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Abstract—Just as liquids adapt their shape to the one of
their container, liquid architectures feature a high degree of
adaptability so that they can provide scalability to applications
as they are executed on a wide variety of heterogeneous
deployment environments. In this paper we enumerate the
properties to be guaranteed by so-called liquid service-oriented
architectures and define a set of design constraints that make
up a novel architectural style for liquid architectures. These
constraints drive the careful construction of a pattern, the
RESTful Actor (REactor), which enables to deliver the required
scalability by means of replication of its constituent parts.
REactors feature a RESTful Web service interface and a com-
posable architecture which is capable of delivering scalability
and high performance in a way that is independent from
the chosen deployment infrastructure. We discuss how the
REactor can be deployed to run on distributed (shared-nothing)
execution environments typical of virtualized Cloud computing
environments as well as on modern multicore processors with
shared memory architectures.

Keywords-Scalability, Performance, Web Services, REST,
Architectural Styles and Patterns

I. INTRODUCTION

Scalability to serve a very large number of clients and
transparent reconfigurability across heterogeneous execution
environments are two desirable characteristics of modern
Web services. Whereas it is possible to design and build
Web services which scale to handle millions of concurrent
requests without visible performance degradation [1], the
architecture of the services is typically designed taking
closely into account the underlying hardware execution envi-
ronment [2]. For example, a CPU-intensive software service
designed to run on a homogeneous cluster of computers
may not provide the same scalability when deployed on a
different set of machines, such as a virtualized cluster of
heterogeneous multicore processors [3].

In this paper we study how to design services able to scale
across different execution infrastructures, from distributed
memory environments to shared memory multiprocessor
machines. The goal is to provide a set of design constraints
(codified as an architectural style), which allow services
to achieve scalability and transparent reconfigurability over
heterogeneous deployment environments. Whereas it is pos-
sible to achieve such qualities by making correct use of
existing service-oriented middleware technologies, our pro-
posed pattern-based approach can potentially significantly
reduce the design effort required as it can be supported by
an autonomic run-time software infrastructure [4].

The paper makes the following contributions. We propose
a novel architectural style for so-called liquid services
and introduce the corresponding design constraints. These
are sufficient to design service-oriented architectures which
can scale by making efficient use of whatever hardware
infrastructure is available. Following these constraints, we
introduce an architectural pattern for the design of liquid
services called “REactor” (from RESTful actor) and discuss
how systems making use of it can exhibit “liquid” qualities.

The liquid architectural style constraints influence the ar-
chitecture of liquid services at design-time. At run-time these
constraints make it possible to build a runtime container,
which can automatically identify the kind of reconfigurations
needed in different operating conditions, and apply them at
the right time to obtain the liquidity of the services that are
supported by it [5]. While the description of such run-time
is out of scope for this paper, initial results can be found
in [6], [7].

The rest of this paper is organized as follows. We motivate
the need for guidance in the design of scalable Web services
in Section II. The background Section III defines scalability
and introduces the CAP theorem. In Section IV we introduce
the notion of liquid Web services, identifying the defining
qualities for such services. In Section V we introduce the
liquid architectural style as a set of constraints for the
design of liquid Web services. Section VI introduces the
REactor pattern and Section VII shows different scalable
configurations for the REactor. In Section VIII we evaluate
how services developed according to the REactor pattern
comply with the constraints of the liquid architectural style.
Section IX presents related work before we conclude in
Section X.

II. MOTIVATION

Systems designed to exploit a specific hardware infras-
tructure may significantly degrade their performance if
deployed on different ones. This is partially due to the
challenge of tuning the configuration of the software to
optimally make use of the available hardware resources,
but also due to more fundamental problems, such as the
difficulty of providing communication primitives that hide
the architectural differences of the execution platform (e.g.,
shared-memory, multicore servers vs. distributed-memory
clusters [8]).



As a response to these challenges, dynamically recon-
figurable (i.e., elastic) execution infrastructures are rapidly
becoming one of the predominant choices for running
service-oriented architectures. Technologies such as PaaS
and IaaS [9] have introduced a novel paradigm for Web
services deployment, where the hosting infrastructure for a
service is partially or totally unknown at design time. With
it, services are designed to be executed on a virtualized
Cloud infrastructure which makes use of abstraction layers
that make it difficult for the services to exploit and take
advantage of the underlying physical hardware.

The flexibility offered by the virtualization layer has
notable advantages in term of scalability, offering ser-
vices the opportunity to pay for computing resources only
when needed, with an economic benefit exploited by Cloud
providers adopting the “pay-per-use” business model. Gen-
erally, Infrastructure as a Service (IaaS) Clouds provide
a virtualized distributed memory infrastructure, which can
be used by services running on a cluster of independent
virtual machine instances, each with its own private memory
space [10].

Another alternative for Web services deployment is rep-
resented by the shared memory model. This is found in
most modern multicore machines, allowing a service to scale
by making use of multiple processor cores [11]. Once all
cores have been used, more shared memory machines can
be added, obtaining a heterogeneous cluster of multicores.

It is very challenging to design services which can exploit
such different runtime infrastructures, and scaling the same
service architecture by exploiting the characteristics of a
heterogeneous execution infrastructure requires the archi-
tecture to feature qualities such as flexibility, adaptability
and dynamic reconfigurability. As the hosting environment
changes, the way in which the architecture of the service
is deployed should also change, possibly without affecting
the original design of the service and the availability of the
service.

Defining an architectural style for services with such
qualities makes a key contribution to solve the problem of
platform-independent design of services which can make
optimal and efficient usage of their execution platform [12].
The guidance provided by the style and the pattern we
propose can not only provide scalability guarantees over
elastic, virtualized environments and non-virtualized ones.

III. BACKGROUND

A. Scalability

The classic definitions of scalability focus on the ability
of a system to handle an increasingly large amount of
work [13]. Thus, scalability for a Web service can be defined
as the ability for a specific service to provide a guaranteed
response time for an increasingly large number of clients. A
more formal definition considers the scalability of a system

as a function of its efficiency expressed in the following
terms:

S(n) =
T1

Tn

The scalability function S(n) defines the scalability factor
for a Web service S under the load of n concurrent clients.
The constant T1 identifies the average response time of the
service when only one client request has to be processed at
a time, while Tn represents the average response time with
n concurrent clients. Excluding from this simple analysis
superlinear behaviors, 0 ≤ S(n) ≤ 1 holds. Services
characterized by a constant value of S for any n are called
scalable services. Scalable services with S constant and
close to the maximum value (∀n, S(n) ∼ 1) are called
services with an ideal scalability.

The scalability of a Web service can be obtained in
two orthogonal ways, depending on the available hardware
resources [14]. Services are said to scale up when they can
handle an increasing number of requests because they have
been allocated more hardware resources within the hosting
computing infrastructure (e.g., more processor cores or more
memory). Services are said to scale out, when they scale
to handle a large number of requests as more computing
resources have been added to the computing infrastructure.

The scale out solution can be applied to services with
some degree of replication of their state and which have
been implemented with a set of communicating processes
deployed on a cluster of computers. Scalability is obtained
simply by adding new nodes of commodity hardware to
the cluster and replicating on them new service processes.
This is the most commonly found approach to scalability in
Cloud-based services as it has become very simple to scale
a service by instantiating a new virtual machine and adding
it to the pool of available resources.

The scale up solution is adopted with service architectures
which require access to some kind of shared memory space.
Services of this kind make use of thread-level parallelism
and target massively multicore machines based on tech-
nologies such as cc-NUMA [15]. Modern multiprocessor
server-class machines can handle a very high number of
parallel threads, thus this approach to scalability is also
highly relevant for scalable Web service design. For instance,
commercial servers based on the POWER7 architecture can
support up to 1024 concurrent threads [16].

Services designed to scale up have usually a hard scal-
ability limit imposed by the hardware (i.e., they will be
considered “scalable” up to a given number of clients). Still,
they can be designed to exploit efficiently the computing
resources on which they have been deployed. Conversely,
systems designed to scale out can theoretically provide un-
limited scalability [17], as the limit of maximum concurrent
clients can be increased just by adding more machines to
the service deployment infrastructure.



B. Distributed Systems and the CAP Theorem

As we have discussed, scalability could require to repli-
cate a service by running it in a distributed environment. In
the following we summarize a very important implication of
applying distribution to the design of a service, which will
be later used to evaluate the REactor pattern in Section VIII.

Given the following properties of distributed systems:
• Consistency: all nodes of the distributed system are able

to see the same value of the same data at the same time.
• Availability: all possible node failures do not prevent

the overall system from serving clients.
• Partition tolerance: no set of failures less than total

network failure is allowed to cause the system to
respond incorrectly.

The CAP theorem [18] states that it is impossible for a
distributed system to guarantee the three properties at the
same time. In the context of this paper, the main conse-
quence of the theorem is that whenever a Web service needs
to distribute its state across different partitions connected
via a network, only one property out of availability and
consistency can be guaranteed at the same time.

IV. LIQUID WEB SERVICES

Relaxing all assumptions on the deployment infrastructure
allows us to rethink how services are designed and propose
a service architecture which can scale independently of its
target deployment environment. To do so, it is important to
focus on concurrency, state management and parallelism as
primary design concerns.

In this section we outline the main characteristics and
qualities for a specific class of service-oriented architecture,
which we call liquid service-oriented architecture. Such
services can be introduced using the following metaphor.
Suppose to be given a liquid, and to have two differ-
ent containers, both equivalent in terms of volume, but
of different shape and material. Once poured in the first
container, the liquid will adapt itself to fill the volume
within the container’s shape. The same liquid can be poured
in the second container. Gravity will change the liquid’s
configuration and adapt it to shape of the new container.

A liquid Web service is a service that can be deployed
across different runtime infrastructures with minimal manual
reconfiguration efforts. Like physical liquids, the service
perfectly adapts to the characteristics of its container while
maintaining its intrinsic qualities unchanged.

Independently of the metaphor, we define a liquid Web
service architecture as characterized by three key qualities:

Q I) Transparent Deployment. The same Web service de-
sign is deployable on multiple heterogeneous infrastructures.
This means that a Web service should be designed with
a sufficiently high level of abstraction so that it can be
deployed on a wide class of runtime execution environments.
More precisely, a liquid service has to be deployable on any

kind of computing platform without manual reconfiguration.
To give an example, a Web service capable of transparent
deployment has to be deployable on any kind of shared-
memory multicore machine (from dual-core, up to the
technological limit), as well as on any kind of virtualized
distributed Cloud computing infrastructure. For example, an
Amazon E3 Virtual Cluster [19].

Q II) Scalability. A Web service has to guarantee scal-
ability and predictable performance making efficient use
of the resources available in any deployment scenario. To
achieve this, the service design is kept orthogonal to the
solution used to achieve the scalability of the service, which
should ideally be able to both scale up and scale out.
To give an example, a liquid service should be able to
scale linearly on a multicore machine (at least up to the
number of available cores) as well as on a Cloud IaaS
virtualized infrastructure. This means that the service should
offer mechanisms that allow it to dynamically adapt itself
to exploit the best scalability mechanism for the available
hardware. A liquid service which is given a heterogeneous
pool of resources should also automatically exploit the
pool of resources according to its actual utilization and
workload levels. For example, the service should be capable
of migrating itself from a local cluster to the Cloud when the
number of requests becomes high (e.g., on workload peaks),
and then migrate back to the cluster as the normal operating
conditions resume.

Q III) Composability. Different liquid Web services
should be composable to enable the definition of more
complex services, and the composition should have at least
the quality Q I. Also, service composition could also be used
to adapt the service to exploit certain characteristics of the
deployment infrastructure.

V. THE LIQUID ARCHITECTURAL STYLE

To guide the design of liquid services with the qualities
identified in Section IV we have collected the following
design principles and architectural constraints, which to-
gether make up the liquid architectural style. These are:
fine-grained decomposition, underspecified communication,
explicit interaction semantics and explicit composition rules.

C I) Fine-grained decomposition. The service should be
composed of multiple, autonomous, fine-grained compo-
nents. The grain of each component should be as fine as
possible to give maximum flexibility in the way components
can be deployed, dynamically replicated and migrated. Com-
ponents encapsulate both the basic functionality provided by
the service as well as its state. At a specific time instant, the
overall state of the service is the union of the states of its
components. Components may be stateless.

C II) Underspecified communication. Components
should interact with other components by means of
some communication mechanism. In order to provide
the highest possible flexibility at deployment time we



minimize the constraints we make on the actual connector
through which component cooperate to deliver the service’s
functionality. Our assumption conforms with the choice of
an asynchronous message-based coordination mechanism
used in most service-oriented architectures. Still, we
do not constrain nor make any assumptions about the
communication mechanism that will be used at runtime to
carry messages between components. In other words, the
connector used to link the components within a service
should be left underspecified so that once the architecture is
deployed the most appropriate communication mechanism
available at runtime can be used.

C III) Explicit and well defined interaction semantics.
Another important constraint is that messages exchanged
between components should explicitly expose the effect of
the interaction on the state of the components. In other
words, each message exchanged between components should
indicate whether or not accepting it would change the state
of the component processing it. This implies that every
interaction among components of the same service should
happen using a fixed set of interfaces, and for every interface
the effect on the state should be defined. This leads to the
definition of a fixed set of uniform interfaces that every
component should eventually implement. Not only we can
distinguish messages carrying read-only requests, but – since
each component carries its own private, share-nothing state
– at every moment in time it is possible to identify service
state changes and isolate which components they affect. For
instance, components that read data from other components
should indicate in their request message that the action
would not have an impact on the receiver’s state. Instead,
components requiring others to change state should point
out that their message will cause a state transition. This
constraint of explicitly labeling the safety properties of an
interaction is important to ensure the scalability of stateful
Web services by means of replication [20].

C IV) Explicit composition rules. To guarantee C III also
for composite services (Q III), another constraint has to be
introduced: it should also be specified how components can
be composed recursively out of other component interfaces,
and the result should not violate the C III constraint. In other
words, for every incoming message with a given interaction
semantics, it has to be known which kind of outgoing
messages can be exchanged with other components. This
way a composite component can accept a message without
violating its associated interaction semantics. For instance,
a message to perform a read-only operation on a composed
service, should not result in a change of state of one of the
services called by its receiver.

VI. REACTORS: RESTFUL ACTORS

In this Section we will follow the design principles and
constraints identified in the prior section to introduce a
novel architectural pattern, called REactor (RESTful Actor).

Method Property Recursive Composition
Create ∅ Create, Read, Update, Delete
Update Idempotent Update, Read
Delete Idempotent Delete, Read
Read Idempotent, Safe Read

Table I: Recursive Composition for Each CRUD Method

Whereas there are many possible designs that deliver the
qualities of liquid services, this pattern codifies a simple
and minimal approach to achieve the same qualities while
following the previously enumerated constraints.

A. REactor Pattern

1) A RESTful Web service is designed as the composition
of one or more REactors. A REactor is an autonomic
software component characterized by a private state, which
is made accessible to other REactors through a uniform
interface. REactors are globally addressable through unique
identifiers which collectively form the address space of
a service. To comply with the fine-grained decomposition
constraint (C I) it is important to provide a fine-grained
addressing mechanism to identify REactors and their state
(which could be empty). REactors found within RESTful
Web services may use URIs as identifiers and the resources
published by a RESTful Web service may be associated with
one or more REactor.

2) The uniform interface of a REactor allows it to react
to incoming messages targeting specific resources managed
by the REactor. When applying the pattern it is necessary
to define the mapping between resources to REactors. The
actual communication mechanism chosen to deliver and
route the messages between REactors will be defined at
runtime in compliance with the underspecified communi-
cation constraint (C II). This way, the operations performed
by REactors can be designed by referring to resources and
the runtime takes care of hiding the difference between
resources local to the same REactor and remote ones.

3) Interactions between REactors can happen only by
mean of state transitions. Each state transition is triggered by
a message containing the operation required, and referring
to the portion of state (i.e., the resource) that will be affected
after the message has been processed. Like resources of the
REST architectural style, REactors can be seen as passive
consumers of incoming messages. As a refinement, however,
it is also possible for REactors to generate further outgoing
messages while processing an incoming message, permitting
in this way REactors’composability (Q III).
We further refine the REactor pattern by including a set
of possible methods associated with their uniform interface.
These methods are explicitly mentioned in the messages
exchanged by the REactors, and can be one of: Create,
Read, Update and Delete. The choice of a CRUD-like
uniform interface makes it easy to comply with the constraint
requiring to explicitly label the interaction semantic (C III).



In fact, labeling all the possible operations with the CRUD
uniform interface provides every state transition with specific
algebraic properties. Read, Update and Delete methods are
idempotent, which means that the same operation can be
executed multiple times on the same resource producing the
same result. Moreover, the Read operation is also a safe
operation, which means that the operation is side-effects
free. These three methods can thus be repeated an arbitrary
number of times in the event of communication failures.

4) Liquid Web services are expressed as a composition
of multiple REactors. This means that every REactor can
communicate with others through the exchange of messages.
Thus, we have to deal with the composability of such
methods in order to respect the basic algebraic properties
provided by each of them. The goal is to avoid that, as
a consequence of an idempotent operation performed on a
REactor, a non idempotent operation is performed on another
REactor. Concerning the global state of the service, the
first operation would become non-idempotent, violating the
explicit interaction semantic constraint (C III).
We can solve this issue defining the recursive composition
rules (C IV) for each of the CRUD operations shown in
Table I. Given the set of CRUD methods, we identify a
subset of valid methods to be called on other REactors
during the execution of composite operations. This way, we
can guarantee that every REactor will be compliant with
the explicit interaction semantic (C III), no matter if the
operation received is coming directly from the client, or
from any other REactor. To give an example, consider the
Update operation. A REactor receiving a message for the
execution of such operation on its state will be enabled to
update also other REactors, as well as to read their state.
Still, it will not be allowed to create or delete any other
external resources. This guarantees the composite Update
operation to be idempotent.

B. REactor State Management

The REactors’ state is organized as a set of resources. Any
REactor can publish one or many resources. Any resource
can be accessed and modified using its uniform interface
(i.e., the CRUD methods). As a consequence, any possible
message exchanged between REactors could result in a state-
related operation, or in a pure functional (i.e., stateless) one.
This data-oriented vision of REactor interactions simplifies
the definition of interaction patterns among REactors, be-
cause there can be only four outcomes: 1) a resource present
in a REactor can be accessed with a Read request on its URI.
2) A resource present in a Reactor can be updated just by
sending a new value through an idempotent Update message
to its URI. 3) A new resource can be added to a Reactor
with a Create operation. 4) A resource can be removed with
an idempotent Delete operation directed to the desired URI.

To understand the effect each operation has on the state
of a REactor, coupled with the functional behavior re-

Resource Method Operation Type
/time Read logical

/calendar/2011/feb/7/ Read physical
/calendar?date=2011/feb/14 Create hybrid

Table II: Sample Calendar RESTful Web service

quired to implement the operation, we give the following
classification. On the one hand, we distinguish whether
operations only depend on the input provided by the message
invoking them (stateless) or whether they make use of
the state of the REactor (stateful). On the other hand,
we distinguish whether operations are implemented with
arbitrarily complex behavior (f()) which may – for example
– involve conditional state changes or the invocation of other
REactors, or simply give direct access to the underlying state
through the CRUD uniform interface (I).

f() I

State: Stateful hybrid physical
Stateless logical ∅

• logical operations expose a pure functional (i.e., state-
less) behavior.

• physical operations give direct access to the state of a
resource through the CRUD uniform interface.

• hybrid operations publish complex functionality which
could make use of the state of the resource.

Since physical operations give a direct access to the state
of resources, they can be seen as a special case of hybrid
operations, where the arbitrary functionality (f()) is replaced
by an identity function (I).

To give an example, consider the simple Web service
described in Table II. The service implements a basic
calendar API, exposing two resources accessible through
three methods, for a total of three operations. The behavior
of the service is the following. By reading the /time resource,
the service responds with the current time. This operation
is performed on a logical resource, since /time does not
require to save data to complete the operation. By reading
the /calendar resource with a /2011/feb/07/ argument, the
service responds with a piece of data (for instance a JSON
object) listing all the appointments scheduled for the given
date. This operation is performed on a physical resource,
since the data is directly available in the REactor’s state
and no additional functional behavior needs to be applied
in order to retrieve it. Finally, by creating new data in the
/calendar resource, a new appointment is added, if the date
exists (e.g., it is a valid date format). This is an hybrid
operation, since it can be performed on the resource only
if the date provided is correct. This means that additional
behavior is needed to decide if the method will be allowed
to modify the state of the resource.



C. REactor Architecture

The internal architecture of a REactor is depicted in
Figure 1, where two REactors with their main components
are shown.

1) The Acceptor component is responsible for receiving
request messages and routing them according to the type
of operation. Requests concerning physical operations are
directly routed to the State Manager component. Requests
dealing with logical operations are directly processed by the
Functional Processor component. Finally, requests dealing
with hybrid operations are first routed to the Functional
Processor component, and then eventually directed to the
State Manager component. Thanks to its routing role and
the explicit interaction semantic of REactor’s messages, this
component can also cache the results of certain requests,
for instance logical operations that are executed through a
Read operation. Likewise, the caching mechanism could be
implemented to speed up operations which read a physical
resource, until it gets modified by an update operation,
causing the invalidation of the cache.

2) The Functional Processor component is responsible
for handling logical and hybrid operations, and executing
the semantic of their methods applied to the correspond-
ing resources. Operations could include arbitrary functional
behavior, including the exchange of messages with other
REactors. To this end, the functional processor component
is also able to communicate with external REactors as it
can use the resource addresses to locate the corresponding
REactors. The component is stateless as it does not keep
any private state. Instead it relies on the State Manager
for managing the state of the resources affected by hybrid
operations.

3) The State Manager component is responsible for han-
dling physical and successful hybrid requests. The compo-
nent features a persistent state manager, and is the only
stateful component of the REactor. To keep the generality
of the REactor pattern, we do not make any assumption
about the persistence technology used to implement this
component. In the simplest case, the state is managed with a
simple key-value data store, which should also feature some
kind of transactional guarantees. For example, we suggest
to use multi-versioning concurrency control (MVCC [21]).
This solution, based on “append-only” data structures (for
instance, a B-tree) has the advantage that data representing
a resource is never overwritten, but as changes are applied,
newer versions of the same resource are just appended
at the tail of the data structure. The append process is
guaranteed to be atomic for concurrent modifications to the
same resource’s data, and the implicit versioning control
made available by adding timestamps to the append mecha-
nism enables complex data manipulations with transactional
properties.

State
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Figure 1: Reactor Pattern General Structure

VII. SCALING REACTORS

Services designed according to the REactor pattern can
scale following three different mechanisms. Each is based on
the partial or full replication of some REactor’s components,
coupled with different degrees of guarantees on the consis-
tency of the state owned by the REactor’s State Manager
component.

1) The Scale f configuration (Figure 2 a) enables the
REactor to scale by replicating the Functional Processor
component. In this configuration the Acceptor component
becomes a load balancer which distributes messages to the
Functional Processor replicas according to a given schedul-
ing and load balancing strategy. As the State manager is not
replicated, the state is guaranteed to be consistent.

2) The Scale AP configuration (Figure 2 b) enables the
REactor to scale by replicating both the Functional Processor
component and the State Manager. Each replica holds a full
copy of the State manager component. However, copies are
not guaranteed to be consistent. This has the effect that oper-
ations on the same resource performed by different replicas
of the REactor could give different answers. The consistency
across replicas is not guaranteed, however every replica
attempts to synchronize its state by propagating changes
to the others. This is made possible thanks to the MVCC
approach to design the State manager component, which
enables the automatic reconciliation of conflicts between
replicas. Like for the Scale f case, in this configuration the
Acceptor serves as a load balancer dispatching the incoming
requests. Also, the component can track which REactor
replica owns the most recent version of the state. This
enables the Acceptor component to act as a coordinator for
the state synchronization across replicas.

3) The Scale CP configuration (Figure 2 c) enables the
REactor to scale by replicating both the Functional Processor
component and the State manager. However, unlike the Scale
AP mechanism, the state is not fully replicated. Instead, the
state is partitioned across different replicas through shard-
ing [20]. This guarantees that each replica will handle an
unique version of a subset of the REactor’s state, providing
de facto the guarantee of consistency for that specific piece
of data. However, this configuration also means that in case
of a failure for a specific replica data availability cannot
be guaranteed. In case of a failure, all hybrid and physical
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Figure 2: Reactor Scalability Mechanisms

operations associated with a failed replica will fail until the
replica becomes available again. In this configuration the
Acceptor component becomes a router for client requests, as
it is responsible for managing the sharding mechanism by
sending all requests to the correct partition of the REactor
state.

VIII. DISCUSSION

REactors guarantee the qualities of liquid Web services
by implementing the constraints identified for the liquid
architectural style. The correlation between the qualities and
constraints of the liquid architectural style and the design of
the REactor is discussed in the following.

A. Transparent Deployment

Transparent deployment Q I is guaranteed by the REactor
pattern (in any of the possible configurations) thanks to its
compliance to constraints C I and C II.

First, fine-grained decomposition (C I) enables the run-
time to deploy different parts of the service (i.e., different
REactors) on different infrastructures, in a way which is
unconstrained by the service design.

The second constraint, underspecified communication
(C II), enables the runtime to perform the late binding
of the best communication mechanisms available in the
target deployment environment. Since every interaction be-
tween REactors is expressed in term of operations (that is,
resources and methods of the uniform interface) invoked
through a message-passing coordination primitive, nothing
is specified on the type of communication to be used at run-
time. Thus, the design of Web services remains unaware of
the actual communication primitives that will be used. This
enables the deployment of services transparently adapting
their structure to the available communication infrastructure.
The deployment of the REactors making up a Web service
on different execution environments becomes just a problem
of late-binding abstract message exchanges to concrete and
compatible software connectors. In other words, the REactor
pattern permits to postpone the decision about the commu-
nication mechanism to be used until run-time. This means
that at any moment in time it is possible to automatically

reconfigure which connectors have been used to link the
REactors which make up a given service.

B. Composability

Composability (Q III) is guaranteed by the REactor pat-
tern (in any of the possible configurations) thanks to its
compliance to the constraint C III and also C IV.

The well defined and fixed CRUD recursive decomposi-
tion rules defined for the REactor pattern (Table I) guarantee
that any operation requiring the interaction with composite
resources (i.e., resources belonging to different REactors)
will be handled with the right semantic, thus guaranteeing
that at any time any composite REactor would behave as a
non-composite one, respecting the explicit fixed interaction
semantic defined by the constraint C III.

C. Scalability

The previous two qualities (Q I and Q III) are guaranteed
by the REactor pattern independently to the configuration
of any of its internal components. Scalability (Q II) cannot
be guaranteed by the REactor pattern in its basic centralized
configuration, but can be achieved thanks to the scalable
reconfiguration mechanisms described in Section III.

Scalability is guaranteed by constraints C I and C III.
The first constraint, fine-grained decomposition, enables a
REactor to be distributed across multiple independent com-
ponents (the Acceptor, the State Manager and the Functional
Processor). Having an explicit interaction semantic (C III)
permits to replicate such components in the way described in
Section III, taking advantage of caching for safe operations.

The combination of the two constraints permits to scale a
REactor by replicating its internal components. The number

T S Co C A P
Centralized X x X X X x

Scale f X f X X X x
Scale AP X X X x X X
Scale CP X X X X x X

Table III: Properties Guaranteed per Scalability Mechanism.
(T)ransparent deployment, (S)calability, (Co)mposability,
(C)onsistency, (A)vailability and (P)artition tolerance.
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Figure 3: Scalability Evaluation for the ScaleF and ScaleAP/CP Mechanisms

of replicas on any of the scalable configurations can grow
as much as required since components do not share any
information with one another. The possibility to replicate
components coupled with their share-nothing design does
not constrain the run-time infrastructure supporting the re-
actors as long as it can provide the necessary routing of
messages from the acceptor to the replicas.

As a consequence of the replication-based scalability
offered by the reactor pattern, a REactor based service has
to deal with the consequences of the CAP theorem. The
REactor pattern can be reconfigured in order to decide which
property to respect.

This is summarized in Table III, where depending on
the specific configurations of the REactor (as presented in
Section VII) any combination of the CAP properties can be
guaranteed.

The first Centralized configuration cannot scale beyond
a certain limit. The Scale f configuration provides scala-
bility only for stateless requests (indicated with f ), while
both Scale AP and Scale CP can be scaled thanks to the
replication/partitioning of their state. Availability is provided
by Scale f and Scale CP configurations, but cannot be
guaranteed for the Scale AP case because of the partitioned
state. Consistency is guaranteed by Scale f (where the state
remains centralized) and Scale CP, but only eventual con-
sistency can be guaranteed for Scale AP, thanks to MVCC-
based replication. Finally, partition tolerance is guaranteed
by both Scale AP and Scale CP, but cannot be guaranteed
for Scale f , since the state is centralized.

D. Scalability Evaluation

The REactor pattern guarantees both transparent deploy-
ment and composability by design. To demonstrate how
scalability is not affected by different deployment scenarios
we have performed a preliminary evaluation of two REactor-
based Web services. The results of the experiments are
presented in Figure 3. In the evaluation, we have developed
two distinct web services, and we have deployed them

on three different shared-memory and distributed-memory
heterogeneous configurations. The services have been scaled
according to the different scaling mechanisms presented
in Section VII, measuring for any number of replicas of
REactor’s internal components the average throughput.
The first set of experiments (Fig. 3 a) has been performed
on a stateless service, scaled according to the Scale f policy.
Upon any request, the service performs a mathematical
computation with fixed average response time (200ms). The
service has been run with an increasing number of requests
(i.e., an increasing number of concurrent clients), up to the
scalability limit. The service has been deployed on three
different infrastructures. First, the service has been deployed
on a single shared-memory multicore machine (4 Nehalem
processors CPUs, 6 cores each, with disabled SMT). Second,
the same experiment has been performed deploying the
REactor on two multicore machines (the prior one plus a
2 Opteron processors machine, 6 cores each, for a total 12
cores). Finally, the experiment has been repeated adding a
third machine to the pool (a single Core2Quad processor, for
a total of 4 cores). The chart shows clearly that the scalability
of the REactor is not influenced by the three configurations.
In fact, all three different scenarios have a similar scalability
profile, and the scalability limit is nearly identical for the
three cases.
To test stateful services (that will stress more the network
than the CPUs), the second set of experiments has been
performed on the same set of machines, scaling the service
by replicating the State Manager component. Independently
of the data management policy (Scale AP or Scale CP),
the graph shows that also in this case linear scalability is
guaranteed for the three deployment scenarios up to reaching
the saturation point.

IX. RELATED WORK

The term “Reactor” has been previously used in [22],
where it was used to present a programming model inspired
by Datalog [23] and the Actor model. The model described



in the paper shares with our work the general intent, but our
pattern is different from their programming model. The term
“liquid architecture” has been previously used in [24], where
it was adopted to describe a class of purely decentralized
p2p architectures. In this paper we give a different definition
focusing on service-oriented architectures. We first presented
the vision of Liquid Web services in [25]. This paper
significantly expands upon the initial position statement as it
gives a detailed description of the Liquid architectural style
constraints and introduces the REactor pattern. The design
principles behind the REactor pattern have been mainly
inspired by the Actor concurrency model [26] and the REST
architectural style [27].

The Actor model is a concurrency model based on au-
tonomous share-nothing entities, called Actors, cooperating
concurrently to the achievement of a common goal through
message passing. The main advantage of the Actor concur-
rency model is that it hides complex concurrency manage-
ment mechanisms (such as locks) from the programmer,
resulting in a clean and effective instrument to develop
parallel and concurrent applications. The Actor model has
been widely adopted and is natively supported in many pro-
gramming languages like Scala [28] and Erlang [29]. Also,
a notable number of frameworks and libraries are promoting
its adoption in other languages [30]–[32]. The Actor model
has been designed to deal with very general concurrency
problems, and does not have a specific notion of how each
actor’s state might change. Introducing the notion of state,
and the explicit interaction semantic constraint, we enable
REactors to be used as a basic building block for liquid Web
services. There have been many other extensions proposed
to modify and tailor the actor model to specific domains.
Examples are the Self Replicating Objects model [33] and
the Active Object pattern [34].

Representational State Transfer (REST) is the architec-
tural style for large-scale distributed hypermedia systems,
such as the Web. The architectural style is based on four
main constraints [27]: Resource identification through URI,
Uniform Interfaces, Self descriptive messages and Stateless
interactions. The constraints identifying the liquid architec-
tural style defined in Section V have been deeply influenced
by REST. However, the main distinction between REactors
and RESTful Web services is that a REactor can also directly
interact with other REactors through their uniform interface.
The explicit composability and the presence of an explicit
computational element within REactors is another difference
which further distinguishes REactors from ordinary RESTful
Web services. Thus, REactors could be seen as a more
refined class of RESTful Web services. REactors also share
the notion of computation as a first-class element with the
CREST architectural style [35].

The idea of considering Clouds and multicores as a
single computing environment has been introduced by David
Wentzlaff et al. within the contest of the Fos Operating

System [36]. They propose the development of a modern
Operating System to target at the same time and in parallel
the two different computing platforms, using a service-
oriented architecture. Other examples of distributed Operat-
ing Systems that address similar scenarios are Amoeba [37],
Sprite [38] and Clouds [39].

X. CONCLUSION

In this paper we have identified the main qualities for
a novel class of Web services, called liquid Web services,
capable of transparent deployability, composability, and scal-
ability. Liquid Web services are of great importance for
modern service oriented architectures as they permit to
decouple the design of a Web service from the runtime
infrastructure on which it will be deployed. To develop
Liquid Web services we have introduced a set of architec-
tural constraints (fine-grained decomposition, underspecified
communication, explicit interaction semantics and explicit
interface composition rules) used in the definition of the
liquid architectural style. As guidance to apply the con-
straints we have also provided a novel architectural pattern,
called REactor (RESTful Actor) and we have shown how
services developed according to the REactor pattern can
guarantee such liquid qualities over heterogeneous execution
environments (i.e., Clouds and multicores). We have begun
to apply the REactor model to the development of a new
service-oriented programming model. This will be comple-
mented by the development of a smart runtime supporting
the execution of liquid Web services on IaaS Clouds and
multicore machines.
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