End-User Programming for Web Mashups
Open Research Challenges

Saeed Aghaee and Cesare Pautasso*

Faculty of Informatics, University of Lugano, Switzerland
first.last@usi.ch
http://www.pautasso.info/

Abstract. Mashup is defined as the practice of lightweight composi-
tion, serendipitous reuse, and user-centric development on the Web. In
spite of the fact that the development of mashups is rather simple due
to the reuse of all the required layers of a Web application (functionality,
data, and user interface), it still requires programming experience. This
is a significant hurdle for non-programmers (end-users with minimal or
no programming experience), who constitute the majority of Web users.
To cope with this, an End-User Programming (EUP) tool can be de-
signed to reduce the barriers of mashup development, in a way that even
non-programmers will be able to create innovative, feature-rich mashups.
In this paper, we give an overview of the existing EUP approaches for
mashup development, as well as a list of open research challenges.

1 Introduction

Facilitating software development from reusable components has always been
one of the priorities in software engineering [1]. Recently, the proliferation of
reusable Web resources, in the form of Web APIs, Web widgets, and Web data
sources, has again brought up the notion of reuse within Web engineering with
the advent of Web mashups.

The key characteristic of mashups, distinguishing them from other forms of
service and software composition, lies in a development approach being carried
out in a lightweight manner, in which simplicity and usability are more of a
priority than quality and completeness [2]. This enables end-user composition
activities, in which ordinary Web users are themselves the developers of creative
mashups, which can fulfill their personal needs, and can be rapidly adapted as
soon as their situational needs change [3]. However, developing mashups still
requires significant technical skills. These range from knowing how to reuse
components, to at least a basic understanding of programming and familiar-
ity with Web technologies. Yet, such skills by definition are not mastered by
non-programmers.

To address the above challenges, one solution is to reuse and adapt exist-
ing mashups that, thanks to directories such as ProgrammableWeb [4], can be

* PhD supervisor



easily discovered and shared. However, this should be complemented by lever-
aging End-User Programming (EUP) [5] to reduce the complexity of mashup
development as much as possible, to the extent that even non-programmers can
develop and share their desired mashups. In doing so, mashups can reach their
full potential to serve as user-centric situational applications on the Web, from
which the vast majority of Web users can benefit.

Our research objective is to design, implement, and evaluate a EUP approach
for mashups that satisfies the following two requirements. 1) supporting the needs
and abilities of non-programmers. 2) enabling creation of any types of mashup
that can be developed using manual approaches (i.e. programming and scripting
languages). To this end, in the rest of the paper, we will provide a brief survey
of existing EUP approaches for mashups, and further discuss a number of open
challenges, which are not yet fully solved by the state of the art.

2 Overview of Existing EUP Approaches for Mashups

The research efforts behind the design of EUP approaches for mashups (so-called
"mashup tools”) have resulted in the growth of this field as an interesting re-
search topic spanning areas including Model-Driven Development (MDD) [6],
programming languages [7], software and service composition [§], and Human-
Computer Interaction (HCI) [9]. Existing mashup tools can be classified accord-
ing to the EUP technique [10] they utilize as follows:

— Spreadsheets. The advantage of using spreadsheets for creating mashups
lies in its ease-of-use, intuitiveness, and expressive power to represent and man-
age complex data [11]. Mashroom [12] adapts the idea of spreadsheets and adds
the nesting tables feature to support complex data formats such as XML and
JSON. Husky [13] is also another spreadsheet-based tool aiming at streamlining
service composition. However, the main shortcoming of such tools is the lack of
support for designing the mashup User Interface (UI).

— Programming by Demonstration (PbD). PbD enables users to teach
a system to do a task by demonstrating how the task is done [14]. Intel Mash
Maker (IMM) [15] utilizes PbD to extract, store, manage, and integrate data
from the Websites being browsed by the user. Vegemite [16] is another browser-
based tool like IMM which adds scripting capabilities. The use of scripting allows
users to augment and operate the extracted data. The focus of these tools are
more on data extraction and visualization, and therefore, they do not provide
support for service composition and orchestration.

— Domain-Specific Language (DSL). DSLs are small languages targeted
for solving certain problems in a specific domain. DSLs can also be used as a EUP
technique for reducing programming efforts [17]. The Enterprise Mashup Markup
Language (EMML) [18] is a DSL based on XML for creating mashups. It supports
variety of components as well as the use of scripting languages. Swashup [19] is
also another DSL for mashups, based on Ruby-on-Rails. It simplifies invocation,
and integration of Web APIs and data sources. Though these DSLs help to



reduce programming efforts, they still can not be used by non-programmers due
to the difficulty of learning their syntax and vocabulary [14].

— Visual Programming. Programming languages can also be expressed
by visual symbols and graphical notations [20]. Visual programming is widely
used by existing mashup tools in the form of wiring diagrams, in which users
drag-and-drop mashup components (visualized as boxes) and connect them to
form a mashup. Examples are Yahoo Pipes (YP) [21], IBM Mashup Center
(IMC) [22], ServFace [23], and Presto Cloud [24]. The main problem of these
tools, according to a recent study conducted by Namoun et. al., is the fact that
the wiring paradigm is difficult to understand by non-programmers [25].

— Model-based Automation. This is concerned with automatically cre-
ating mashups based on knowledge about the user and the context in which she
operates. Due to the fact that there is much more work on the tool side, this
technique best serves the needs of non-programmers. The framework proposed
by Carlson et. al. automatically creates mashups out of non-web service com-
ponents [26]. Bakalov et. al., on the other hand, present an automatic mashup
generation framework that is also capable of composing Web services (REST and
SOAP) [27]. As described in [5], the problem of this technique lies in the high
risk of generating irrelevant mashups with respect to the given requirements.

3 Open Research Challenges

— Simplicity and Expressive Power Tradeoff. When it comes to cre-
ate complex mashups, the majority of existing mashup tools are not powerful
enough. This can be witnessed by the fact that most of the registered mashups
in the ProgrammableWeb are all developed using general-purpose Web scripting
languages. If these are called real mashups, the majority of current EUP tools
are limited to creating toy mashups that are not as feature-rich. On the other
hand, increasing the expressive power of mashup tools (e.g., DSLs) can poten-
tially result in a decrease in simplicity (gentle learning curve, and ease-of-use).
Hence, the major challenge is to cope with this tradeoff.

— Mashup Components Heterogeneity. Mashup components are hetero-
geneous in terms of the technology through which they are made accessible. They
can be classified into Web APIs, Web widgets, and Web data sources. Within
enterprises, another class of mashup components may encompass legacy services
such as databases, Plain Old Java Object (POJO), and Enterprise Java Beans
(EJB). The challenge is how to abstract all these heterogeneous components in
a way that facilitates their seamless composition.

— Mashup Composition Techniques. The development of mashups con-
sists of Process Integration (PI), Data Integration (DI), and UT integration [28].
PI forms the logic of mashup by composing the functionality obtained from Web
APIs. Ul integration creates the visual front-end, by which users interact with
the mashup. This is obtained through integration of various widgets [29]. The
underlying data model of the mashup is obtained by the integration of two or



more remote data sources [30]. A challenge for mashup tools is to fully support
development within all of these three levels.

— Mashup Evolution. Mashup evolution can be caused by two reasons.
The first is the change in the user requirements, which forces the mashup to be
reengineered to meet the new ones [31]. The other is the evolution of the building
blocks of the mashup, that in case of Web services is very likely to happen. From
the mashup EUP perspective, this has however remained a challenging matter.

— Online Communities. Empowering end-user communities is of value in
the area of EUP [5]. With the growth of the Web 2.0, online communities and
social networks can be used to promote sharing of mashups, technical discussion,
and collaborative categorization [32]. Yet, only a few mashup tools, such as YP,
offer online communities. Moreover, the potential of these communities to enable
mashup development as a collaborative process has still to be fully exploited.

4 Conclusion and Future Work

This paper provides an overview and classification of existing approaches and
open research challenges for enabling EUP for mashups. Our future research will
be geared towards addressing these challenges by designing, implementing, and
evaluating a novel mashup tool. To do so, we will utilize a User-Centered Design
(UCD) methodology [33], in which the end-user needs and feedback affect every
step of the design process. Getting closer to the mindset of the end-users can
help with the design of a more natural and powerful EUP tool for mashups [34].

References

1. Mcllroy, D.: Mass-produced Software Components. In: Software Engineering Con-
cepts and Techniques, NATO Science Committee (1969) 138-155

2. Yu, J., Benatallah, B., Casati, F., Daniel, F.: Understanding Mashup Development.
IEEE Internet Computing 12 (2008) 44-52

3. Anderson, C.: The Long Tail: Why the Future of Business Is Selling Less of More.
Hyperion (2006)

4. ProgrammableWeb. (Available at http://www.programmableweb.com/)

5. Nardi, B.A.: A Small Matter of Programming: Perspectives on End User Comput-
ing. MIT Press (1993)

6. Bozzon, A., Brambilla, M., Facca, F.M., Carughu, G.T.: A Conceptual Modeling
Approach to Business Service Mashup Development. In: Proc. of ICWS 2009.
(2009)

7. Ennals, R., Gay, D.: User-Friendly Functional Programming for Web Mashups. In:
Proc. of ICFP 2007. (2007)

8. Lopez, J., Bellas, F., Pan, A., Montoto, P.: A Component-Based Approach for
Engineering Enterprise Mashups. In: Proc. of ICWE 2009. (2009)

9. Wong, J., Hong, J.: What do we "mashup” when we make mashups? In: In Proc.
of WEUSE 2008. (2008) 35-39

10. Myers, B.A., Ko, A.J., Burnett, M.M.: Invited Research Overview: End-User Pro-
gramming. In: Proc. of CHI 2006. (2006)



11.

12.

13.

14.

15.

16.

17.

18.
19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Hoang, D.D., Paik, H.y., Benatallah, B.: An Analysis of Spreadsheet-Based Services
Mashup. In: Proc. of ADC 2010. (2010)

Wang, G., Yang, S., Han, Y.: Mashroom: End-User Mashup Programming Using
Nested Tables. In: Proc. of WWW 2009. (2009)

Husky. (Available at http://www.husky.fer.hr/)

Cypher, A., Halbert, D.C., Kurlander, D., Lieberman, H., Maulsby, D., Myers,
B.A., Turransky, A., eds.: Watch What I Do: Programming by Demonstration.
(1993)

Ennals, R., Brewer, E., Garofalakis, M., Shadle, M., Gandhi, P.: Intel Mash Maker:
Join the Web. SIGMOD Rec. 36 (2007) 27-33

Lin, J., Wong, J., Nichols, J., Cypher, A., Lau, T.A.: End-User Programming of
Mashups With Vegemite. In: Proc. of IUI 2009. (2009)

Prahofer, H., Hurnaus, D., Méssenbock, H.: Building End-User Programming Sys-
tems Based on Domain-Specific Language. (2006)

EMML. (Available at http://www.openmashup.org/)

Maximilien, E.M., Wilkinson, H., Desai, N., Tai, S.: A Domain-Specific Language
for Web APIs and Services Mashups. In: Proc. of ICSOC 2007. (2007)

Shu, N.C.: Visual Programming. Wiley (1992)

Yahoo Pipes. (Available at http://pipes.yahoo.com/pipes/)

IBM Mashup Center. (Available at http://www.ibm.com/software/info/mashup-
center)

Nestler, T., Feldmann, M., Hubsch, G., Preussner, A., Jugel, U.: The ServFace
builder - A WYSIWYG Approach for Building Service-Based Applications. In:
Proc. of ICWE 2010. (2010)

Presto Cloud. (Available at http://www.jackbe.com/enterprise-mashup/)
Namoun, A., Nestler, T., Angeli, A.D.: Service Composition for Non-programmers:
Prospects, Problems, and Design Recommendations. In: Proc. of ECOWS 2010.
(2010)

Carlson, M.P., Ngu, A.H., Podorozhny, R., Zeng, L.: Automatic Mash Up of Com-
posite Applications. In: Prof. of ICSOC 2008. (2008)

Bakalov, F., Konig-Ries, B., Nauerz, A., Welsch, M.: Ontology-Based Multidi-
mensional Personalization Modeling for the Automatic Generation of Mashups in
Next-Generation Portals. In: Proc. of ONTORACT 2008. (2008)

Hanson, J.J.: Mashups: Strategies for the Modern Enterprise. Addison-Wesley
Professional (2009)

Daniel, F., Yu, J., Benatallah, B., Casati, F., Matera, M., Saint-Paul, R.: Under-
standing UT Integration: A Survey of Problems, Technologies, and Opportunities.
IEEE Internet Computing 11 (2007) 59-66

Di Lorenzo, G., Hacid, H., Paik, H.y., Benatallah, B.: Data Integration in Mashups.
SIGMOD Rec. 38 (2009) 59-66

Dorn, C., Schall, D., Dustdar, S.: Context-aware adaptive service mashups. In:
Proc. of APSCC 2009. (2009)

Grammel, L., Storey, M.A.: An End User Perspective on Mashup Makers. Technical
report, University of Victoria (2008)

Vredenburg, K., Mao, J.Y., Smith, P.W., Carey, T.: A Survey of User-Centered
Design Practice. In: Proc. of CHI 2002. (2002)

Myers, B.A., Pane, J.F., Ko, A.: Natural Programming Languages and Environ-
ments. Commun. ACM 47 (2004) 47-52



