
Live Mashup Tools:
Challenges and Opportunities

Saeed Aghaee, Cesare Pautasso
Faculty of Informatics, University of Lugano (USI), Switzerland

saeed.aghaee@usi.ch, c.pautasso@ieee.org

Abstract—Live programming is a programming style in which
the repetitive task of compiling and running the software being
programmed is managed automatically. This style can be a
helpful practice in End-User Development (EUD) where the non-
professional end-users are to be supported through techniques
and tools that empower them to create or modify software
artifacts. Mashups — a form of lightweight Web applications
composing reusable content and functionalities available on the
Web — are a popular target for EUD activities on the Web. EUD
for mashups is enabled by intuitive composition environments,
called mashup tools. In this paper, we introduce live mashup
tools, a new class of mashup tools based on the live programming
style. We give a comprehensive definition and classification of live
mashup tools, giving examples of how well existing tools fit in this
category and discuss open research challenges and opportunities.

Index Terms—Live Programming, Liveness, Web Mashups,
Mashup Tools, End-User Development.

I. INTRODUCTION

End-User Development (EUD) [1] systems aims at facili-
tating the creation and modification of software artifacts by
non-professional users. Mashup tools are a type of EUD
system targeted for mashups [2] — lightweight compositions
of Web services, Web widgets and Web data sources [3].
These tools [4] provide intuitive, highly abstract composition
languages targeted for non-professional users on the Web.

Live programming is a highly interactive style of computer
programming in which the target software is automatically and
continuously rebuilt and executed while it is being coded [5].
EUD systems, like mashup tools, can benefit from incorpo-
rating this style, as it can effectively reduce the cognitive
cost of programming for beginners.More specifically, live
programming style provides major benefits as follows:

• Bridging the gulf of evaluation. The gulf of evaluation
refers to the degree of difficulty of assessing and understanding
the state of the system [6]. Live mashup tools are capable
of providing immediate feedback about the effect of changes
to the code on the output, as a result of which the gulf
of evaluation can be significantly bridged. The immediate
feedback contains either: (i) the new output that provides
gratification and increases the self-efficacy of the user to
better face further challenges, or (ii) errors that, thank to the
immediateness of the feedback, corresponds to a small action
and can be easily rectified (so it may cause no or very little
anxiety in end-users and encourage their explorations).

• Enabling efficient problem solving. Live mashup tools
allow end-users to more efficiently solve complex problems in

a step-by-step fashion. The actions taken in each step are tiny
and tested by users with the help of the immediate, automatic
feedback provided by the tool. In practice, it is more time
consuming and less efficient to first create the whole mashup
and then execute and test it as a whole. Preventing anxiety in
end-users caused by a challenging development process is an
important goal in EUD, and creating mashups in a live fashion
is one way to achieve it.

• Leading to a more gentle learning curve. Liveness can
help end-users to gradually develop their skills in using the
tool. Accomplishing and then immediately validating small
steps one at a time towards solving a bigger problem lead
the users towards a gradual and gentle learning process,
which is an important requirement in the design of EUD
systems [7]. We believe there is a direct relationship between
the incrementality of the development process (enabled by
live programming), and the graduality and gentleness of its
learning curve.

In this paper, we propose live mashup tools as a new
category of mashup tools featuring the live programming style.
Also, we provide a classification of live mashup tools based
on how closely they relate and connect the design perspective
with the expected output and deployment perspectives in
the tool environment. Live mashup tools pose a number of
challenges that are subject to be discussed in this paper. For
instance, considering that mashups are compositions of remote
and distributed components, it is technically very challenging
to comply with the requirements of liveness, as the changes
made by the user to the mashup design must be reflected in
the result of the mashup execution with minimal delay. To
exemplify how these challenges can be addressed in a concrete
mashup tool, we present the architecture of NaturalMash,
a novel live mashup tool.

The rest of this paper is structured as follows. In the next
section, we introduce our definition of live mashup tools.
Section III presents NaturalMash. The challenges of live
mashup tools are discussed in Section IV. Related work is
discussed in Section V. Conclusions are drawn in Section VI.

II. LIVE MASHUP TOOLS: DEFINITION

We characterize live mashup tools by the notion of “live-
ness”, which was first introduced by Tanimoto [8] in the con-
text of visual programming languages. In his paper he defined
four levels of liveness corresponding to the distance between
the design and output perspectives of a visual environment.

978-1-4673-6265-8/13 c© 2013 IEEE LIVE 2013, San Francisco, CA, USA

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

1



The design perspective is where the user creates or manipulates
a software artifact (i.e., in our case the mashup). Likewise,
the output perspective constitutes the result of the run-time
execution of the software artifact being created or modified in
the design perspective. At the lowest level of liveness, there
exists only the design perspective (e.g., a blueprint), whereas
at the highest level both the design and output perspectives are
not only present, but also are automatically kept in sync. Live
programming tools also feature the highest level of liveness.
The same holds for live mashup tools, which enable mashup
developers to take advantage of the live programming style
and also feature the highest level of liveness.

There are three variations of live mashup tools with respect
to the way the design and output perspectives are positioned
in the mashup development environment (Figure 1).

• Distinct. This type of live mashup tools separates the de-
sign and output perspectives, in a way that the two perspectives
are recognizable from each other. It should be noted that the
expected output perspective might be integrated into the same
user interface as the design perspective or not. The former
case has the advantage of allowing the tool environment to
be more self-contained. In the latter case, however, the output
perspective resides in the actual target environment, in which
the output mashups are to be deployed and executed. The
output perspective is thus remotely connected to the design
perspective that is the main part of the mashup tool environ-
ment. For instance, the output perspective may be integrated
with a Web browser (e.g., FireFox) that gets connected to
the mashup tool environment using a plug-in. The advantage
of a realistic output perspective is that it shows not only the
final execution of the mashup being created, but also its final
deployment environment. The distinct variation is exemplified
by MashupStudio [9], in which the environment interface only
consists of a visual editor (design perspective) that is remotely
connected to the output perspective (a mobile client) . In
general, separating the design and output perspectives results
in more freedom for mashup tool designers to choose among
various interaction techniques for mashup programming [4]
(e.g., visual wiring languages, textual languages, etc.). Still,
this separation imposes more barriers on the users’ side, as
they need to be able to distinguish and switch between the
two perspectives. This is specially the case when the output
perspective is remotely connected to the tool environment.

• Coincident. This variation comes in effect when the
design and output perspectives of the live mashup tool en-
vironment completely fold over each other, in a way that they
are not distinguishable anymore. This is synonym to What
You See Is What You Get (WYSIWYG), where the interface
shown to the user allows to see and manipulate content (e.g.,
graphical object, text, etc.) that is very similar to the output
mashup begin created. Examples are RoofTop [10], Lively
Wiki [15], and Intel MashMaker [11]. The main advantage
of this variation is the direct manipulation feedback governed
by the WYSIWYG interface. From the mashup tool design
perspective, Its major shortcoming is the inability of choosing
other interaction techniques than WYSIWYG for mashup

(1) Distinct (3) Coincident (2) Superimposed

Design perspective Output perspective

Fig. 1. A classification for live mashup tools.

programming. WYSIWYG interfaces since they mainly target
the user interface of the mashup are unable to provide adequate
expressive power for manipulations of the business logic and
data integration layers of the mashup being created.

• Superimposed. In this type, part of, or the whole of, the
output perspective is superimposed with the design perspec-
tive, but does not cover it completely. The output perspective
is basically based on WYSIWYG (similar to the coincident
variation) that has the advantage of allowing direct manip-
ulation. In contrast to the coincident variation, the design
perspective is not limited to the WYSIWYG part (the output
perspective). This allows to use other interaction techniques in
the design perspective to further compensate the shortcoming
of WYSIWYG in business logic creation. Analogous to the
distinct live mashup tools, the output can be integrated or
remotely connected. In other words, superimposed live mashup
tools take the best of the other two variations (coincident and
distinct) and apply them to their own shortcomings. As an
example, NaturalMash, which will be described in this
paper, has been designed following the superimposed variant.

Another classification of live mashup tools can be based on
how they deal with live data sources (e.g., web feeds). Accord-
ingly, live mashup tools either update the output perspective
as the live data sources update (e.g., [12]) or not.

III. NATURALMASH: A LIVE MASHUP TOOL

NaturalMash [13] (Figure 2) is an intuitive live mashup
tool classified as superimposed. In terms of live data sources,
It is also capable of updating the output mashup as the
underlying live data sources update. In terms of interaction
technique, NaturalMash is based on structured natural
language programming and What You See Is What You Get
(WYSIWYG). The advantage of using natural language lies
in its understandability, which further shortens and simplifies
the learning curve.

The intuitive environment of NaturalMash is composed
of four main elements: (i) visual field, where the editable
output perspective resides, (ii) text field, where the natural
language description of the mashup is edited with the help
of a strong autocomplete feature, (iii) component dock, where
the list of components used in the mashup being edited is
displayed, and (iv) stack, which contains the ingredients bar
(component library), the mashups created by the users, and
personalized information that can be used within mashups
(e.g., user’s location, user’s tweets, etc.).

2



(iv) Stack:
includes ingredients, mashups created by the user,
and personalized information (e.g., location)

In the ingredients bar users can search for components
and drag and drop them into the visual or text field.

(i) Visual field (output + design perspectives): 
includes the output of the mashup being described.
The output can also be modified in terms of layout
and view configurations.

(ii) Text field (design perspective): 
contains the imperative description of the mashup.
An autocomplete menu helps users editing the text.

(iii) Component dock: 
Shows the list of components used by the mashup.

Fig. 2. NaturalMash interface incorporates both the design (text and visual fields) and output (visual field) perspectives.

NaturalMash also supports synchronized multi-
perspective interaction. The three main interaction components
of the environment (component dock, text field, and visual
field) are all kept synchronized during every user interaction
(e.g., hovering mouse over component icons in the dock
highlights its corresponding widgets in the WYSIWYG
output and descriptions in the text field). We believe
synchronized multi-perspective modeling is a necessary
feature to be integrated within live mashup tools that
distinguish between the design and output perspectives (i.e.,
distinct and superimposed variations).

Another interesting feature of NaturalMash is the use of
Programming by Demonstration [14] (PbD) in the visual field
that results in getting suggestions in the text field. For instance,
interacting with a widget in the visual field results in the text
field showing suggestions for the corresponding user interface
event (e.g., click event) triggered by the user’s interaction.

The user studies we conducted with non-programmers re-
vealed the benefits of liveness we outlined in the beginning of
this paper. For instance, we observed the skills of users were
gradually improving as they could successfully accomplish
more challenging tasks each time. However, discussing the
user studies in detail is beyond the scope of this paper.

IV. CHALLENGES

Despite the benefits of live mashup tools, their design and
development remain challenging:

• Minimizing the live response time. End-users may be
detecting latency in the execution response of a live mashup
tool because of a variety of factors. Some of these factors
are concerned with the real performance of the tool. It means
how fast the tool can compile and execute the mashup being
created. There are also factors that deal with the way the live
execution response time information is managed and provided
at the user interface level. These refers to the perceived

performance of the tool. Failing to minimize the live response
time through increasing both real and perceived performance
of live mashup tools may cause anxiety in their end-users.
NaturalMash incorporates a high performance architec-
ture that considerably decreases the live response time of
NaturalMash. The main components of this architecture
include: (i) incremental change compiler, that incrementally
compile the new changes made to the mashup being edited,
as opposed to recompiling the whole mashup, (ii) compiler
cache, that further boosts up the incremental compiler through
the use of a cache storing all the previous target models and
their corresponding generated code, and (iii) run-time cache,
that enhances the mashup execution life-cycle.
Also, to maximize the perceived performance of
NaturalMash, we adopted the following guidelines:
(i) enable waiting control mechanism after a reasonable time,
(ii) show mashup user interface after the complete load,
(iii) do not prevent users from interacting with the mashup
while it is being compiled, and (iv) make user aware of
internet connection errors.

• Coping with service call rate limits. The majority of
free mashup components introduce strict call rate limits. For
instance, Twitter API (https://dev.twitter.com/), which is one
of the most popular mashup components, allows 150 calls
per hour. Moreover, many existing components still issues
developer keys to identify the source of calls. Within a mashup
tool platform (e.g., NaturalMash), a component is usually
developed and shared by one person (there is one developer
key), whereas it might be used by many users at the same time.
These issues may pose serious challenges on the feasibility of
building mashups in a live fashion. This is because the live
mashup development process requires continuous execution of
the same mashup, and thus there is a risk of exceeding the call
rate limit of the constituents components.

3



Run-time and compiler caching adopted by NaturalMash
architecture allows partial execution of the mashup, which
further addresses service call rate limit problem. Also,
the NaturalMash engine is aware of components with
call rate limit from the meta-data already provided in the
NaturalMash component model. Therefore, if a component
is about to reach its limit, NaturalMash force-freezes its
reexecution. Also, we advocate component providers to use
OAuth (http://oauth.net/), as opposed to developer keys, to
identify the source calls. The advantage is that, the call limit
is uniquely allocated to each user of the mashup tool and is
not shared by all the users.

• Making the most of the provided screen space. The
advantage of live programming is even more pronounced when
both the output and design perspectives are visible at the
same time. Therefore, a tab-based environment might not be a
proper design option. Depending on the interaction techniques
utilized by the live mashup tools, it might become challenging
to integrate both the design and output perspectives into the
same user interface without compromising the usability of
the tool. For instance, a visual wiring language alone (design
perspective) requires a relatively large space for diagrams to
be understandable. To cope with the limited screen space prob-
lem, in NaturalMash we took advantage of the compactness
and monodimensionality of text. Also the output perspective
can be maximized at any time to give further space to work
with the WYSIWYG output.

V. RELATED WORK

Supporting live programming in general EUD was first
encouraged by [7]. In the mashup area, the trend towards live
mashup tools was first predicted in our previous work [4]. Intel
MashMaker [11] was among the first mashup tools that went
“live”. However, non of the previous work completely studied
“live mashup tools” as a research topic. We believe this work
provides a roadmap towards further research and development
in this area.

Yahoo! Pipes (http://pipes.yahoo.com/) and Microsoft
Popfly (shut down in 2009) are/were among the first-
generation mashup tools based on the wiring interaction
technique. NaturalMash uses a hybrid interaction tech-
nique combining natural language programming, WYSIWYG,
and PbD. Related to NaturalMash are also WYSIWYG
spreadsheets tailored for mashup development [16]. These can
also be classified as superimposed. Instead of expressions and
formulas, NaturalMash uses natural language to give a
description of the composition logic.

VI. CONCLUSION

EUD tools, such as mashup tools, can largely benefit from
the live programming style. To this end, we introduced live
mashup tools as a class of mashup tools adopting the live
programming style. We provided a classification of them,
enumerating how some existing mashup tools fit into the pro-
posed categories (distinct, coincident, and superimposed). We
outlined the challenges and opportunities for further research

in the area of live mashup tool and exemplified them in the
context of NaturalMash, a live mashup tool we have been
building in the past few years with promising feedback from
its user community. We expect to see more and more mashup
tools adopt the live programming style in the future.

All in all, we believe liveness is an important feature that
should be integrated in any kind of programming environ-
ment, from end-user programming to professional program-
ming [17]. Most of the concepts presented in this paper can
also be generalized to general purpose programming.

ACKNOWLEDGEMENTS

The work presented in this paper has been supported by the
Swiss National Science Foundation with the SOSOA project
(SINERGIA grant nr. CRSI22 127386).

REFERENCES

[1] H. Lieberman, F. Paternò, M. Klann, and V. Wulf, “End-User Develop-
ment: An Emerging Paradigm,” in End User Development. Springer
Netherlands, 2006.

[2] F. Casati, “How End-User Development Will Save Composition Tech-
nologies from Their Continuing Failures,” in Proc. of IS-EUD 2011,
2011.

[3] D. Benslimane, S. Dustdar, and A. Sheth, “Services Mashups: The New
Generation of Web Applications,” IEEE Internet Computing, vol. 12,
pp. 13–15, 2008.

[4] S. Aghaee, M. Nowak, and C. Pautasso, “Reusable Decision Space for
Mashup Tool Design,” in Proc. of EICS 2012, 2012.

[5] N. Collins, A. McLean, J. Rohrhuber, and A. Ward, “Live Coding in
Laptop Performance,” Org. Sound, vol. 8, pp. 321–330, 2003.

[6] D. A. Norman and S. W. Draper, User Centered System Design; New
Perspectives on Human-Computer Interaction. L. Erlbaum Associates
Inc., 1986.

[7] A. Repenning and A. Ioannidou, What Makes End-User Development
Tick? 13 Design Guidelines. Springer Verlag, 2006.

[8] S. L. Tanimoto, “VIVA: A visual language for image processing,” J.
Vis. Lang. Comput., vol. 1, pp. 127–139, 1990. [Online]. Available:
http://dx.doi.org/10.1016/S1045-926X(05)80012-6

[9] J. Yang, J. Han, X. Wang, and H. Sun, “MashStudio: An On-the-
fly Environment for Rapid Mashup Development,” in Internet and
Distributed Computing Systems. Springer Berlin Heidelberg, 2012.

[10] V. Hoyer, F. Gilles, T. Janner, and K. Stanoevska-Slabeva, “SAP
Research RoofTop Marketplace: Putting a Face on Service-Oriented
Architectures,” in Proc. of SERVICES 2009, 2009. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1590963.1591531

[11] R. Ennals, E. Brewer, M. Garofalakis, M. Shadle, and P. Gandhi, “Intel
mash maker: join the web,” SIGMOD Rec., vol. 36, pp. 27–33, 2007.

[12] G. Tummarello, R. Cyganiak, M. Catasta, S. Danielczyk, R. Delbru, and
S. Decker, “Sig.ma: Live views on the Web of Data,” Web Semantics:
Science, Services and Agents on the World Wide Web, vol. 8, pp. 355 –
364, 2010.

[13] S. Aghaee and C. Pautasso, “EnglishMash: usability design for a natural
mashup composition environment,” in Proc. of ComposableWeb 2012,
2012.

[14] A. Cypher, D. C. Halbert, D. Kurlander, H. Lieberman, D. Maulsby,
B. A. Myers, and A. Turransky, Eds., Watch what I do: programming
by demonstration. MIT Press, 1993.

[15] R. Krahn, D. Ingalls, R. Hirschfeld, J. Lincke, and K. Palacz, “Lively
Wiki A Development Environment for Creating and Sharing Active
Web Content,” in Proc. of WikiSym 2009, 2009. [Online]. Available:
http://doi.acm.org/10.1145/1641309.1641324

[16] D. D. Hoang, H.-y. Paik, and B. Benatallah, “An Analysis of
Spreadsheet-based Services Mashup,” in Proc. of ADC 2010, 2010.

[17] A. J. Ko, R. Abraham, L. Beckwith, A. Blackwell, M. Burnett, M. Erwig,
C. Scaffidi, J. Lawrance, H. Lieberman, B. Myers, M. B. Rosson,
G. Rothermel, M. Shaw, and S. Wiedenbeck, “The State of the Art
in End-user Software Engineering,” ACM Comput. Surv., vol. 43, pp.
21:1–21:44, 2011.

4


