tag with two CSS3 media queries. These queries
both use the liquid-device-type and min-liquid-devices features we
have previously defined:

• the first liquid media query liquid-devices:2 activates the style it en-
capsulates only when the set of connected devices consist of exactly two
devices. Whenever there are two connected devices, the background color
of the component is changed to red;



10 A. Gallidabino, C. Pautasso

Device #1
<component-
example>

background-color
white

Device #1
<component-
example>

background-color
red

Device #1
<component-
example>

background-color
blue

Device #1
<component-
example>

background-color
blue

Device #2

Device #2

Device #2

Device #3

Device #3 Device #4

Figure 2: Style adaptation of the component described in Listing 3.1 when up
to four devices are connected to the application.

• the second liquid media query min-liquid-devices:3 reacts whenever
there are three or more devices connected. As soon as a third device connects,
the background color of the component is changed to blue, if more devices
connect the color does not further change and remains blue (see Figure 2).

3.2 Component Deployment Redistribution

In the previous section we introduced the media features and types that are
needed to describe the multi-device environment, in this section we describe
the policies that can be used to control the placement of components among
the set of connected devices. It is important to note that the deployment is
not static, since the environment can change (e.g., devices can connect and
disconnect while the liquid Web application is running). Whenever there is



Multi-Device Complementary View Adaptation with Liquid Media Queries 11

a change in the set of connected devices, a new deployment configuration is
computed and the components are migrated across the devices accordingly.

Different policies can be used to decide where components will be mi-
grated and the decision on how the components are redistributed across the
devices is left to the developers of the Web application. The developer can
choose the policy of the redistribution considering the following two different
assumptions:

• Redistribution only. The application does not create new instances of a
component during the redistribution, meaning that the number of instantiated
components of the UI of the application remains constant.

• Redistribution and cloning. The redistribution of the UI allows to
spawn new clones of existing components. In this case a given component can
have additional instances spawned on suitable devices. When such devices
disconnect, the cloned components are not migrated to other still connected
devices, unless it was the last instance in the set of devices.

The choice between the two assumptions is application specific and de-
pends on how the developers expect the application to be used. The redistri-
bution only assumption is more suitable for single-user applications running
on a limited selection of devices, while cloning can be used for multi-user
applications in which a certain component should be displayed on multiple
screens, e.g. on each device of a specific type or on some device of each
distinct user.

3.2.1 Redistribution step
How can developers control the target devices on which components should
be deployed on? Developers can use the liquid media features and types we
described earlier. Whenever the developers define a liquid media query inside
a component, the application assumes that the developers are hinting that the
component should be deployed on a device with matching features and types,
if it is already available in the set of connected devices, or migrated on such
device if it becomes available while the application is running.

The decision on how to redistribute the components can be based on the
following policies:

• Exact match: this policy decides to move a component to any device
that matches all the constraints defined by all the liquid media queries defined
in the component. If there is no such device, then the migration does not
occur.

• Maximize device-component constraint affinity: each component can
define multiple liquid media queries and it is possible that the developer



12 A. Gallidabino, C. Pautasso

chooses to create alternative media queries that cannot be accepted at the
same time (e.g., in the example presented in Listing 3.1, it is impossible
that both liquid media queries can be matched, because they have exclusive
values). The reason for the developers to design such liquid media queries is
for adapting the same component to alternative deployment configurations.
When the component media queries target different devices, it would be pos-
sible to migrate the component to any of those devices if they are available.
If more than one such device is available, this policy migrates the compo-
nent to the device that matches the most liquid media queries defined in the
component, instead of migrating it only when all queries are exactly matched.

• Priority-based: the priority-based policy can control which device be-
comes the target of a migration when multiple devices match the same liquid
media query. With this approach the developers associate a priority score to
their liquid media queries. This policy moves the components to the device
that accepts at least one liquid media query defined in the component, and in
case there are more devices that accept the same query, then the component
is moved to the one that has the highest priority. Listing 3.2 shows how the
developers can define the priority of a liquid media query by giving a value
to the newly introduced priority feature. In the example, the first liquid
media query defines a style that should be activated with higher priority in
respect to the second liquid media query. Figure 3 shows how the component
defined in Listing 3.2 is moved to different devices when new targets become
available. The component is initially deployed on a laptop, if a new phone
or tablet connects, since the component defines at least one matching liquid
media query, it migrates to either one of them and changes the background
color accordingly. When both phone and tablet connect, then the component
is moved to the phone and the background color is set to blue, because the
priority defined in the liquid media query that matches the phone is higher
than the one of the tablet.

• Minimum number of components per device: all the policies ex-
plained before do not always take full advantage of all connected devices,
because multiple components can be migrated to a single device matching
multiple liquid media queries, instead of scattering them among all available
devices. This policy is primarily meant to work in conjunction with the previ-
ous policies as it always tries to instantiate at least one component per device,
if there are enough components to be scattered in the set of connected devices.

• Minimize migration cost: if the set of devices changes often, it is
possible that the redistribution moves many components around in a short
amount of time. The result is that components may flicker between devices



Multi-Device Complementary View Adaptation with Liquid Media Queries 13

Listing 3.2: Liquid media query including the priority feature.
1 @media (liquid-device-type: phone) and

2 (priority :2) {

3 :root {

4 background-color: red;

5 }

6 }

7 @media (liquid-device-type: tablet) and

8 (priority :1) {

9 :root {

10 background-color: blue;

11 }

12 }

and thus hinder the usability of the liquid application. This policy minimizes
the number of migrations when there is a change in the set of connected
devices by ensuring the stability of the configuration (e.g., components are
only migrated if the device on which they are running on is disconnected or
if more suitable devices are connected, but are not shuffled between existing
devices). Developers can also configure the policy to specify an upper limit
to the number of migrations that can be performed during each adaptation.

The redistribution step deals with three possible outcomes and some of
the policies we presented are more suited than others depending on the sce-
nario:

• #components < #devices: when there are more devices than com-
ponents, some of the devices will not be selected as targets of the migration.
In this scenario the exact match policy is useful to select the best device to
deploy the components given a huge selection of different devices. Together
with the minimum number of components per device policy, the redistribution
can target the best subset of devices desired by the developers.

• #components > #devices: in this scenario the component instances
outnumber the devices, therefore multiple components are co-located on the
same device. The maximize device-component affinity and the priority-based
policies can be used to select the best configuration of devices for running
the application when a small selection of devices is available. Again the
minimum number of components per device policy can be used to avoid that
the application is deployed on a single device when there are no matching
devices available.



14 A. Gallidabino, C. Pautasso

Laptop

<component-
example-priority>

background-color
white

Laptop

Laptop

Tablet

Phone

<component-
example-priority>

background-color
red

<component-
example-priority>

background-color
blue

Laptop Tablet Phone

<component-
example-priority>

background-color
blue

Figure 3: Redistribution of the component described in Listing 3.2 when it is
initially deployed on a laptop and then new devices connect.

• #components == #devices: in this scenario the minimum number
of components per device policy will instantiate a component on each device,
taking full advantage of the set of connected devices. Given the small selec-
tion of devices, the priority-based policy is well suited for this scenario, since
the components with the highest priority value are selected to be moved to
the best matching devices first. In this specific scenario, when the developers
choose to use the minimum number of components per device policy and
the set of devices changes, it is possible that the redistribution completely
changes the deployment of the application, which is not good in terms of user
usability. In this case the minimize migration cost policy can be used.

3.2.2 Cloning step
The cloning step is independent from the redistribution process and it happens
after the redistribution ends.

When multiple instances of the same component need to be deployed on
multiple devices, developers must define an additional feature labeled clone

within the liquid media queries. The clone feature enables multiple instances



Multi-Device Complementary View Adaptation with Liquid Media Queries 15

Listing 3.3: Liquid media query including the clone feature
1 @media (liquid-device-type: phone) and

2 (clone :* -phone) {

3 :root {

4 background-color: red;

5 }

6 }

of the source component to be cloned across multiple devices instead of just
migrating it on one of them.

In Listing 3.3 we show a liquid media query that defines the clone fea-
ture. In this particular case the component will be instantiated on all con-
nected phone devices.

The clone feature accepts values in the form of N − feature, where
N is a positive non-zero integer or the symbol ∗, and feature ∈ {user,
device, phone, tablet, desktop, laptop, shared, public, private, role = X}.
The value N specifies the maximum number of instances of the source com-
ponent which should be cloned across the set of available devices which
match the liquid media query constraints in relation to the chosen feature.
Their combination allows to write cloning rules such as:
1-user, the component is cloned once per user, picking any of their available
devices;
1-device, the component is cloned at most once per device type;
2-tablet, up to two component instances are cloned among all available tablets;
*-public, the component is cloned once on each available public devices.
*-role=dashboard, the component is cloned once on each devices playing
the dashboard role;

The clone feature works in conjunction with the other features and types
of the liquid media queries, therefore a device matches the cloning feature
only if it also matches the whole liquid media query.

In Figure 4 we show how the redistribution and cloning of the component
described in Listing 3.3 happens. The component is initially deployed on a
laptop and is not migrated nor cloned when the tablet connects, because the
liquid media query does not match with the tablet. When a phone connects,
then the component is migrated and if additional phones connect, then the
component is cloned on those devices.



16 A. Gallidabino, C. Pautasso

Laptop

<component-
example-clone>

background-color
white

Laptop

Laptop

Tablet

Phone

Laptop Phone

<component-
example-clone>

background-color
red

<component-
example-clone>

background-color
white

<component-
example-clone>

background-color
red

Phone

<component-
example-clone>

background-color
red

Figure 4: Redistribution and cloning of the component described in List-
ing 3.3 when it is initially deployed on a laptop and then new devices
connect.

4 Design and Implementation

4.1 Liquid Style Polymer Component

Standard CSS3 media queries do not allow developers to define new types,
features, nor they support customizing existing ones1. The solution we de-
signed for extending the standard media queries is to create a new Web com-
ponent called liquid-style built on top of the Liquid.js for Polymer frame-
work [7].

The liquid-style element shown in Listing 4.1 allows developers to write
their own liquid media queries and encapsulate a standard CSS style sheet
that is activated when the media query expression is accepted by the de-
vice. The liquid-style component allows developers to assign values to its
attributes (e.g., device-role) that can be mapped to the previously defined
liquid media types and features by adding the liquid- prefix (e.g., liquid-
device-role). Developers can define their own liquid media queries by

1 https://drafts.csswg.org/mediaqueries-4

https://drafts.csswg.org/mediaqueries-4


Multi-Device Complementary View Adaptation with Liquid Media Queries 17

Listing 4.1: Liquid-style element and all available attributes.
1 <liquid-style

2 liquid // Default:"true"

3 devices="" // Default: ""

4 min-devices="" max-devices="" // Default: ""

5 users="" // Default: ""

6 min-users="" max-users="" // Default: ""

7 device-ownership="" // Default: ""

8 device-role="" // Default: ""

9 device-type="" // Default: ""

10 priority="" // Default: "1"

11 clone="" // Default: ""

12 css-media="" // Default: ""

13 > <!-- CSS Stylesheet --> </liquid-style>

assigning values to the corresponding attributes, as shown in Listing 4.2 and
4.3.

In the first example, the liquid media query expression contains both the
liquid feature and the liquid-device-type. Inside the liquid-style com-
ponent it is not necessary to explicitly set the liquid attribute to true, since it
is the default value for the liquid-style element. The liquid-device-type

value is mapped to the device-type attribute.
The second media query expression contains the liquid media features

liquid-device-role and min-liquid-users, which map directly to the
device-role and min-users attributes. Furthermore the expression also
defines the standard CSS3 media feature min-height, which in the liquid-
style element must be written into the css-media attribute.

Listing 4.2: Liquid media query expression mapped to the corresponding
liquid-style attributes.

1 @media liquid and (liquid-device-type:phone) {

2 body { flex-direction: row; }

3 }

4 <!-- Maps to --->

5 <liquid-style device-type="phone">

6 body { flex-direction: row; }

7 </liquid-style>



18 A. Gallidabino, C. Pautasso

Listing 4.3: Liquid media query expression including standard CSS media
features mapped to the corresponding liquid-style attributes.

1 @media liquid and

2 (liquid-device-role:controller) and

3 (min-liquid-users :3) and

4 (min-height :900px) {

5 :root { background-color: red; }

6 }

7 <!-- Maps to --->

8 <liquid-style device-role="controller"

9 min-users="3"

10 css-media="min-height :900px">

11 :root { background-color: red; }

12 </liquid-style>

4.2 Liquid Style Design

The automatic complementary view adaptation is achieved through the liquid
media query expressions that both define when styles should be enabled on a
device and constrain where the components should be migrated if any device
with the appropriate features connects to the application. The liquid-style
component is designed to be attached directly to a liquid-component [7]
and bundled with a standard Polymer component. Our current implementa-
tion of the redistribution process follows both the priority-based and the
minimum number of components per device policies (discussed in sub-
subsection 3.2.1).

Thanks to Liquid.js for Polymer, developers can build their own component-
based liquid Web application on top of any modern Web browser (e.g., Chrome,
Firefox). The framework implements the two liquid user experience primi-
tives [10] that are needed for the redistribution and cloning of the compo-
nents. The migrate primitive allows components to be moved from a source
device to another, while the clone primitive can be used to copy components
and keep them synchronized across multiple devices. Furthermore Liquid.js
transparently and automatically creates a synchronized shared state between
all connected devices. The shared state contains all the information about
the current deployment configuration, such as the number of users connected
and the information linked to their set of devices, such as number, ownership,
type, and role. The devices can synchronize this information by sending direct



Multi-Device Complementary View Adaptation with Liquid Media Queries 19

Browser

Liquid Application Shared State

Client

Browser

Liquid Application

Client

Liquid

Component

Liquid

Component

Liquid

Component

P
o

ly
m

e
r

C
o

m
p

o
n

e
n

t

(H
T

M
L

 +
 C

S
S

)

L
iq

u
id

 S
ty

le
s

Liquid

Component

P
o

ly
m

e
r

C
o

m
p

o
n

e
n

t

(H
T

M
L

 +
 C

S
S

)

L
iq

u
id

 S
ty

le
s

P
o

ly
m

e
r

C
o

m
p

o
n

e
n

t

(H
T

M
L

 +
 C

S
S

)

L
iq

u
id

 S
ty

le
s

P
o

ly
m

e
r

C
o

m
p

o
n

e
n

t

(H
T

M
L

 +
 C

S
S

)

L
iq

u
id

 S
ty

le
s

Figure 5: Architecture of an application built with Liquid.js for Polymer: the
liquid style elements are bundled with the Polymer component inside each
liquid component.

messages in a peer-to-peer mesh without requiring to rely messages through
a Web server.

Figure 5 shows how the liquid components are built on top of the liq-
uid application, meaning that each component has access to the Liquid.js
API [7] and therefore has direct access to the liquid user experience primitives
migrate and clone. Each liquid component can define multiple liquid styles
and the framework automatically extracts the liquid media query expressions
from within every instantiated component and shares them with all other
connected devices, so that each device can check whether it would satisfy
the liquid media queries or not. Whenever a query is accepted on a device,
that device becomes a possible target for the migration of the corresponding
component. When multiple devices become a possible target for the same
liquid component, Liquid.js selects the target following the priority-based
policy.

Since all the information of the connected devices is stored in the shared
state of the clients, each device is able to compute new deployments and
perform the migration and cloning of the components.

4.3 Liquid UI Redistribution and Cloning Algorithm

The UI adaptation algorithm operates on three distinct phases: constraint-
checking and priority computation, redistribution and cloning, and local com-
ponent adaptation. The algorithm first decides which devices are suitable for
displaying a component encapsulating the liquid media queries, then it mi-



20 A. Gallidabino, C. Pautasso

Algorithm 1: Incremental Constraint-checking and Priority Computa-
tion

Data: Input: priorityMatrix, cloneMatrix
Data: Shared global state: components, devices, users, deviceConfigurations
Data: Event

1 if Event == component c created then
2 Add a new row in the priorityMatrix;
3 forall d ∈ devices do
4 forall liquid-style in the created component do
5 Check if the device accepts the liquid-style and save the highest priority

in priorityMatrix[c][d] and in cloneMatrix[c][d];
6 else if Event == component deleted then
7 Remove the corresponding component row from the priorityMatrix;
8 else if Event == device d configuration changed then
9 forall c ∈ components do

10 forall liquid-style in the component do
11 Check if the device accepts the liquid-style and save the highest priority

in priorityMatrix[c][d] and in cloneMatrix[c][d];
12 else if Event == device connected ‖ Event == device disconnected ‖ Event == user

connected ‖ Event == user disconnected then
13 forall c ∈ components do
14 forall d ∈ devices do
15 forall liquid-style in the component do
16 Check if the device accepts the liquid-style and save the highest

priority in priorityMatrix[c][d] and in cloneMatrix[c][d];
Result: updated priorityMatrix and cloneMatrix

grates and clones the component on the highest priority device and activates
the corresponding style sheet as soon as the component is instantiated on the
target device.

4.3.1 Phase 1: Constraint-Checking and Priority Computation
The constraint-checking phase decides if there is a suitable device in the
pool of connected devices that satisfies the liquid media query expressions
encapsulated inside the components.

Algorithm 1 computes the matrix of valid target devices in which at least
one liquid media expression is accepted. The matrix has size #components×
#devices. Each element represents with a positive integer the highest prior-
ity value of all the accepted liquid media queries encapsulated in the compo-
nent, or zero if there are no accepted queries.



Multi-Device Complementary View Adaptation with Liquid Media Queries 21

The matrix shown in (1) is the priorityMatrix produced by Algorithm 1
during the example scenario shown in Figure 10, when both UserA and
UserB are connected. There are four instantiated components and seven
devices connected to the application. cvideo’s liquid media queries (see sec-
tion 5) are accepted by device dlaptop, dtv. At least one query of priority 2 was
accepted by device dlaptop and at least one query of priority 4 was accepted by
devices dtv. dphone1 accepts at least one query encapsulated in components
cvideoController, csuggestedV ideo, the first one with priority 2 and the latter with
priority 1.


dphone1 dphone2 dphone3 dtablet dlaptop1 dlaptop2 dtv

cvideo 0 0 0 0 2 2 4
cvideoController 2 2 2 0 0 0 0
csuggestedV ideo 1 1 1 3 0 0 0

ccomments 0 0 0 0 1 1 0


(1)


dphone1 dphone2 dphone3 dtablet dlaptop1 dlaptop2 dtv

cvideo 0 0 0 0 0 0 0
cvideoController 2 2 2 0 0 0 0
csuggestedV ideo 0 0 0 0 0 0 0

ccomments 0 0 0 0 0 0 0


(2)

Algorithm 1 also computes the cloneMatrix shown in (2), which has a similar
structure to the priorityMatrix, but stores only the information about the com-
ponents that define at least one clone rule in the attributes of the liquid-style
elements they encapsulate.

Liquid.js runs Algorithm 1 whenever one of the following events occurs:
• A component is created or deleted from a device. Creating or delet-

ing a component does not affect the acceptance of the liquid media queries of
any other components. When a new component is created (or removed), a row
is added (or removed) to the priorityMatrix and the algorithm recomputes the
highest priority scores. If a created component defines a liquid media query
with the clone attribute, then the highest priority value between the clone
styles is also stored in the cloneMatrix.

• The meta-configuration of a device is changed. When the device type,
ownership, and role change, the priority values of the corresponding column
are updated for both matrices.



22 A. Gallidabino, C. Pautasso

• A device joins or leaves the current session. These events affect the
devices, min-devices, and max-devices features of the liquid media queries,
which triggers the recomputation of the whole priorityMatrix and cloneMa-
trix.

• A user connects or disconnects from the application; Changes to the
users, min-users, and max-users features also require a complete recomputa-
tion of the priorityMatrix and cloneMatrix.

4.3.2 Phase 2: Migration and Cloning
The migration and cloning phase uses the previously computed priorityMa-
trix and cloneMatrix to determine on which devices each component should
be migrated or cloned on. The algorithm prepares a migration plan where
each component is assigned to a given target device. The choice follows
the minimum number of components per device policy so that the number
of components running on each device is minimized, making it possible to
spread the liquid Web application across as many devices as possible. If the
component instances outnumber the available devices, some of the compo-
nents will be co-located on the same device. Equation (3) shows the resulting
migrationPlan computed under the constraints of the liquid media queries of
the scenario depicted in Figure 10 (see section 5 for the constraints). cvideo
is migrated to dtv with the highest priority, ccomments is migrated to dlaptop
with the lowest. Once the migrationPlan is ready, Liquid.js redeploys the
components across the set of devices accordingly.

migrationPlan = [{cvideo, dtv}, {csuggestedV ideo, dphone1},
{cvideoController, dtablet}, {ccomments, dlaptop2}]

(3)

After the migration step is complete, the cloning routine can start. This
process exploits the cloneMatrix computed in phase 1 and the clone rules
associated to the components that need to be cloned. All the devices that
were not used in the previous migration step are flagged as candidates for
running a cloned component. The candidates are grouped and prioritized fol-
lowing the clone rules, the device that contains the source component that
needs to be cloned is never considered as a possible target of the cloning,
and every component which can be cloned is associated with the list of target
devices. Similarly to the previous step, the algorithm prepares a clone plan
that is used by Liquid.js for cloning the components. Equation (4) shows the
output clonePlan computed with the matrix shown in Equation (2) under the



Multi-Device Complementary View Adaptation with Liquid Media Queries 23

constraints of the liquid media queries of the scenario depicted in Figure 10
(see section 5 for the constraints).

clonePlan = [{cvideoController, dphone3}] (4)

Algorithm 2 computes the migration plan by implementing the priority-
based and minimum number of components per device policies. If multiple
liquid media queries have the same priority and multiple components can be
migrated to the same connected devices, the priority is resolved based on
which component was instantiated first in the liquid application. However
it is encouraged that the developers give different priorities to their liquid
media queries, instead of relying on the time when components are instanti-
ated. While it can be easy to predict when a component is instantiated on a
single device environment, it is not trivial to determine beforehand when a
component is instantiated if the application is deployed on multiple devices.

The first for-loop in the algorithm orders the priority scores for each
component, then, starting from the one with the highest priority, it builds
the migrationPlan. In this version of the algorithm, the outcome does not
consider the overall migration cost in terms of the number of migrations to
be performed or the time required to migrate a given component instance.
Minimizing such cost would become important when the algorithm is applied
to an input configuration of components already instantiated across multiple
devices.

4.3.3 Phase 3: Component Adaptation
The component adaptation phase happens once the migration and cloning
is complete. Each device checks for each instantiated component which liq-
uid media queries are accepted and activates the associated style sheets. The
standard CSS mechanisms for dealing with overlapping selectors take over.

4.4 Run-time Complexity

The complexity of the algorithm we discussed in subsection 4.3 depends on
three factors: the number of devices (D), the number of the components (C),
and the number liquid-style elements (S). In the worst case, the run-time
complexity of Algorithm 1 is O(D ∗ C ∗ S). However, the actual run-time
complexity depends on the event that triggered the incremental version of
the algorithm: •O(D ∗S) for newly created components; •O(C) for deleted
components; •O(C∗S) for changed device configurations; •O(D∗C∗S) for
all other events. The run-time complexity of the migration and cloning phase



24 A. Gallidabino, C. Pautasso

Algorithm 2: The redistribution algorithm for computing the mi-

grationPlan. the algorithm encapsulates the priority-based and the
minimum number of components per device policies.

Data: priorityMatrix
Data: Shared global state: components, devices

1 componentOrderedTargets← {};
2 migrationP lan← {};
3 for component ∈ components do
4 componentOrderedTargets[component]← {};
5 highestPriority ← 0;
6 targets← [];
7 for device ∈ devices do
8 priority ← priorityMatrix[component][device];
9 if priority > highestPriority then

10 highestPriority ← priority;
11 migrationP lan[component]← device;
12 targets.push({device : device, priority : priority});
13 orderedTargets← sort(targets) by priority, decreasing order;
14 componentOrderedTargets[component].targets← orderedTargets;
15 componentOrderedTargets[component].highestPriority ←

highestPriority;
16 migrationP lan← {};
17 sortedPriority ← sort(componentOrderedTargets) by highestPriority,

decreasing order;
18 for component ∈ sortedPriority do
19 deviceIndex← 0;
20 do
21 unique← true;
22 tempTargetDevice←

sortedPriority[component].targets[deviceIndex];
23 for d ∈ migrationP lan do
24 if tempTargetDevice = migrationP lan[d] then
25 unique← false;
26 while unique == true;
27 migrationP lan[component]←

sortedPriority[component].targets[deviceIndex];
Result: migrationPlan

is O(C ∗D2), and the adaptation algorithm explained in subsubsection 4.3.3
has complexity O(S).

The execution for Algorithm 1 can be parallelized as the responsibility
for computing the priority Matrix columns can be offloaded on each device,



Multi-Device Complementary View Adaptation with Liquid Media Queries 25

assuming that they all have access to the component liquid style definitions.
Each device takes care of updating their columns whenever an event occurs
and stores the result in the application shared state, which is automatically
synchronized among all devices.

4.5 Decentralized Algorithm

The algorithm we propose can run on a Web server, however our goal is to
keep the computations of the liquid application closer to the devices of the
users. The reason for our choice is twofold: 1. we allow the liquid application
to be adaptive even if the Web server goes offline; 2. we enhance privacy
because it is not necessary to store on the Web server any information about
the users’ devices.

In Figure 6 we show the architecture we designed to decentralize the
redistribution and cloning algorithm. We introduce two new components:

• liquid-style controller: the controller is in charge to observe any
change in the shared state. It interacts directly with the framework API and
monitors all events occurring in the set of connected devices (e.g., it monitors
for new connected devices). When an event is triggered, it propagates the
event to all liquid components that load the liquid-style behavior.

• liquid-style behavior: the behavior2 gathers information from all
instantiated liquid-styles and broadcasts messages received from the con-
troller to the liquid-styles. New liquid-styles register to the behavior
as soon as they are instantiated. The instantiated liquid-styles can enable
and disable styles properly only if the behavior is loaded inside the liquid
component.

In Figure 7 we show how the controller, the behavior and the liquid-
styles interact during initialization. Immediately after the liquid component
is loaded, the behavior starts running and awaits for the registration of new
liquid-styles. Once all the liquid-styles are loaded, the behavior notifies the
controller that the liquid component is ready. The controller immediately cre-
ates a new row in the priorityMatrix and cloneMatrix in the shared state, and
then subscribes to it. The Liquid.js framework automatically and transpar-
ently synchronize the state without blocking any device. After the subscrip-
tion, the controller retrieves the last version of the deployment configuration
and pushes it into the behavior. The behavior notifies all liquid-styles which
then will check if there is a match between the liquid media queries and the

2 https://polymer-library.polymer-project.org/3.0/docs/devguide/

behaviors

https://polymer-library.polymer-project.org/3.0/docs/devguide/behaviors
https://polymer-library.polymer-project.org/3.0/docs/devguide/behaviors


26 A. Gallidabino, C. Pautasso

<liquid-component-example>

Liquid Style 
Behaviour

<liquid-style>

Phase 3
Algorithm

Liquid.js
API

Phase 1
Algorithm

<liquid-style>

Phase 3
Algorithm

<liquid-style>

Phase 3
Algorithm

Device - Web Page

Liquid Style
Controller

Phase 2
Algorithm

Figure 6: Component view of the liquid-style component and how it is
connected to the liquid-style behavior and controller. The phase 1 algo-
rithm (see subsubsection 4.3.1) is encapsulated inside the liquid-style

behavior; the phase 2 algorithm (see subsubsection 4.3.2) is encapsulated
inside the liquid-style controller, and the liquid-style component is
in charge of running the phase 3 algorithm (see subsubsection 4.3.3).

current deployment configuration. If there is a match, the style it encapsulates
is enabled, otherwise it is disabled. Once all components in a liquid Web
application are loaded, it is possible to compute the redistribution and cloning
of the deployment.

The decentralized execution of the algorithm is shown in Figure 8 and
is initially triggered by the actions of the user, e.g., the user connects with a
new device, or changes a device role. When the deployment configuration is
changed, the Liquid.js framework catches the event and updates the shared
state between the devices accordingly. Once the synchronization finishes all
connected devices react and propagate the new deployment configuration to
the liquid-style controllers. The controllers then send the new configura-
tion to all liquid-style behaviors which previously registered to them. The
behaviors recompute the priorityMatrix and cloneMatrix. The phase 1
algorithm described in subsubsection 4.3.1 is ran by the behavior, but instead
of computing the whole priorityMatrix and cloneMatrix as we previ-



Multi-Device Complementary View Adaptation with Liquid Media Queries 27

Liquid Style Behavior

Liquid Style Behavior

<liquid-style>

<liquid-style>

Liquid Style Controller

Liquid Style Controller

Liquid.js API

Liquid.js API

load()

load()

register()

ack

ready(id)

subscribeState('priorityMatrixRow', id)

subscribeState('cloneMatrixRow', id)

getDeploymentConfiguration()

current_deployment_configuration

current_deployment_configuration

updateStyle(current_deployment_configuration)

alt

enableStyle()

disableStyle()

Figure 7: Sequence diagram of the initialization of the liquid-styles,
liquid-style behavior, and liquid-style controller.

ously presented, the behavior computes only the rows associated to their own
liquid component. The rows of the two matrices are then sent back to the
controller which takes care of updating the shared state.

Phase 2 starts when all the rows in the matrices are updated. In order
to prevent that multiple devices redistribute the same components multiple
times, we need to run the algorithm described in subsubsection 4.3.2 one sin-
gle time. The most powerful device is selected by the Liquid.js framework [9]
and it computes both the migrationPlan and the clonePlan inside the
controller component. The controller then starts the redistribution and cloning
phase by calling the corresponding liquid user experience primitives in the
Liquid.js API.

Finally phase 3 starts when the components are migrated and cloned. The
API propagates to the controller all events triggered by the migration, which
are then furthermore propagated to the behaviors. The behaviors broadcast
the new deployment configuration to all liquid-styles, which then run
the phase 3 algorithm described in subsubsection 4.3.3.



28 A. Gallidabino, C. Pautasso

Controller Device Multiple
Connected

Devices

<liquid-style> <liquid-style-behavior> Liquid Style Controller Liquid.js API user Liquid.js API

<liquid-style> <liquid-style-behavior> Liquid Style Controller Liquid.js API

user

Liquid.js API

event

Phase 1

updateSharedState()

changedState(new_configuration)

recomputeRows
(new_configuration)

{priorityRow
cloneMatrixRow, id}

updateState(
'priorityMatrixRow', id)

updateState('cloneMatrixRow', id)

updateSharedState()

Phase 2

recomputePlans
(priorityMatrix, cloneMatrix)

migrateComponents
(migratePlan)

cloneComponents
(clonePlan)

Phase 3

propagate(new_configuration)

propagate(new_configuration)

updateStyle(new_configuration)

Figure 8: Decentralized Algorithm Processing

5 Liquid UI Adaptation Example

We show the expressiveness of liquid media queries by designing the liquid-
style components on a realistic multi-device video player application.

The video player is built with four components (see Figure 9): • the video
component which displays and plays the video; • the video controller com-
ponent which allows the user to play/pause and seek to a specific time in
the selected video; • the suggested videos component that displays a list of
recommended videos, which can be selected to be played; • the comments
component where the user can read or post comments about the video.

These components can be deployed across different devices (phones, tablets,
laptops, and televisions) owned by one or multiple users.



Multi-Device Complementary View Adaptation with Liquid Media Queries 29

Video 
 
 

Comments

Suggested 
Videos Video Controller

Figure 9: Liquid video player user interface split into four components: video,
video controller, suggested videos, comments

Listing 5.1: The liquid-style elements defined for the video component.
1 <liquid-style device-ownership="shared"

min-users="2" priority="4">

2 <!-- CSS Style Sheet 1 --> </liquid-style>

3 <liquid-style device-role="display" priority="3">

4 <!-- CSS Style Sheet 2 --> </liquid-style>

5 <liquid-style device-type="laptop" priority="2">

6 <!-- CSS Style Sheet 3 --> </liquid-style>

It is best to display the video component (see Listing 5.1) on the devices
with big screens, for this reason we define three liquid media query ex-
pressions including the attributes device-type: laptop, device-role:
display, and device-ownership: shared with different priorities. The
rule for device-type: laptop has an higher priority over the rule defined
for the comments component (see Listing 5.2) so that whenever a laptop de-
vice is available, the video component is migrated to the laptop. If the user
configures the role of any device and assigns the role display to it, then this
device will have priority over the laptop. Finally, if there are multiple users
connected to the application (attribute min-users:2), the priority for deploying
the video component is given to shared devices (e.g., a television).

The video controller component (see Listing 5.3) defines a liquid media
query expression with the attribute clone:1-user. The clone rule migrates the
component to a phone owned by a user, then it clones the component for
every other user, if they connect at least another phone to the application.

The suggested video component (see Listing 5.4) defines two styles: one
for tablets and the other for phones. The tablet style has an higher priority
with respect to the phone style.



30 A. Gallidabino, C. Pautasso

Listing 5.2: The liquid-style element defined for the comments component.
1 <liquid-style device-type="laptop">

2 <!-- CSS Style Sheet 1 --> </liquid-style>

Listing 5.3: The liquid-style element defined for the video controller com-
ponent.

1 <liquid-style device-type="phone" priority="2"

2 clone="1-user">

3 <!-- CSS Style Sheet 1 --> </liquid-style>

5.1 Scenario 1: Second user connects a phone

In Figure 10 we show the component redistribution for a set of devices before
and after a second user connects to the application. The initial configura-
tion with only devices owned by UserA is obtained following the priorities
associated with the liquid-style elements of each component. Starting from
the suggested video component, which migrates to the tablet, then the video
component migrates to a laptop device, because the higher priority rules it
holds are not accepted by any other device. The video controller migrates to
a phone device, but it is not cloned on both available phones because of the
clone rule set to 1-user. Finally, the comments component migrates to the
second laptop device.

After UserB logs in the application and connects an additional phone
device, the user interface is redistributed as follows. The video component
is migrated to the television device because of the ownership and min-users
rules have now higher priority 4. The video controller component is cloned
to UserB’s phone.

5.2 Scenario 2: Dynamic device role change

In Figure 11 we show an example of dynamic change in the metadata con-
figuration of the connected devices. The initial device configuration is not
accepted by at least one liquid media query defined in the video controller
component, and the target device for the video and comments components
points the same laptop. Starting from the highest priority, the suggested video
component is deployed on the tablet and the video component is deployed
on the laptop. Since the laptop component is already the target of the video
component, the comments component migrates to the television, which was



Multi-Device Complementary View Adaptation with Liquid Media Queries 31

Listing 5.4: The liquid-style elements defined for the suggested videos
component.

1 <liquid-style device-type="phone">

2 <!-- CSS Style Sheet 1 --> </liquid-style>

3 <liquid-style device-type="tablet" priority="3">

4 <!-- CSS Style Sheet 2 --> </liquid-style>

Component Video
Video

Controller
Comments

Suggested
Videos

Initial
Configuration

Priority 2 2 1 3
Migration Target laptop 1 phone 1 laptop 2 tablet

User B
connects

phone

Priority 4 2 1 3
Migration Target television (phone 1) (laptop 2) (tablet)

Cloning Target phone 2

Laptop (User A) 
Television (SHARED) 

User A

Tablet (User A) 
Phone (User A)  Phone (User A) 

Video Controller
Suggested

Videos
Comments

Phone (User B) 

User B
Video Controller

Laptop (User A) 

Video

Laptop (User A) 
Television (SHARED) 

User A

Tablet (User A) 
Phone (User A)  Phone (User A) 

Video Controller
Suggested

Videos
Comments

Laptop (User A) 

Video

Figure 10: When a second user connects to the application the video com-
ponent is migrated to the shared device and a new instance of the video
controller is deployed on the new user’s phone.

ranked as the next possible target for migration. The video controller compo-
nent is deployed on the tablet device with the lowest priority.

When UserA assigns the role display to the television, the device meta-
data changes. The user interface is redistributed and the video component
migrates to the television, because the liquid-style that defines the property
device-role is now accepted by the device with an higher priority. The com-
ment component migrates to the now available laptop device.



32 A. Gallidabino, C. Pautasso

Component Video
Video

Controller
Comments

Suggested
Videos

Initial
Configuration

Priority 2 0 1 (0) 3
Migration Target laptop tablet television tablet

Television role
set to display

Priority 4 0 1 3
Migration Target television (tablet) laptop (tablet)

Laptop (User A) 
Television (SHARED) 

User A

Tablet (User A) 

VideoSuggested
Videos

Comments

Tablet (User A) 

Video Controller

Laptop (User A) 
Television (SHARED) 
Role Display 

User A

Tablet (User A) 

CommentsSuggested
Videos

Video

Tablet (User A) 

Video Controller

Figure 11: After the television device changes role configuration, the video
and comments components are swapped following different priorities.

6 Discussion

In this section we discuss the impact of the liquid media queries on the
design of liquid Web applications. Throughout this paper we designed the
multi-device adaptation targeting the needs of the developers, whose goal is
to create software that can take advantage of multiple devices with the goal
of increasing the overall usability of the application. Ultimately, however, the
effect of the liquid media queries will be experienced by the user that interacts
with the liquid Web application.

6.1 Developers

The multi-device adaptation introduces a new level of complexity that the
developers have to face during the design process of their applications. When
the developers decide to shift from a single device deployment to a multi-
device one, they do not only have to deal with the responsive design of the
application, but they are also required to determine how and when com-
ponents must be migrated across different set of devices. The decision of
performing a migration can be driven by technological constraints (e.g. a
component requires a sensor that only found on some devices), and/or driven
by social interactions [15] and context [27]. Taking into consideration these



Multi-Device Complementary View Adaptation with Liquid Media Queries 33

DeviceID: 567423789043

Device Info

Type: Desktop
Browser: Chrome
OS: Mac OS
Role: undefined
Ownership: undefined
Benchmark Score: 3400.25

Instantiated Components

Video

Video Controller

Liquid-style

Liquid-style

Liquid-style

DeviceID: 567423789044

Device Info

Type: Phone
Browser: Chrome
OS: Android
Role: undefined
Ownership: undefined
Benchmark Score: 1233.12

Instantiated Components

Video Controller

Liquid-style

DeviceID: 567423789045

Device Info

Type: Phone
Browser: Chrome
OS: Android
Role: undefined
Ownership: undefined
Benchmark Score: 1064.75

Instantiated Components

Video Controller

Liquid-style

Liquid-style

Comments

Liquid-style

Suggested Video

Liquid-style

Liquid-style

Figure 12: Liquid media query debugger tool view.

aspects can be difficult for the developers, and in some cases it can be hard
to predict the impact of their multi-device adaptation on all possible sets of
users devices. In fact the number of possible combinations of devices owned
by the users can grow very fast.

Since so many new facets need to be taken into consideration during the
design process, developers would greatly benefit from testing and debugging
tools, helping to simulate the deployment and observe the behavior of liquid
Web applications in a virtual multi-device environment.

In Figure 12 we show a view of our debugger tool for liquid styles. By
using the tool the developers can monitor at runtime the evolution of the
deployment information stored in the shared state of the application. The
debugger visualizes all information about the connected devices, their meta-
information (e.g. identifiers, types, roles, . . . ), the instantiated components
deployed on the devices and their instantiated liquid-styles. Moreover
the tool shows which components are cloned across the devices by connect-
ing two components with an arrow. Since the view is updated in realtime,
any time the set of devices is affected by a new event, the view updates
and displays the new deployment after the redistribution and cloning process



34 A. Gallidabino, C. Pautasso

finishes executing. Currently the developers can also read and directly edit
the stylesheet encapsulated inside the liquid-style components.

In the future we plan to add the following features:
• Edit liquid media queries: the developers can edit the media queries

at run time (e.g., change the value of a liquid media feature or type).
• Add or remove liquid-styles at runtime: even if it is already pos-

sible to add or remove liquid-style components at runtime thanks to the
design of the liquid-style behavior, the user interface of the debugger tool
does not yet allow developers to create new styles on the fly.

• Edit device metadata: the developers can alter the metadata associated
to the connected devices (e.g., type, role). Currently the developers can alter
the metadata only from within the corresponding device, however altering the
data in the debugger tool is faster and will immediately give back a feedback
to the developers about the overall state of the deployment.

• Add and remove virtual devices: the developers can create virtual
devices and connect them to the application even if they do not physically
own them. This feature would allow the developers to simulate deployments
that otherwise they could not test.

6.2 Users

From the perspective of the users, the concerns are different. The users care
about their own satisfaction and engagement while they use the displayed
user interface, and generally they can disagree with the automatic adaptation
rules set by developers. In our current approach, the developers are in full
control of the liquid media queries and the algorithm does not consider the
user needs and opinions when it computes the redistribution.

Still, we believe that the users should remain in control of the deploy-
ment of the application on their own devices, and that they should be able to
override any decision taken by the algorithm at any time. This can be done in
many forms:

• Edit liquid media queries: the users are allowed to directly edit the
values of the liquid media features and types, however editing these values
requires some knowledge of the media queries that the majority of the users
do not necessarily have. The users may also add or remove constraint instead
of just editing the values.

• Ask for permission when a new redistribution is computed: the
users can prevent scheduled migrations as they need to give permission to the
algorithm before applying the migration plan. Asking for permission would



Multi-Device Complementary View Adaptation with Liquid Media Queries 35

also prevent that components are migrated to devices the user does not own,
hence enhancing privacy.

• Pin components: the users can decide that some components should
never be migrated, because they are satisfied with the current deployment of
a component on a particular device. In this case the users should be able to
pin the components to the devices, and the algorithm should exclude those
components from the redistribution process, unless the device instantiating
the component disconnects.

• Switch from automatic to manual controls: the users can prevent any
further recomputation of the redistribution and switch to manual controllers.
This is already feasible in Liquid.js.

• Memorize usage patterns: the redistribution algorithm can learn from
the users their favourite deployment patterns, e.g., if the users move a com-
ponent multiple times to the same target device, the application in the future
can automatically deploy the component to the corresponding device when it
becomes available.

7 Conclusion

This paper describes a rule-based approach that can be used by developers to
declaratively specify how the components within a liquid Web application can
be dynamically deployed across multiple devices. The liquid media queries
allow developers to define CSS style sheets for Web components in relation to
the dynamic multi-device environment they are expected to be deployed on.
We identify the main features defining the liquid execution environment: the
number of connected devices, their types, the number of authenticated users,
three specific types of device ownership, and the application-specific role
played by a device. The liquid-style element we designed allows Liquid.js for
Polymer to understand and to retrieve the information from within the liquid
media queries. The execution of the algorithms we presented automatically
and transparently compute the next deployment state of the application.

We decided to extend standard CSS3 media queries, instead of creating
our own rule-based approach from scratch, because our main goals is to
support developers as they start design complementary view adaptations by
proposing similar technologies they already use for designing responsive Web
UIs. Reusing and extending compatible Web standards can help developers to
take a step towards building multi-device distributed user interfaces featuring
complementary view adaptation, and towards liquid software in general.



36 A. Gallidabino, C. Pautasso

8 Future Work

The algorithms in this paper are designed under the assumption that the
number of devices running a liquid Web application is limited. While this
is true for single user environments, in which the number of devices owned
by one user is small (3 on average [11]), further work is needed to assess the
scalability of the approach to deal with a large number of devices in a multi-
user collaborative scenario where it may become impractical to declare liquid
media queries matching all possible device combinations.

Another direction for future work concerns the use of logical operators
such as not and only found in standard CSS media queries but which are
not supported by the proposed encoding using attributes of the liquid-style
element.

Acknowledgements
This work is supported by the SNF with the ”Fundamentals of Parallel Pro-
gramming for PaaS Clouds” project (Nr. 153560). The debugger tool was
partially developed by Petr Knetl.

References

[1] Anstead, Edward and Benford, Steve and Houghton, Robert J: Many-Screen Viewing:
Evaluating an Olympics Companion Application. In: Proc. of the ACM International
Conference on Interactive Experiences for TV and Online Video. pp. 103–110. ACM
(2014)

[2] Atzori, Luigi and Iera, Antonio and Morabito, Giacomo.: The Internet of Things: A
Survey. Computer Networks 54(15), 2787–2805 (2010)

[3] Brudy, F., Holz, C., Rädle, R. Wu, C., Houben, S., Klokmose, C., Marquardt, N.: Cross-
Device Taxonomy: Survey, Opportunities and Challenges of Interactions Spanning Across
Multiple Devices. In: Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems. p. 562. ACM (2019)

[4] Elmqvist, N.: Distributed User Interfaces: State of the Art. In: Distributed User Interfaces,
pp. 1–12. Springer (2011)

[5] Frain, B.: Responsive Web Design with HTML5 and CSS3. Packt Publishing (2012)
[6] Gallidabino, A., Pautasso, C.: Maturity Model for Liquid Web Architectures. In: Proc. of

17th International Conference on Web Engineering (ICWE2017). vol. 10360 LNCS, pp.
206–224. Springer, Rome, Italy (June 2017)

[7] Gallidabino, A., Pautasso, C.: The Liquid User Experience API. In: Companion of the
The Web Conference 2018, Developers Track (TheWebConf2018). pp. 767–774 (2018)

[8] Gallidabino, A., Pautasso, C.: Multi-Device Adaptation with Liquid Media Queries. In:
Proc. of the 19th International Conference on Web Engineering (ICWE2019). pp. 474-
489. Springer, Korea (June 2019)



Multi-Device Complementary View Adaptation with Liquid Media Queries 37

[9] Gallidabino, A., Pautasso, C.: The Liquid WebWorker API for Horizontal Offloading of
Stateless Computations. Journal of Web Engineering 17(6), 405–448 (September 2018)

[10] Gallidabino, A., Pautasso, C., Mikkonen, T., Systa, K., Voutilainen, J.P., Taivalsaari, A.:
Architecting Liquid Software. Journal of Web Engineering 16(5&6), 433–470 (September
2017)

[11] Global Connected Consumer Survey: The Connected Consumer. http://www.google.
com.sg/publicdata/explore?ds=dg8d1eetcqsb1_ (2017)

[12] Husmann, M., Spiegel, M., Murolo, A., Norrie, M.C.: UI Testing Cross-Device Appli-
cations. In: Proc. of the 2016 ACM on Interactive Surfaces and Spaces (ISS2016). pp.
179–188. ACM (2016)

[13] Jokela, T., Ojala, J., Olsson, T.: A Diary Study on Combining Multiple Information
Devices in Everyday Activities and Tasks. In: Proceedings of the 33rd Annual ACM
Conference on Human Factors in Computing Systems (CHI2015). pp. 3903–3912. ACM
(2015)

[14] Kadlec, Tim: Implementing Responsive Design: Building Sites for an Anywhere,
Everywhere Web. New Riders (2012)

[15] Kawsar, F., Brush, A.: Home Computing Unplugged: Why, Where and When People Use
Different Connected Devices at Home. In: Proceedings of the 2013 ACM international
joint conference on Pervasive and ubiquitous computing (UbiComp2013). pp. 627–636.
ACM (2013)

[16] Levin, M.: Designing Multi-device Experiences: An Ecosystem Approach to User
Experiences Across Devices. O’Reilly (2014)

[17] Luyten, K., Coninx, K.: Distributed User Interface Elements to Support Smart Interaction
Spaces. In: Multimedia, Seventh IEEE International Symposium on. IEEE (2005)

[18] Marcotte, E.: Responsive Web Design. Editions Eyrolles (2011)
[19] Melchior, J., Grolaux, D., Vanderdonckt, J., Van Roy, P.: A Toolkit for Peer-to-Peer

Distributed User Interfaces: Concepts, Implementation, and Applications. In: Proceedings
of the 1st ACM SIGCHI symposium on Engineering interactive computing systems. pp.
69–78. ACM (2009)

[20] Mikkonen, T., Systä, K., Pautasso, C.: Towards Liquid Web Applications. In: Proc. of the
15th International Conference on Web Engineering (ICWE2015), pp. 134–143. Springer
(2015)

[21] Mori, G., Paterno, F., Santoro, C.: Design and Development of Multidevice User Inter-
faces through Multiple Logical Descriptions. IEEE Transactions on Software Engineering
30(8), 507–520 (2004)

[22] Müller, J., Alt, F., Michelis, D., Schmidt, A.: Requirements and Design Space for Inter-
active Public Displays. In: Proc. of the 18th ACM international conference on Multimedia.
pp. 1285–1294. ACM (2010)

[23] Nebeling, M., Mintsi, T., Husmann, M., Norrie, M.: Interactive Development of Cross-
Device User Interfaces. In: Proc. of the 32nd annual ACM conference on Human factors
in computing systems. pp. 2793–2802. ACM (2014)

[24] Nicolaescu, P., Jahns, K., Derntl, M., Klamma, R.: Yjs: A Framework for Near Real-
Time P2P Shared Editing on Arbitrary Data Types. In: Proc. of the 15th International
Conference on Web Engineering (ICWE2015). pp. 675–678. Springer (2015)

http://www.google.com.sg/publicdata/explore?ds=dg8d1eetcqsb1_
http://www.google.com.sg/publicdata/explore?ds=dg8d1eetcqsb1_


38 A. Gallidabino, C. Pautasso

[25] Paternò, F., Santoro, C.: A Logical Framework for Multi-Device User Interfaces. In:
Proceedings of the 4th ACM SIGCHI symposium on Engineering interactive computing
systems. pp. 45–50. ACM (2012)

[26] O’reilly, Tim: What is Web 2.0. O’Reilly Media, Inc. (2009)
[27] Oulasvirta, A., Sumari, L.: Mobile Kits and Laptop Trays: Managing Multiple Devices in

Mobile Information Work. In: Proceedings of the SIGCHI conference on Human factors
in computing systems. pp. 1127–1136. ACM (2007)

[28] Taivalsaari, A., Mikkonen, T., Systa, K.: Liquid Software Manifesto: The Era of Multiple
Device Ownership and Its Implications for Software Architecture. In: 38th Computer
Software and Applications Conference (COMPSAC2014). pp. 338–343 (2014)

[29] Zorrilla, M., Borch, N., Daoust, F., Erk, A., Flórez, J., Lafuente, A.: A Web-Based
Distributed Architecture for Multi-Device Adaptation in Media Applications. Personal
and Ubiquitous Computing 19(5-6), 803–820 (2015)

Biography

Andrea Gallidabino. He is part of the Architecture, Design and Web Infor-
mation Systems Engineering Group under the supervision of his advisor Prof.
Cesare Pautasso. The group is part of the Software Institute at Univeristà
della Svizzera Italiana. As a researcher in the group he focuses his work
mainly on liquid software and real-time communication Web technologies.
Moreover he helps the professor with lectures, interacting with students on
a daily basis. His research interests are: Web technologies, real-time appli-
cations, liquid software, and multi-device interactions. You can find more
information on http://www.inf.usi.ch/phd/gallidabino/ and follow
him @AGallidabino.

http://www.inf.usi.ch/phd/gallidabino/


Multi-Device Complementary View Adaptation with Liquid Media Queries 39

Cesare Pautasso. He is a Full Professor at the Software Institute of the Fac-
ulty of Informatics, USI Lugano, Switzerland, and formerly researcher at the
IBM Zurich Research Lab (2007) and senior researcher at ETH Zurich (2004-
2007) where he completed his Ph.D. in 2004. At USI he leads the Architec-
ture, Design and Web Information Systems Engineering research group. He
is currently supervising the research of a group of Ph.D. students building ex-
perimental systems to explore the intersection of cloud computing, software
architecture, Web engineering, and business process management, with ongo-
ing projects exploring workflow benchmarking, RESTful conversations, and
liquid software. He is the coauthor of the book SOA with REST (2012) and
currently writing a book titled Just Send an Email: Anti-Patterns for Email-
Centric Organizations (published on LeanPub). He is coeditor of the IEEE
Software Insight department and program chair of the 20th International Con-
ference on Web Engineering (ICWE2020). You can find more information on
http://www.pautasso.info and follow him @pautasso@scholar.social.


	Introduction
	Related Work
	Liquid Media Types and Features
	Automatic Component Style Adaptation
	Component Deployment Redistribution

	Design and Implementation
	Liquid Style Polymer Component
	Liquid Style Design
	Liquid UI Redistribution and Cloning Algorithm
	Run-time Complexity
	Decentralized Algorithm

	Liquid UI Adaptation Example
	Scenario 1: Second user connects a phone
	Scenario 2: Dynamic device role change

	Discussion
	Developers
	Users

	Conclusion
	Future Work

