
The Mashup Component Description Language

Saeed Aghaee
Faculty of Informatics, University of Lugano (USI)

via Buffi 13, 6900 Lugano, Switzerland
saeed.aghaee@usi.ch

Cesare Pautasso
Faculty of Informatics, University of Lugano (USI)

via Buffi 13, 6900 Lugano, Switzerland
c.pautasso@ieee.org

ABSTRACT
Mashups can be seen as the result of software composition
applied to the Web. One of the characteristics of mashup
development is the heterogeneity of its building components
in terms of logical layering (e.g., user interface, applica-
tion logic, and data), access method (e.g., REST, SOAP),
and composition technique (e.g., scraping vs. clipping, syn-
chronous vs. asynchronous interaction, discrete vs. stream-
ing). This poses a challenge towards the design of mashup
tools aiming at lowering the barriers of mashup develop-
ment, as this heterogeneity needs to be abstracted. In this
paper, we address this challenge by proposing a new JSON-
based domain-specific language for describing heterogeneous
mashup components, called the Mashup Component De-
scription Language (MCDL). MCDL lies at the core of a
meta-model for mashup component modeling, and can be
used for component discovery and classification but also for
user-centric mashup development as it decouples the inter-
face of a mashup component from its underlying implemen-
tation technologies.

Categories and Subject Descriptors
H.3 [INFORMATION STORAGE AND RETRIEVAL]:
Online Information Services—Web-based Services

General Terms
Standardization, Languages

Keywords
Mashup, Mashup Components, Component Model, Language

1. INTRODUCTION
Mashups are built by composing multiple components of

different types: Web services, Web data sources and Web
widgets. Not only mashup components may span all tiers
(user interface, application logic, and data) of a Web infor-
mation system [23], but within each tier they need to be

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

iiWAS2011, 5-7 December, 2011, Ho Chi Minh City, Vietnam.

Copyright 2011 ACM 978-1-4503-0784-0/11/12 ...$10.00.

composed using various techniques (e.g., Web scraping [18],
Web clipping [19], synchronous remote/local service invoca-
tion, asynchronous interaction or subscription to feeds and
data streams). Furthermore, different mashup components
can be made accessible through different access methods and
technologies (e.g., POX, REST [17], or SOAP). To build
a mashup out of such heterogeneous components, all these
skills thus should be mastered by the developer.

For this reason, one of the main challenges of mashup tools
consists of abstracting away such heterogeneity behind a uni-
form, and easy-to-understand component meta-model [1]. A
uniform meta-model adapts heterogeneous mashup compo-
nent interfaces to a common interface, and its aspect of being
easy-to-understand is thus defined by how much its interface
conceals the information about the underlying component
technologies. This challenge is not fully addressed by the
state-of-the art mashup tools as the majority of them do
not support all types of mashup components [2].

To address these challenges, in this paper we propose a
meta-modeling approach for heterogeneous mashup compo-
nents that forms the basis for a novel domain specific lan-
guage, called the Mashup Component Description Language
(MCDL). MCDL is rendered using the JSON syntax and
supports various composition styles of mashup components.
Moreover, it allows to completely encapsulate an executable
representation of a component into an abstract interface
with only minimal technical aspects.

The above characteristics position MCDL as a comprehen-
sive specification that can potentially be used as a standard
by component providers. With the increasing number of ex-
isting mashup tools(e.g., [9], [7], and [13]), a standard com-
ponent meta-model can potentially facilitate portability of
components between them. With this, component discovery
will not be bound to the local library of a single mashup tool.
Instead, a shared repository, that can be easily accessed by
component providers, can be established.

The rest of this paper is organized as follows. In the next
section we present our meta-model for mashup components.
Based on the proposed meta-model, in Section 3 we intro-
duce and explain our MCDL language. Section 4 is ded-
icated to review the related work before we conclude the
paper in Section 5.

2. MODELING MASHUP COMPONENTS
A model is a “representation of reality intended for some

definite purposes” [15]. The power of models lies in their
ability to abstract and unify heterogeneity of the target re-
ality [5]. A meta-model, in turn, is a language that defines

-name
-description

Event

-name
-description

Task

-name
Wrapper

+name
-value
-type/MIME-type

ParameterMapper destination (input)

source (output)

1..*

1..*

source (input)
destination (output)

1..*

1..*

destination (output)

1..*

Rule

Rule

+input

+output

+output

0..*

0..*0..*

-name
Interface

0..*

1..*

Rule

-name
-value

Property
0..*

Figure 1: A meta-model for mashup components

the characteristics of a model. One important character-
istic of models that conform to a meta-model is that they
can be composed with each other as they follow the same
ontology [4].

We depict the meta-model as a UML class diagram (Fig-
ure 1), whose main classes as well as the containment and
reference relationships existing between them will be de-
scribed in the rest of this section. The six classes of the
meta-model (interface, task, event, parameter, mapper, and
wrapper) form two layers of abstraction on top of a given
mashup component. The first and underlying layer is pro-
vided by the wrapper class which models various invocation
and composition styles of mashup components. The second
layer is achieved through the interface class which contains
the event and task classes, which, in turn, contain the pa-
rameter class. This layer provides a homogeneous, easy-to-
understand interface concealing the underlying technological
heterogeneity. The connection between these two layers is
thus modeled with the mapper class.

2.1 Interface
The interface class is the main element of the meta-model,

which mediates interactions between mashup components
and their environment (i.e., the mashup that composes the
components). This is done through a set of tasks, and events

attached to their interfaces. An interface can also have a set
of properties which jointly identify the mashup component
that is supposed to be modeled. For instance, such proper-
ties of a given component are exemplified by its component
publisher, a brief human readable description of its func-
tionality, and the version under which it is modeled.

2.2 Task and Event
The task and event classes represent the passive and ac-

tive behavior of a given mashup component. The task class
models the functional behavior of a mashup component. It
both represents the synchronous invocation of a component’s
functionality (such as a call to a remote Web API) or a data

source that generates some output given a set of input data.
From the control flow point of view, such behavior is con-
sidered passive inside a mashup, as the corresponding com-
ponent is executed only when the control reaches it. The
task class may contain abstract parameters associated to its
input and output ports. Input parameters should be filled
with values before the invocation. The output parameters
will eventually store the result of the invocation if it does
not throw any exception.

Whereas the execution of tasks is driven by the mashup,
events fire independently of the mashup. They can be used
to represent sources of streaming data as well as user inter-
actions with a Web widget included in the mashup. Events
may produce output data in their associated output port
parameters, even if it is possible to model signal-like events
which do not carry data but are nevertheless used to trigger
the execution of other tasks.

2.3 Parameter
The input and output data parameters bound to tasks

and events are represented by the parameter class. This
class includes a mandatory attribute holding the name of
the parameter. The optional value attribute contains the
default value for the parameter. The parameter class has
also a type attribute whose value can be one of the basic
JSON types (string, boolean, number, array, object, and
null). Alternatively, it can be used to store the MIME type
of the data. The MIME types are registered in the IANA
(Internet Assigned Numbers Authority) media types repos-
itory. For example: text/plain, or application/rss+xml
exemplify valid MIME types. Parameter types can be fur-
ther extended to model semantic meta-data.

2.4 Wrapper
The wrapper class is responsible for modeling different

types of mashup components, distinguished by the technol-
ogy for their invocation and utilization (Figure 2). The
wrapper classes are organized into a hierarchal inheritance

-name
Wrapper

+style
Widget

+endPoint
+mode

Service
+streaming

Data Source

+type
+inMessage
+methodName
+outMessage

RPC
+ID
+extScript
+initScript

DIV
+cutFrom
+cutTo

IFrame

+script
Function

+initEvent
+callback

Event
0..* 0..*

+call
+onEvent()

+show()
+hide()
+restyle()

T

I
I

I
I
I

I

E

I
I
I

I
I

I
I

I
T

+type
+server
+port
+user
+pass
+database
+script
+prepare
+interval
+data

Database
I
I
I
I
I
I
I
I

O

src

1

I : Input O : Output T: Task E: Event

O

+invoke()
+stopStreaming()
+onUpdate()

T
E

+invoke()
+onReceive()

T
E

+WSDL
+portType

SOAP
I
I

+method
+requestHeader
+request
+WADL
+responseHeader
+response
+status

HTTP/REST
I
I
I

O
O

I

+frequency
Web Feed

src 1

I

I

I

O

TT

function
event

T

Figure 2: Wrapper hierarchy

structure. At the top of the hierarchy is the abstract wrap-
per class, which is inherited by three subclasses each of which
corresponds to a different type of mashup component: wid-
get, data source, and service.

The three wrappers (widget, service, and data source)
have, in turn, a set of subclasses that are called wrapper

types. Each of these types is associated with a single spe-
cific technology. For instance, the database class, which is
a wrapper type defined under data source, is used to model
the interaction with a database. To fully model a mashup
component may require more than one wrapper types de-
pending on how many different technologies are required for
invoking the target mashup component.

The wrapper types store specialized configuration data
structures adhering to the characteristics defining the inter-
action with different mashup components at runtime. Such
data structures include as a set of attributes, that are con-
ceptually grouped into input, and output, as well as a number
of operations, that operate on the attributes, and are inter-
preted as either task or event. A task operation operates on
both input and output attributes. For instance, most of the
wrapper types have the invoke operation which takes the
input attributes, invokes the corresponding mashup compo-
nent, and will return the output attributes if the component
invocation succeeds. A task can initiate (as a class contrac-
tor) or terminate (as a class desctructor) its corresponding
component life-cycle, which is a subset of the target mashup
execution life-cycle.

An event operation, on the other hand, operates only on
output attributes. Basically, it is bound to a wrapper in-
ternal action or event whose occurrence causes its execu-
tion. Therefore, the implementation and interpretation of
an event may differ from one wrapper type to another. For
instance, in the database wrapper, the acquisition of new
data triggers the execution of onUpdate event, whereas in
the DIV wrapper an event (onEvent) is triggered by the
user interaction with the component visual interface, and is

implemented using the callback mechanism in JavaScript.
Events are only triggered during the active part of a com-
ponent life-cycle.

It should be noted that the attributes and operations of a
wrapper type are predefined according to the technology the
wrapper is intended to model, as opposed to task, event, and
parameter objects that are defined by the user, though they
will be eventually mapped to the wrapper types through the
mapper class.

2.4.1 Widget
A Web widget is a form of mashup components provid-

ing a mashup with independent visual presentation of its
underlying aggregate data. Some widgets may also give a
mashup access to reusable pieces of functionality or data.
A widget life-cycle starts with calling the show task, which
initializes all input attributes with value, and ends when the
hide task is called. During this life-cycle, the restyle task
can be called multiple times to change the value of the style
attribute containing a valid CSS stylesheet.

• DIV. A DIV widget is created on the client-side using
external and internal JavaScript code. This kind of widgets
is well exemplified by Google Maps APIs offering an external
JavaScript library to build customized map visualizations.
The ID attribute of the wrapper type specifies the actual ID
of the DIV element that is supposed to contain the widget.
The URL pointing to the external JavaScript libraries can
be inserted as the value of the extScript attribute. The
InitScript attribute needs to be set by the JavaScript code
that actually wraps the widget in the DIV element.
The Function class models JavaScript functions. This class
has a task operation (call) that executes the script spec-
ified in the script attribute. The operation can be then
associated to a n interface task whose parameters can be
mapped and used inside the code as regular variables using
the template rule (see Section 2.5).

In addition to functions, a DIV wrapper can have a set
of event objects which represent events in JavaScript. In
JavaScript, events are handled through the callback mecha-
nism, in which a callback function is called whenever its cor-
responding event has occurred. The declaration and imple-
mentation of the callback function is the value of callback
attribute. The script that attaches the callback function
to the event should be then inserted as value of initEvent
attribute.

• IFrame. IFrame widgets are used to embed HTML-
based User Interface (UI) contents from a remote Website,
partially (i.e., Web clipping) or completely. The value of
src attribute is a HTTP wrapper used to fetch the Website
(with Get method) that is to be embedded inside the target
container. In case of Web clipping, the CutFrom attribute
contains the starting point of the clipping process that can
be a piece of string which matches a part of the target Web-
site HTML code. Likewise, the CutTo attribute represents
the ending point of the cutting process. For instance, cutting
a table from a website in the simplest case requires setting
<table and table> as the values of respectively the cutFrom
and cutTo attributes.

2.4.2 Data Source
A data source provides remotely accessed content on the

Web. Data coming from remote sources can also have a real-
time essence. In this case, the wrapper allows the streaming
of data from a data source by setting the streaming at-
tribute to true. This should be done through the first call
to the invoke task which initiates all the input attributes
and starts the component life-cycle. If streaming is not en-
abled, the component life-cycle ends as soon as the response
from the invoke task arrives. Otherwise, it will only end by
calling the stopStreaming task. Moreover, while streaming
is activated, the onUpdate event is fired whenever a new data
stream item is available.

• Database. The support for databases is achieved through
the use of the database class. A database can also be used
to generate a stream of data. In the simplest case (which
is the only case supported by our meta-model), this can be
done by running a query (script) in a given time interval.
This interval is a value of the interval attribute, and its
length is a factor of how fast the target data changes.

• Web Feed. Web feeds are popular components for
building various data mashups, which are usually delivered
in RSS/Atom formats. Feeds can be consumed as a contin-
uous stream of data using a technique called polling. Using
this technique, the feeds are periodically checked for up-
dates. The feed wrapper type uses the frequency attribute
to specify the update interval.

2.4.3 Service
Services are reusable modular business logic that are made

available to remote clients through a URL ("endPoint").
The interaction between a client and a service provider (mode)
can be either blocking, in which the invocation of the service
(by calling invoke()) must wait until the response is ready
before it can proceed, or non-blocking, in which the client
invokes the service and registers a callback (onReceive())
to be triggered whenever the response comes back.

• RPC/SOAP. The three popular forms of Remote Pro-
cedure Call (RPC) are SOAP, XML-RPC [21], and JSON-
RPC [11]. All of these protocols run over the HTTP or se-

cure HTTP (HTTPS), except for SOAP messages that can
be also transmitted over SMTP and other protocols. The
protocol in use, therefore, can be found at the URL to the
service endpoint ("endPoint"). To communicate requests
(inMessage) and responses (outMessage), JSON-RPC mes-
sages use JSON, whereas SOAP and XML-RPC messages
are encoded as XML. To determine the type of the RPC
service, the type attribute can be set to "SOAP", "XML-RPC",
or "JSON-RPC". In case of SOAP, a service usually comes
with a Web Services Description Language (WSDL) doc-
ument (WSDL attribute), which defines the service interface.
In case that the interface contains more than one port types,
PortType specifies the desired one.

• HTTP/REST. HTTP is the communication protocol
used on the Web. Following the constraints of the REST
architectural style, it is used for stateless client-server inter-
action with Web servers by sending and receiving hyperme-
dia documents (e.g., XML, HTML, etc.) via four methods
(GET, POST, PUT, and DELETE). The HTTP commu-
nication mechanism is based on request and response mes-
sages, each of which is decomposed into a header (request-
Header and responseHeader) and a body (request and re-
sponse). HTTP/REST services may have a Web Appli-
cation Description Language (WADL) document (WADL at-
tribute), in a similar manner as SOAP services, with the
difference that it is not yet widely accepted as WSDL.

2.5 Mapper and Rule
The mapper class serves as a mechanism providing a link

between the predefined tasks and events of a wrapper type
and the tasks and events attached to an interface by defin-
ing how their corresponding wrapper attributes and abstract
parameters are mapped to each other. This class contains
two attributes: destination, and source, which hold a ref-
erence to parameters and wrapper attributes respectively or
vise versa, depending on the mapping direction.

Using the mapper class, abstract parameters can be passed
from an abstract interface as input to a wrapper task oper-
ation which controls the technology-dependent invocation
of its corresponding mashup component. Likewise, the at-
tributes holding the result of the invocation task or the data
associated with an event operation are transformed to the
abstract interface as abstract parameters. To do so, the rule
class is used to designate how the mapping from a source
to its destination should be accomplished. This class con-
tains three subclasses each of which represents a specific rule
prescribed for a particular purpose: correspond, template,
and parser.

• Correspond. A one-to-one association between a source
and its destination can be enabled by the correspond rule.
In doing so, the value of the source is exactly copied to its
destination parameter. This requires both source and desti-
nation have the same data type, or otherwise be implicitly
convertible. For instance, the numerical type or the ma-
jority of Media types (such as XML, JSON, etc.) can be
converted to the string type. For example, User and Pass
attributes of database wrapper can be set at run-time by
an abstract task taking two input parameters of string type,
which are mapped with a one-to-one correspondence to these
attributes.

• Template. The template rule can be selected to corre-
spond multiple sources to single destination through a tem-
plate. This template string consists of the value which is

 "input": [
 {"name": "", "value": ""}
]
 }],

 "mapper": [
 {"source" : ["ref"],
 "destination" : [{"name":"ref",
 "correspond":"ref" |
 "template":"" |
 "parser":{ "language":"",
 "query":""}}]
 }]
}}

{ "Interface": {
 "name":"",
 "property":[
 {"name":"", "value":""
 }],

 "task": [
 {"name": "",
 "description":"",
 "input": [
 {"name": "", "value": "",
 "type": "" | "mime-type": ""}
],
 "output": [
 {"name": "", "value": "",

 "type": "" | "mime-type": ""}
]
 }],

 "event": [
 {"name": "", "description":"",
 "output": [
 {"name": "", "value": "",
 "type": "" | "mime-type": ""}
]
 }]
 },

 "service_wrapper": [
 {"type":"", "name":"",

 "input": [
 {"name": "", "value": ""}
]
 }],

 "datasource_wrapper": [
 {"type":"", "name":"",
 "input": [
 {"name": "", "value": ""}
]
 }],

 "widget_wrapper": [
 {"type":"", name":"",

Figure 3: JSON schema for MCDL

supposed to be assigned to the destination parameter, as
well as a set of placeholders distributed within the string
value. These placeholders are represented as pairs of open-
ing and closing brackets, each of which contains the name of
a single source parameter or attribute which will be replaced
with its value at runtime (i.e., during the execution of the
component). One frequent use of the template rule is for
passing URL parameters (when the corresponding WADL
document is not present). Consider invoking the Twitter
search API with the HTTP wrapper. Using the template
rule we can pass a source parameter to the URL attribute
of the HTTP wrapper as follows.
http://search.twitter.com/search.atom?q={source}
Where source refers to the name of the source parameter.

• Parse. The parse rule entails splitting a source to mul-
tiple values and further associating these values to destina-
tions. This rule supports different query languages. A query
written in a specified language, is used for extracting the
value of the destination from its source. The language can
be one of XPath, exclusively for XML-based formats (e.g.,
SOAP, RSS, ATOM, XML-RPC, etc.), or a regular expres-
sion for scraping data out of any kind of text-based formats
such as HTML or JSON. This rule is specially useful for
extracting data from MIME types such as SOAP messages,
RSS/Atom, and XML.

3. JSON SCHEMA FOR MCDL
Having mentioned the meta-model in Section 2, we can

define the JSON schema for MCDL that corresponds to the
meta-model as depicted in Figure 3. We choose to rely on
the JSON syntax not only to take advantage of many re-
lated tools and libraries but also because component libraries
specified using the MCDL language will be mainly managed
from within mashup composition tools running inside a Web
browser, where JSON is one of the most efficient data rep-
resentation and interchange formats [6].

The schema contains the meta-model classes nested as
specified in the meta-model through the use of the compo-
sition relationships. The abstract interface class is repre-
sented as interface object containing an array for defining
its properties (property), as well as two arrays: one for the
tasks (task) and another for the events (event). Parame-
ters are also defined as items of an array which is named
as output and can be included in every task or event item.

The task items can also contain another array of parame-
ters called input, since tasks in the meta-model, as opposed
to events, can also take input parameters. The parameter
items in MCDL take name, value, and type, similar to the
abstract parameter class in the meta-model.

The JSON arrays in the schema named as service_wrapper,
datasource_wrapper and widget_wrapper respectively ex-
press the service, data source, and widget wrappers in the
meta-model. Each array can have multiple items which refer
to different wrapper types defined under their meta-model
class, and are identified by the type variable which takes
the wrapper type name as a string such as "HTTP","DIV"
and "SOAP". The input attributes of a wrapper type are de-
fined in the input array, only when they should be initialized
by a constant value.

Finally, the mapper class is expressed as an array whose
items identify mapper objects. In each mapper object source
and destination make a reference to either a parameter
name or wrapper attribute. To ensure their uniqueness, ref-
erences can be prefixed with the names of the object they
belong to. This way they can also be referenced from the
mapper objects. To exemplify this, user which is an in-
put attribute of the database wrapper can be referred to
by dbwrapper.user, assuming dbwrapper is the name of the
wrapper object. Likewise, references to parameters can be
prefixed by the name of the task/event they belong to.

4. DISCUSSION AND RELATED WORK
The simple but powerful nature of mashup development

provides a suitable platform for empowering end-user pro-
gramming and composition on the Web. This is observed by
the emergence of the mashup tools aiming at reducing the
programming efforts required for mashup development down
to drag-and-drop-and-connect activities. Examples are Ya-
hoo! pipes [22], Intel Mash Maker [9], IBM Mashup Cen-
ter [10], MashArt [7], and ServFace [13].

However, the main shortcoming of these tools is that they
cannot be used to create any type of mashups. From the soft-
ware composition perspective [3], this inability is caused by
the lack of a unified approach to model all types of mashup
components. To address this challenge, in this work, we in-
troduced MCDL that not only supports existing types of
mashup components (widgets, data sources, and services)
and their corresponding implementation technologies (e.g.,

IFrame, SOAP, etc.), but also models both the active and
passive behavior of a component (i.e., events and tasks).

There are a number of related work that should be dis-
cussed here. The Enterprise Mashup Markup Language
(EMML) [8], for instance, is a XML-based standard com-
ponent meta-model for mashup components providing ser-
vices and data sources. Though it supports variety of ser-
vice and data source types, it does not include Web wid-
gets. JOpera, which is a rapid visual service composition
tool, also abstracts away variety of service types and Web
widgets behind a uniform interface [14], but fails to model
stateful event-based behavior of mashup components such
as user interaction with a widget. Concerning widgets, Yu
et. al. [24] presented a new model for UI components (i.e.,
widgets) representing the component UI-related specifica-
tions (e.g., width, heights, etc.) as well as its corresponding
tasks and events. In the same line, Wilson et. al [20] ex-
tended the widget specification language proposed by W3C
to add support for event-based behavior.

However, none of the work mentioned above offered a com-
ponent modeling approach, in which all types of mashup
components, including widgets, data sources, and services,
are supported. The work most closely related to ours is [16],
where the authors introduced a meta-model that is able to
describe not only different types of services (HTTP/REST
and SOAP) but also widgets and UI components. The main
advantage of our work lies in the complete separation of tech-
nology specific concerns (wrapper) from technology indepen-
dent concerns (interface). This in turn maximizes flexibility
of our meta-model which ensures expanding in future by
adding more wrapper types, as new technologies and stan-
dards emerge on the Web (e.g., WebSockets [12]).

5. CONCLUSION
The heterogeneity of mashup components is an impor-

tant obstacle towards developing abstract mashup composi-
tion languages. To address this challenge, in this paper we
proposed a novel meta-model for describing mashup compo-
nents which not only provides an abstract, unified interface
for mashup components, making them connectable to each
other despite their heterogeneity, but also hides their under-
lying technology-specific invocation and execution mecha-
nism from their abstract interfaces. The meta-model is then
represented by MCDL which is a domain specific language
inheriting the JSON syntax and parser.

However, our proposed meta-model does not yet support
mashups as components (composite components) as well as
components utilizing multiple wrapper types that are to be
orchestrated according to a specific workflow. The latter
case can be exemplified by Zoho API [25] in which HTTP
is used to retrieve the URL pointing to the newly created
editor that should be wrapped in an IFrame. Supporting
the above mentioned types of components is the objective
of our current work.

Acknowledgments
This work is partially funded by the Hasler Foundation un-
der the project LISA (Grant No. 11019).

6. REFERENCES
[1] S. Aghaee and C. Pautasso. End-user programming

for web mashups: Open research challenges. In Proc.

of ICWE 2011 (Doctoral Symposium), 2011.
[2] S. Aghaee and C. Pautasso. An evaluation of mashup

tools based on support for heterogeneous mashup
components. In Proc. of ComposableWeb 2011, 2011.

[3] U. Assmann. Invasive Software Composition. Springer,
Secaucus, NJ, USA, 2003.

[4] U. Assmann, S. Zschaler, and G. Wagner. Ontologies,
Meta-models, and the Model-Driven Paradigm.
Ontologies for Software Engineering and Software

Technology, pages 249–273, 2006.
[5] J. Bézivin. On the Unification Power of Models. In

Software and System Modeling, May 2005.
[6] D. Crockford. JSON: The fat-free alternative to XML.

In Proc. of XML 2006, 2006.
[7] F. Daniel, F. Casati, B. Benatallah, and M.-C. Shan.

Hosted universal composition: Models, languages and
infrastructure in mashart. In Proc. of ICCM 2009,
2009.

[8] EMML. http://www.openmashup.org/.
[9] R. Ennals, E. Brewer, M. Garofalakis, M. Shadle, and

P. Gandhi. Intel mash maker: join the web. SIGMOD

Rec., 36:27–33, 2007.
[10] IBM Mashup Center.

http://www.ibm.com/software/info/mashup-center.
[11] JSON-RPC. http://json-rpc.org/.
[12] P. Lubbers and B. Albers. Harnessing the power of

HTML5 web sockets to create scalable real-time
applications presentation. Web2.0 Expo SF, May 2010.

[13] T. Nestler, M. Feldmann, G. Hubsch, A. Preussner,
and U. Jugel. The servface builder - a WYSIWYG
approach for building service-based applications. In
Proc. of ICWE’10, 2010.

[14] C. Pautasso and G. Alonso. From web service
composition to megaprogramming. In Technologies for

E-Services, volume 3324 of LNCS, pages 39–53.
Springer, 2005.

[15] M. Pidd. Tools for Thinking: Modelling in

Management Science. Wiley, 2 edition, Mar. 2003.
[16] S. Pietschmann, V. Tietz, J. Reimann, C. Liebing,

M. Pohle, and K. Meissner. A metamodel for
context-aware component-based mashup applications.
In Proc. of iiWAS 2010, 2010.

[17] L. Richardson and S. Ruby. Restful web services.
O’Reilly, first edition, 2007.

[18] M. Schrenk. Webbots, Spiders, and Screen Scrapers.
No Starch Press, 2007.

[19] I. Smith. Doing web clippings in under ten minutes.
Technical report, Intranet Journal, March 2001.

[20] S. Wilson, F. Daniel, U. Jugel, and S. Soi.
Orchestrated user interface mashups using w3c
widgets. In Proc. of ComposableWeb 2011, 2011.

[21] XML-RPC. http://www.xmlrpc.com/.
[22] Yahoo Pipes. http://pipes.yahoo.com/pipes/.
[23] J. Yu, B. Benatallah, F. Casati, and F. Daniel.

Understanding mashup development. IEEE Internet

Computing, 12:44–52, September 2008.
[24] J. Yu, B. Benatallah, R. Saint-Paul, F. Casati,

F. Daniel, and M. Matera. A framework for rapid
integration of presentation components. In Proc. of

WWW 2007, 2007.
[25] Zoho API. https://apihelp.wiki.zoho.com/.

