
Natural End-User Development of Web Mashups

Saeed Aghaee, Cesare Pautasso
Faculty of Informatics, University of Lugano (USI), Switzerland

saeed.aghaee@usi.ch, c.pautasso@ieee.org

Antonella De Angeli
DISI, University of Trento, Italy

antonella.deangeli@unitn.it

Abstract—End-User Development (EUD) can be exploited
on the Web, where users are disposed to create niche “Web
Mashup” applications out of the composition of many existing
Web APIs to address their long tail of situational needs in
different domains of application. In this paper, we describe the
design of NaturalMash, an EUD system that enables the rapid,
on-the-fly development of mashups, thus increasing their added-
value through decreasing their development costs. NaturalMash
provides a high level of expressive power while ensuring its
usability by non-professional users. This clearly distinguishes
NaturalMash from existing EUD system for mashups that are
either too limited or highly specialized for inexperienced users.
NaturalMash is based on an efficient combination of end-user pro-
gramming techniques including natural language programming,
What You See Is What You Get (WYSIWYG), and Programming
by Demonstration (PbD). The paper describes how a formative
evaluation approach is driving the design of NaturalMash and
discusses the implications of the findings from our user studies.
The results obtained with both users and experts are promising
and suggest that the proposed system has a short and gentle
learning curve so that even non-professional users can use it to
rapidly build useful mashups.

Keywords—Mashups, End-User Development, Mashup Tools,
Natural Language Programming.

I. INTRODUCTION

With the proliferation of the Web APIs (i.e., reusable
software components published on the Web), the Web [1]
has become a highly programmable platform. A lightweight
form of Web applications that can be developed on this
platform is called mashup. Mashups are usually built in an
ad-hoc fashion by composing Web APIs and content [2].
As a result, mashups provide users with the opportunity of
rapidly satisfying their situational needs in various domains
of application [3], [4], ranging from daily utilities of Web
users (i.e., consumer market) to specialized domains, such as
e-learning [5], bioinformatics [6], health care [7], as well as
enterprise mashups [3]. To fully exploit this opportunity, End-
User Development (EUD) must be enabled to empower non-
professional users to create and modify mashups [8].

In this paper, we present an innovative EUD system for
mashup development (or a mashup tool [9]) called Natural-
Mash. NaturalMash provides adequate expressive power to
create non-trivial, feature-rich, and interactive mashups out
of the composition of Web APIs provided through different
technologies (ranging from REST and SOAP services to
JavaScript and HTML5 widgets). NaturalMash is designed to
be usable by non-professional users by ensuring it is easy to
understand and easy to learn with a gently-sloped learning
curve (thanks to a highly interactive, live programming envi-
ronment, featuring immediate feedback and autocompletion).

Many mashup tools with the same level of expressive power
(e.g., IBM Mashup Center (http://www.ibm.com/software/info/
mashup-center), and JackBe Presto (http://www.jackbe.com/)
are, however, designed in a way that is too specialized for non-
professional users. On the other hand, mashup tools explicitly
targeting non-technical users, such as IFTTT (https://ifttt.com)
and ServFace [10], do not provide adequate expressive power
to freely compose any type of Web APIs.

This paper also contributes a novel, hybrid end-user pro-
gramming technique [11] based on natural language program-
ming [12], WYSIWYG [13] (What You See Is What You Get),
and Programming by Demonstration [14] (PbD). NaturalMash
is one of the first live mashup tools [15] that combines
natural language processing techniques [16] with model-driven
engineering [17] in order to provide immediate feedback to the
users and show them the resulting mashup as they are typing
up its description.

A formative evaluation approach enabled us to collect early
feedback on the system by two groups of users differing
in their computer science knowledge: programmers and non
programmers. Programmers were PhD students in Computer
Science with excellent coding skills. Non-programmers were
users without any computing skills. The evaluation was con-
ducted to better focus the design and avoid gaps between
user expectations and the delivered system. Initial findings
indicate that users with little or no programming experience
can become productive and successfully build mashups, con-
firming the validity of some of the design decisions behind
NaturalMash.

The rest of the paper is organized as follows. Section II
presents the rationale and goals behind the design of Natu-
ralMash. Natural language programming in NaturalMash is
explained in Section III. Section IV describes the graphical
user interface environment of the system. The architecture
of the system is discussed in Section V. Section VI reports
on the formative evaluation of the system and discusses the
impact of users’ feedback in terms of usability assessment and
suggested areas to improve. Related work is discussed in VII,
and conclusions are drawn in Section VIII.

II. DESIGN RATIONALE

NaturalMash (Figure 1) was designed to keep the mashup
composition environment as simple and easy-to-use as pos-
sible. The user interface is a Single Page Application (SPA)
composed of four main components: (i) text field providing
advanced support for typing in the description of a mashup
integration logic, (ii) visual field implementing the WYSIWYG
interface for both the design and preview of the mashup user
interface being created, (iii) API dock graphically representing

http://www.ibm.com/software/info/mashup-center
http://www.ibm.com/software/info/mashup-center
http://www.jackbe.com/
https://ifttt.com

Ingredients Toolbar

displays a searchable list of
available Web APIs.

Text Field

allows to edit the mashup
description.

API Dock

shows the list of APIs used in the
mashup.

Widgets

are resizable and can be moved around.

Web APIs

are draggable and
represented by an icon.

Visual Field

renders the mashup output while it
is being edited.

Fig. 1. NaturalMash environment: users type the description of the mashup in the text field and immediately see the output in the visual field. The output
contains interactive widgets that can be resized and relocated. The ingredients toolbar helps with API discovery, while the dock gives a summary of the APIs
used in the current mashup. Web APIs are abstracted away from the technologies they use and are represented as icon.

the APIs used by the mashup, and (iv) ingredients toolbar con-
taining all the mashups created by the users and a searchable
list of Web APIs.

The four components of the environment are meant to
be used together as follows. The ingredients toolbar gives a
searchable overview of the available APIs that are available
to be mashed up. Users can drag-and-drop APIs from the
ingredients toolbar into the visual field to build their desired
mashups. Alternatively, they can use the text field to describe
the mashup using natural language. The text field is equipped
with advanced features like autocomplete suggesting matching
API descriptions as the user types text fragments. The visual
field also enables the use of PbD: once users start interacting
with the widgets, some suggestions on how to describe their
interaction are proposed in the text field. The interactive API
dock allows users to highlight or remove APIs.

NaturalMash is a WYSIWYG environment based on the
live programming paradigm [18], [19], in which the normal
edit/compile/run development lifecycle is fully automated by
the system. As a result, users can more easily bridge the
gulf of evaluation (the degree of difficulty of assessing and
understanding the state of the system [20]). This in turn leads
towards an improved learning experience [21].

NaturalMash combines three techniques of end-user pro-
gramming as follows. Natural language programing is enabled
through a Controlled Natural Language (CNL) — a subset
of a natural language (e.g., English) restricted in terms of
vocabulary and grammar. The visual field provides the visible
and live output of the mashup being created and facilitates
natural language programming through visual demonstration
and interactions with widgets (e.g., clicking a map widget adds
the corresponding natural language description to the text field,

being, for instance, “when the map is clicked”). From the ex-
pressive power point of view, the NaturalMash CNL empowers
users to describe relatively complex process orchestration and
data integration logic as well as the composition of widgets
(all at a very abstract level), whereas the visual field provides a
direct way to manipulate the user interface (WYSIWYG), and
partially the application logic (through PbD), of the mashup
being created. As a result, the user interface becomes much
more intuitive because it supports both direct manipulation
(visual field) and descriptive representation (text field) of the
mashup being created.

Overall, we expect our design to empower non-professional
users (e.g., non-programmers) to create useful mashups with
minimal prior knowledge.

III. NATURALMASH CONTROLLED NATURAL LANGUAGE

Natural language programming in NaturalMash is enabled
by a CNL that is an abstract, executable language for
modeling the presentation integration, process integration,
and data integration layers of mashups. For example,
Listing 1 conforms to the NaturalMash CNL and describes
an enhanced music video search mashup that employs
Last.fm (http://www.last.fm/api) to first search for a song
and then uses the results to accurately search for the
corresponding music videos of the song in YouTube
(https://developers.google.com/youtube/).

Find songs titled mashup. When an item is selected,
search YouTube videos about title.

Listing 1. An enhanced music video search mashup. “mashup” originally
refers to a type of song created by mixing two or more songs

http://www.last.fm/api
https://developers.google.com/youtube/

The underlying implementation of the CNL accommo-
dates an abstract component model that: (i) gives a unified
technology-neutral description of Web APIs, and (ii) models
them in an abstract textual form (natural language descrip-
tion). The abstract component model distinguishes two types
of functionality provided by Web APIs, namely, Task – a
passive atomic operation, and Event – an active source of
control. More in detail, an Event describes a condition which
if satisfied, produces a message that may be read from the
Event’s output parameters. In the above example, selecting an
item in the songs table is an Event of the table widget. A
Task, on the other hand, takes some input data, does some
processing, and then produces output data. Finding songs,
given a keyword, exemplifies a Task behavior of the Last.fm
API. The data consumed and produced by Tasks and Events of
Web APIs is modeled as, respectively, one or more input and
output parameters. Each parameter has a meaningful, unique
(only within the API scope) name; its syntax and semantic
descriptions are defined but not shown to the end-users.

To give a natural language representation of APIs, each
of its Tasks and Events is associated with a specific natural
language description. For instance, “find songs titled
[keyword]” describes the song-searching Task of the
Last.fm API. The input parameter name keyword is enclosed
within square brackets, creating a placeholder for the object of
the verb used in the description. The object may be a parameter
name referring to the output of previous tasks, a constant value,
or an anaphora — in linguistic, an anaphora (e.g., “that”) is
defined as an expression linking two elements in a document
— pointing to a specific part of the mashup description text.
“an item is selected” exemplifies the description of
an Event. Note that an Event does not receive input parameters,
and thus its description does not contain any placeholder.

To describe how to compose together APIs, the CNL
imposes specific grammatical constraints, which limit the types
of sentences that can be constructed. We distinguish:

• Imperative sentences: They are composed of multiple
imperative mood clauses. Each clause is built from the descrip-
tion of a Task by replacing its placeholders with appropriate
objects. For example, given the description “find songs
titled [keyword]” the corresponding clause can be
“find songs titled mashup”, where the object is re-
placed with a constant value (“mashup”).

• Causal sentences: They are written in causal form
in which the time conjunction “when” introduces a passive
clause (the description of an Event) followed by a set of imper-
ative mood clauses (like an imperative sentence). The passive
clause describes the cause of the event; the imperative mood
clauses represent the effect to be realized when the cause of
the event happens. Consider the causal sentence in the example
(Listing 1) “When an item is selected, search
youtube videos about title.”. In this sentence,
when the Event described as “an item is selected”
happens, the Task (“search youtube videos about
title”) is executed.

IV. NATURALMASH COMPOSITION ENVIRONMENT

The NaturalMash environment is designed to provide an
innovative selection of features that are meant to enhance the

user experience and the ability of users to build sophisticated
mashups. We first describe each feature individually and later
show in a usage scenario how they are used in conjunction to
build a mashup.

• Inline Search: To enhance API discovery, the Natural-
Mash environment provides an inline search feature (Figure 2)
in the text field that allows users to either (i) directly type in the
text editor the (approximate) name of the API they are looking
for, which results in the user getting a list of descriptions
associated with the API matching or approximating the given
keyword, or (ii) type what the API is supposed to do (in case
they do not know or cannot guess the name of the API),
by doing which the input text will be matched against the
natural language descriptions of all the APIs in the library.
In the latter case, the mechanism of searching descriptions is
based on (i) exact match, (ii) word synonym (e.g., “search”
and “find”), or (iii) word semantics (e.g., “location” and
“map”).

• Semi-structured Text Editor: The NaturalMash CNL
is based on a restricted grammar meaning that not all possible
input combinations are acceptable. Consequently, the CNL acts
as a learning barrier as the users need to master the grammar
and syntax of the language. To support the users’ learning
experience, the text field provides a semi-structured text editor
ensuring that user input will not cause syntax errors, while
still allowing a high degree of freestyle editing. To be specific,
the text field: (i) restricts input characters to avoid accidental
syntax errors (for instance the new line characters are disabled
while typing an object in a placeholder), (ii) automatically
inserts the separators (“,”, “and”, and “and,”) if the cursor
is positioned before and after clauses (manual insertion of the
separators is also possible), and (iii) streamlines selecting and
moving text objects (clauses) via, respectively, double-click
and drag-and-drop.

Fig. 2. Typing “news” (inline search) results in the autocomplete list showing
the Google News API description as a suggestion.

• Autocompletion: The autocomplete feature (Figure 2) is
also utilized to lower the CNL learning barrier. Based on what
users type in the text field, a list automatically appears and
shows suggestions for Task/Event descriptions (to support API
discovery and reuse), and data flow (i.e., referencing suitable
objects within Task descriptions).

• Data Flow Highlighting: In the text field, objects
indicating flow of data are displayed in boldface (Figure 3).
Moving the cursor on the text representing an object results in
the highlighting of the text describing its source Task or Event.
This way, users can discover the source of an object both when
browsing the data flow suggestions in the autocomplete list but
also after a data flow suggestion has been entered in the text.

• Error Highlighting: If there is an ambiguity in the
mashup description (e.g., the input text does not match any
Task or Event description), the compiler produces an error that
is reported to the user as the text is being entered (Figure 2).
Similar to many “spell-checking text editors”, the error is
shown by highlighting (in red color) the text that produced
it. An autocomplete list containing possible suggestions to
disambiguate the description is shown whenever the user
moves the cursor (or click) on the highlighted erroneous text,
and thus offering the opportunity to the user to quickly correct
the mistake.

Fig. 3. Data flow highlighting feature visualizes the source of an object.

• Drag-and-Drop: The ingredients toolbar gives a visual
overview of the available APIs. From there, users can drag-
and-drop an API into the text field, visual field, or API dock.
If the API is a widget, it will be displayed in the visual
field. Also, the autocomplete list will appear containing the
corresponding Task/Event descriptions.

• Programming by Demonstration: Interacting with wid-
gets in the visual field results in appending the corresponding
Event description to the text field. For instance, clicking on
Google Maps widgets results in showing the text “when the
map is clicked” in the text field. To grab the attention
of users the text corresponding to the event is highlighted.

• Synchronized Multi-perspective Modeling: The three
main interaction components of the environment (API dock,
text field, and visual field) are all kept synchronized during
every user interaction: (i) editing text in the field updates the
visual field and the API dock; (ii) selecting a widget from the
visual field or a API from the API dock results in highlighting
its corresponding text in the text field and vice versa (moving
the caret through a portion of the text highlights its associated
widgets and API icons); (iii) deleting an icon from the dock
or a widget from the visual field results in the removal of its
corresponding text.

A. Usage Scenario

The following illustrates a common and complete usage
scenario of NaturalMash, whereby a user builds the mashup
example described in Listing 1.

The first step is to discover the right APIs for finding
songs. This step is facilitated by the inline search feature which
enables the users to type what the API he is looking for is
supposed to do. For instance, the user can start by typing
“search musics”, which results in the text field providing
an autocomplete list of descriptions that contain the input
words or synonyms for the words. Once the autocomplete list is
displayed, the user can select a proper suggestion (in this case,
“find songs titled [keyword]”) by either pressing
the Enter key or by pointing with the mouse and clicking.

After selecting a suggestion from the autocomplete list,
(i) the completed natural language description of the API is
inserted in the text field, (ii) ambiguity is resolved, in case
there are one or more similar descriptions, (iii) the mashup is

rebuilt and executed, (iv) another autocomplete list containing
dataflow suggestions for the description is displayed. For the
input parameter (“[keyword]”), the user may type a constant
string like “[mashup]” resulting in a mashup that uses
Last.fm API to search for songs matching the input constant,
and automatically shows the results in a table widget.

The output mashup is interactive and support PbD in a
way that, for instance, clicking an item in the table widget
results in appending the corresponding Event description (i.e.,
“[when an item is selected]”) to the text field as
well as setting the focus in a way that makes it easier for the
user to add some Task descriptions to complete the causal
sentence. For example, the user may type “[video]” in
the text field or, alternatively, search YouTube API in the
ingredients toolbar and then drag-and-drop the API icon to the
text field, both of which result in displaying an autocomplete
list containing the YouTube API description. Immediately after
selecting the suggestion, another autocomplete list containing
data flow suggestions is shown to the user. The user can
select the output parameter “title” from this list, or type an
anaphora pointing to the item such as “it”, both referencing
the click event description of the table widget. The data flow
highlighting feature helps users to figure out the source of a
suggestion. Leaving the object placeholder empty results in
the compiler error that is shown by a clickable wavy red line.
Clicking on the wavy red lines causes the autocomplete list
associated with the placeholder to appear again.

While typing the mashup description, the user may modify
the mashup user interface layout in the visual field. The final
mashup can then be deployed in production, with a single
click. Even after a mashup has been published, it still remains
modifiable and can be redeployed at any time.

It should be noted that the user may follow a different (or
a wrong) path to complete the above example. Therefore, the
two-dimensionality of text (vs. multi-dimensionality of visual
editors) might be a hinder. To address this problem, the semi-
structure editor facilitates relocating text objects in a drag-and-
drop fashion.

V. ARCHITECTURE

NaturalMash is designed as a live mashup tool, which
completely automates the repetitive task of compiling mashup
descriptions and running them. Internally, mashup descriptions
go through a compilation pipeline that transforms them in exe-
cutable models of Web service compositions that are executed
by the JOpera engine [22]. In the following we briefly describe
the main steps of the NaturalMash compilation process.

The process revolves around a mashup representation that
initially contains the input mashup description text, but later is
augmented with a list of components used by the mashup, the
specifications of the layout of the mashup user interface (e.g.,
the position of each widget), data flow information (i.e., source
and destination of objects), and, if necessary, disambiguation
information (e.g., when there are multiple APIs with the same
Task/Event description). The mashup representation is thus
recycled with each round of compilation and is regularly
updated as the mashup is being developed.

Find songs titles mashup. When an item is selected , search youtube videos about title .

Mashup description

Imperative sentence Casual sentence

BodyTask description

Object

Event description

Task description
Object

Imperative sentence

main_control_flow item_selected

an item is selectedfind songs titled [keyword]

search youtube videos about [keyword]
mashup

Fig. 4. The annotated syntax tree corresponding to the mashup description
of Listing 1.

• Step 1: Natural Language Parsing The input ma-
shup description text is parsed and its linguistic information
(e.g., parsing tree, anaphora resolution, etc.) is extracted.
This step is implemented using the Stanford CoreNLP library
(http://nlp.stanford.edu/software/corenlp.shtml), which enables
to tokenize the input text and split it into sentences, parse
the text and assign a part-of-speech tag (verb, noun, etc.) to
each word, process grammatical dependencies, and create the
anaphora resolution graph.

• Step 2: Constrained Natural Language Parsing A
syntax tree based on the NaturalMash CNL grammar is
produced. In this step, we use a formal lexer and parser
(implemented using ANTLR, http://www.antlr.org/) to extract
and identify sentence types as well as to extract their chunks
(i.e., imperative or passive clauses).

• Step 3: API Binding The output of Steps 1 and 2 is
consumed to build a mapping between the text chunks (i.e.,
clauses and phrases) extracted in Step 2 and their correspond-
ing Event/Task description. To attain this mapping, we first
gather all the descriptions associated with the Tasks and Events
of the APIs registered within the NaturalMash library. These
are matched against the text chunks by ignoring the parameter
placeholders. The result is a mapping between each text chunk
and the corresponding Task or Event. In this step, ambiguity
may occur when more than one Task/Event description match
the same text chunk. Assuming that multiple APIs sharing the
same description are equivalent, the ambiguity can be resolved
automatically based on well known QoS-driven dynamic bind-
ing techniques [23]. Manual intervention through the tool’s
autocompletion feature is required only if there is an aliasing
problem.

• Step 4: Data Flow Resolution The mapping generated
from Step 3 is used to extract objects references and complete
the syntax tree (Figure 4). To do so, the placeholders found
within the Task descriptions representing input data are bound
to the output data referenced from the actual text. Using the
results of the linguistic analysis (Step 1) also the anaphoric
objects are resolved. The data flow operations (e.g., matching
and conversion) are delegated to the NaturalMash semantic
framework for data integration. The framework defines a
schema for input and output parameters of APIs. The schema

b) main_control_flow

c) item_selected

a)

Fig. 5. The generated JOpera visual composition code [22] for Listing 1: (a)
list of processes created for the mashup: main_control_flow implements
the control flow for the imperative sentence, item_selected implements
the control flow associated with the casual sentence (item select event), and
show is the process responsible for creating the user interface of the mashup,
(b) dataFlow corresponding to the Task description “find songs titled
mashups” (mashups is a constant passed to the lastfm_search_track
task), and (c) item_selected control flow is triggered whenever an item
is selected in the table.

contains metadata such as data type (primitive or complex),
MIME type (e.g., application/xml and application/json), and
ontology-based semantic annotation. Explaining the semantic
data integration framework in detail is out of the scope of this
paper. In case of ambiguity, we use the autocomplete feature
to let the user specify the correct data flow references.

• Step 5: Intermediate Model The disambiguated syntax
tree is consumed to generate an intermediate model that
includes control flow and data flow graphs representing the
algorithmic structure of the mashup. The nodes of these graphs
also store a mapping between the executable and data elements
of the CNL (technology-neutral) and the target executable
model of JOpera (technology-specific). The relationship is
established in advance and does not need to be exposed
to the end-users, who are presented with natural language
descriptions and icons of the APIs.

• Step 6: Emitter The intermediate model is transformed
into the target composition code (Figure 5), which is directly
executable by JOpera mashup engine, which further transforms
it internally to Java bytecode for efficient execution.The ma-
shup execution is controlled by NaturalMash through a REST
API, which also allows to retrieve and display its results. By
replacing the emitter it is possible to target other mashup
runtime platforms.

http://nlp.stanford.edu/software/corenlp.shtml
http://www.antlr.org/

VI. FORMATIVE EVALUATION

NaturalMash evolved following a one year user-centered
design approach, iterating design and evaluation activities. The
evaluation provided rich users feedback at different stages of
development and ensured that users were kept central in the
design so to avoid as much as possible mismatches between
users expectations versus system behavior. So far, we have
completed two design-evaluation iteration cycles, in which the
results of the evaluation conducted in each iteration informed
the next iteration design. In this section, we only present the
evaluation results of the last iteration (second iteration).

A. User Study: Second Iteration

At the end of the second iteration, we conducted a forma-
tive evaluation on a relatively large group of participants (22
persons). The formative evaluation mainly aimed at identifying
any potential usability problems and informing the design
process. In the process, due to the appropriate size of the
participants, we also attempted to partially assess the goal
of the design being to empower non-professional users to
effectively and efficiently create useful mashups (Section II).

1) Users: NaturalMash is meant to be used by a wide
variety of users on the Web in different domains of applica-
tions. In general, we classify the potential users of our system
into programmers and non-programmers. We designed a back-
ground assessment questionnaire that helped us distinguish the
participants accordingly.

Non-Programmers They neither have programming skills nor
exposure to programming, but they use Web 2.0 services
like social networks, blogs, and Web feeds. They may also
have experience in advanced end-user programming tools
such as spreadsheets, wikis, and visual Website builders.

Programmers They are either professional programmers
(with at least three years of programming experience), or
at least are in the process of learning how to program and
may be familiar with some markup or scripting languages.

We recruited a total of 22 participants from young uni-
versity staff and students volunteers both at the University of
Lugano and at the University of Trento. In terms of program-
ming skills, they were equally divided into programmers and
non-programmers.

2) Method: The participants were given four tasks of
growing complexity (in terms of the number of APIs to be
mashed up), after receiving a short tutorial (5 minutes) in the
form of a warm-up task (with the minimum complexity of two
APIs):

Task 1 Search Flickr images with location from Google Maps
(two APIs).

Task 2 Show upcoming events in a selected location on the
map. Get information about each event from Google
(three APIs).

Task 3 Find slides about “Web APIs”. For each slide found,
show relevant videos, tweets, and images (four APIs).

Task 4 Create a mashup on your own (open task).

During the study we recorded the user sessions (video,
audio, and screen) and asked the users to think aloud
about their activities. The recordings were complemented

0.	

50.	

100.	

150.	

200.	

250.	

300.	

Task	 1	 Task	 2	 Task	 3	 Task	 4	

co
m
pl
e'

on
	 '
m
e	
(in

	 se
co
nd

s)
	

Non-‐programmers	

Programmers	

Fig. 6. The completion time grows with the complexity of the task at hand.
Programmers have a slightly shorter completion time than non-programmers.

0%	
10%	
20%	
30%	
40%	
50%	
60%	
70%	
80%	
90%	
100%	

NP	 P	 NP	 P	 NP	 P	 NP	 P	

Task	 1	 Task	 2	 Task	 3	 Task	 4	

U
se
rs
	 (i
n	
pe

rc
en

ta
ge
	 fo

rm
)	

Missed	
Incorrect	
Correct	

Fig. 7. The majority of tasks were accomplished successfully (correctly). In
terms of accuracy, however, there is no major difference between programmers
and non-programmers.

by an informal interview as well as an exit questionnaire
(containing Likert scale questions) asking them about their
overall reaction and satisfaction with the tool. The aim of
the extended post-study interviews was to have a deeper, but
informal discussion with each participant with the opportunity
to reflect on what was not captured by the questionnaires
and to further discuss the rationale behind some answers.
For instance, we asked “Do you have any personal
mashup/use-case of the tool?”, “Why do you
feel comfortable with the tool?”, and the like.

3) Results: In terms of accuracy and efficiency (Fig-
ure 6 and 7), the majority of participants completed all the
tasks correctly and in a very short time (around 3 minutes
on average), with a slightly better performance on the pro-
grammers’ side. Out of the total of 88 tasks, 11 programmers
produced 86 correct tasks, while the 11 non-programmers
achieved 84 correct tasks. Moreover, by the end of each user
study session, the majority of participants felt confident about
their mastery of the tool and reported on a high level of
satisfaction in the exit survey (72% felt satisfy with the tool,
89% were interested in continuing using it, and 87% wanted
to suggest it to their friends).

Our recorded observations together with the feedback from
participants through both the exit questionnaire and informal
discussion, reported positively on the individual features of the
NaturalMash environment (Section IV). More in detail, the
following percentage of participants reported that the features
were helpful or very helpful for the completion of the given
tasks: autocomplete (92%), inline search (91%), live execu-
tion (86%), ingredients toolbar (82%), and PbD (73%). The
ingredients toolbar was more frequently used for component
discovery and selection than the inline search with the text

field (in average, 84% of component discovery and selection
tasks were done using the ingredients toolbar). Instead, users
employed the inline search feature when they were looking for
a specific operation that could be perfectly described verbally.

Overall, the participants were engaged with the tool (77%
felt the tools was stimulating or very stimulating). In the open
task, all created distinct, useful, and non-trivial mashups. One
example was a mashup that finds an audio album in eBay and
plays it in YouTube by first searching and finding the exact
name of the album using the Last.fm API. Another example
was a mashup that shows news, Flickr images, and tweets all
related to a selected location on the map, and then allows to
share the results on Facebook. Indeed, some of the mashups
created in the open task were actually meant to address a
real pressing need of the participants. For instance, one of
the participants created a mashup to automate the analysis
of online presence within the tourism domain. The mashup
searches tweets for a specific tourism-related keyword, and
then for each tweet found, it searches for the Facebook profile
given the name of the author of the tweets.

4) Lessons Learned: The results collected so far appear
to support our design rationale and goal. Nonetheless, the
main goal of the formative evaluation was to identify usabil-
ity problems so as to inform the next iteration design and
development. We observed that some users – especially non-
programmers who lack algorithmic thinking abilities – would
benefit from receiving suggestions not only for individual
Event/Task descriptions but also for hints on how to compose
them together in the right order.

Another major usability problem was with the way PbD
is applied in the visual field, i.e., interacting with widges
results in the corresponding Event description being added to
the text field. However, many participants confused capturing
the general behavior of a widgets (i.e., the event) with the
recording of the concrete action on the widget they just
triggered (e.g., a specific location they have clicked). For
example, clicking on the map would add the map-click event
description (“when the map is clicked”) to the text.
This is meant to be completed by appending Task descriptions
(e.g., “show upcoming events around location”)
that form the body of the causal sentence. Indeed, we observed
– in the same map example – the users correctly generating
the event text using PbD and completing it with an imperative
clause, expected to immediately see the results from the
location they had originally selected (demonstrated) to create
the causal sentence, as opposed to having to click again on the
map to obtain the results. In other words, they did not realize
they had created a parametric mashup that shows events for
any location on the Map. A similar problem occurred with
other widgets supporting PbD, such as the table.

VII. RELATED WORK

In recent years, a number of mashup tools have been
designed in both academia and industry. Notable industrial
mashup tools are Yahoo! Pipes (http://pipes.yahoo.com/), IBM
Mashup Center, JackBe Presto, and MyCocktail (http://www.
ict-romulus.eu/web/mycocktail). These mashup tools, regard-
less of their relatively good level of expressive power, do
not usually target non-professional users. We believe the full

potential of the programmable Web can be exploited only when
everyone is empowered to create mashups.

Recently, there have been a number of mashup tools
designed specifically for non-professional users. Examples
are Omelette [24], DashMash [25], ServFace [10], and
RoofTop [26] that enable users to create mashups by providing
a set of connectable configurable boxes whose visual layout
at design time reflects the one at run time. Nevertheless, the
integration logic of a mashup makes use of data filtering,
correlation and conversion operations that are usually not
visible in the graphical user interface, and therefore are not
directly accessible for modification using a pure WYSIWYG
tool. Another non-professional mashup tool is IFTTT which
even though it is based on natural language, restricts the user’s
input using a structured visual editor. Also, IFTTT only allows
to create mashups based on a specific control-flow pattern (if
this then that) using a predefined list of components. Existing
tools designed for non-professional users are limited in terms
of expressive power, as a result of which the diversity of the
useful mashups they can produce is restricted.

In this paper, we showed that NaturalMash is not only
capable of abstracting and composing a wide range of Web
API technologies, but also, at the same time, is usable by non-
professional users. This is clearly a major step forward in the
design of next-generation mashup tools.

A. Natural Language Programming

As a research topic, natural language programming has a
long history. As an example of recent work in this area, the
system presented in [27] allows to use natural language to
express formal rules defined in the RoboCup coach language.
System English (http://www.system-english.com/) enables to
refer to MATLAB function calls using regular sentences. Co-
Scripter [28] is a natural language based scripting environment
for automating Web browsing activities. The idea of sloppy
programming utilized by CoScripter is closely related to the
natural language programming style of NaturalMash. In the
area of personal information management, [29] presented Auto-
mate that uses a simplified CNL for context-sensitive personal
automation. More recently, [30] proposed a controlled natural
language interface to simplify the development of semantic
mediawikis.

Even if natural language is considered a natural way for
humans to command computers ([31], [32], [33]), it can-
not be efficiently used to design integrated user interfaces,
a fundamental mashup development activity [34]. Natural-
Mash not only enables the development of relatively complex
mashups through supporting various programming constructs
(i.e., events) in a very abstract manner, but also, at the same
time, supports the user interface design by means of direct
manipulation through a drag-and-drop WYSIWYG interface.

Moreover, it could be argued that learning the restrictions
of a controlled natural language may be more cumbersome
than learning the syntax of an artificial language from scratch.
To address this problem, we introduced the controlled natural
language within an environment that enables end-users to
immediately use the language, without prior training, by means
of features such as: autocompletion (for API discovery and
data flow resolution), error and text highlighting (to visualize

http://pipes.yahoo.com/
http://www.ict-romulus.eu/web/mycocktail
http://www.ict-romulus.eu/web/mycocktail
http://www.system-english.com/

data flow and and displays errors), and immediate feedback
(to shorten the gulf of evaluation).

VIII. CONCLUSION AND OUTLOOK

In this paper we presented NaturalMash, a “natural” tool
for end-user mashup development. NaturalMash is based on
a novel hybrid composition technique combining a controlled
natural language tuned for mashup development with an in-
teractive WYSIWYG and drag-and-drop interface allowing
the direct manipulation and live execution preview of the
resulting mashup user interface. The design of NaturalMash
has adopted an incremental, user-driven approach in which
iterative formative evaluations inform the next steps to be
taken to improve the usability of the tool. The results of our
formative evaluations helped us to identify several usability
problems and gather ideas on how to address these problems.
Also, the results provided positive feedback about the tool
design, demonstrated its usability by non-professional users
as well as its adequate expressive power to let users create
useful and non-trivial mashups.

For the future, we plan to (i) enable autocompletion
of mashup compositions based on semantic and syntactic
matching to assist non-programmers with limited algorithmic
thinking capabilities, (ii) boost the use of programming by
demonstration to generate output in addition to behavior, and
(iii) enhance the live execution feature by saving and restoring
the current state of the user interface across compilation cycles.

ACKNOWLEDGEMENTS

We are grateful for the support and the expertise of Monica
Landoni with the preparations and the analysis of the formative
evaluation results. This work is partially supported by the
Swiss National Science Foundation with the SOSOA project
(SINERGIA grant nr. CRSI22 127386).

REFERENCES

[1] T. O’Reilly, “What is Web 2.0: Design Patterns and Business Models
for the Next Generation of Software,” Communications & Strategies,
pp. 17+, 2007.

[2] D. Benslimane, S. Dustdar, and A. Sheth, “Services Mashups: The New
Generation of Web Applications,” IEEE Internet Computing, vol. 12,
pp. 13–15, 2008.

[3] A. Jhingran, “Enterprise information mashups: integrating information,
simply,” in Proc. of VLDB 2006, 2006.

[4] C. Anderson, The Long Tail: Why the Future of Business Is Selling Less
of More. Hyperion, 2006.

[5] M. Eisenstadt, “Does elearning have to be so awful? (time to mashup
or shutup),” in Proc. of ICALT 2007, 2007.

[6] C. Goble and R. Stevens, “State of the nation in data integration for
bioinformatics,” J. of Biomedical Informatics, vol. 41, pp. 687–693,
2008.

[7] M. N. K. Boulos and S. Wheeler, “The Emerging Web 2.0 Social
Software: An Enabling Suite of Sociable Technologies in Health and
Health Care Education,” Health Information & Libraries Journal,
vol. 24, pp. 2–23, 2007.

[8] H. Lieberman, F. Paternò, M. Klann, and V. Wulf, “End-User Develop-
ment: An Emerging Paradigm,” in End User Development. Springer
Netherlands, 2006.

[9] S. Aghaee, M. Nowak, and C. Pautasso, “Reusable decision space for
mashup tool design,” in Proc. of EICS 2012, 2012.

[10] T. Nestler, M. Feldmann, G. Hubsch, A. Preussner, and U. Jugel,
“The ServFace builder - a wysiwyg approach for building service-based
applications,” in Proc. of ICWE 2010, 2010.

[11] B. A. Nardi, A small matter of programming: perspectives on end user
computing. MIT Press, 1993.

[12] L. Miller, “Natural language programming: styles, strategies, and con-
trasts,” IBM Syst. J., vol. 20, pp. 184–215, June 1981.

[13] J. Rode and M. B. Rosson, “Programming at runtime: requirements and
paradigms for nonprogrammer web application development,” in HCC,
2003, pp. 23–30.

[14] A. Cypher, D. C. Halbert, D. Kurlander, H. Lieberman, D. Maulsby,
B. A. Myers, and A. Turransky, Eds., Watch what I do: programming
by demonstration. MIT Press, 1993.

[15] S. Aghaee and C. Pautasso, “Live Mashup Tool: Challenges and
Opportunities,” in Proc. of 1st ICSE Workshop on Live Programming,
2013.

[16] R. Mihalcea, H. Liu, and H. Lieberman, “NLP (Natural Language Pro-
cessing) for NLP (Natural Language Programming),” in Computational
Linguistics and Intelligent Text Processing. Springer, 2006.

[17] S. Casteleyn, F. Daniel, P. Dolog, and M. Matera, Engineering Web
Applications. Springer, 2009.

[18] N. Collins, A. McLean, J. Rohrhuber, and A. Ward, “Live Coding in
Laptop Performance,” Org. Sound, vol. 8, pp. 321–330, 2003.

[19] S. L. Tanimoto, “VIVA: A visual language for image processing,” J.
Vis. Lang. Comput., vol. 1, pp. 127–139, 1990.

[20] D. A. Norman and S. W. Draper, User Centered System Design; New
Perspectives on Human-Computer Interaction. L. Erlbaum Associates
Inc., 1986.

[21] A. Repenning and A. Ioannidou, What Makes End-User Development
Tick? 13 Design Guidelines. Springer Verlag, 2006, pp. 51–85.

[22] C. Pautasso and G. Alonso, “The JOpera visual composition language,”
Journal of Visual Languages and Computing, vol. 16, pp. 119 – 152,
2005.

[23] A. Strunk, “Qos-aware service composition: A survey,” in Proc. of
ECOWS 2010, 2010.

[24] O. Chudnovskyy, T. Nestler, M. Gaedke, F. Daniel, J. I. Fernández-
Villamor, V. Chepegin, J. A. Fornas, S. Wilson, C. Kögler, and
H. Chang, “End-user-oriented Telco Mashups: The OMELETTE Ap-
proach,” in Proc. of WWW 2012, 2012.

[25] C. Cappiello, M. Matera, M. Picozzi, G. Sprega, D. Barbagallo, and
C. Francalanci, “DashMash: A Mashup Environment for End User
Development,” in Proc. of ICWE 2011, 2011.

[26] V. Hoyer, F. Gilles, T. Janner, and K. Stanoevska-Slabeva, “SAP
Research RoofTop Marketplace: Putting a Face on Service-Oriented
Architectures,” in Proc. of SERVICES, 2009.

[27] R. J. Kate, Y. W. Wong, and R. J. Mooney, “Learning to transform
natural to formal languages,” in Proc. of AAAI 2005, 2005.

[28] G. Leshed, E. M. Haber, T. Matthews, and T. Lau, “Coscripter:
automating & sharing how-to knowledge in the enterprise,” in Proc.
of CHI 2008, 2008.

[29] M. Van Kleek, B. Moore, D. R. Karger, P. André, and m. schraefel,
“Atomate It! End-user Context-Sensitive Automation using Heteroge-
neous Information Sources on the Web,” in Proc. of WWW 2010, 2010.

[30] P. R. Smart, J. Bao, D. Braines, and N. R. Shadbolt, “Development of a
controlled natural language interface for semantic mediawiki,” in Proc.
of CNL 2009, 2010.

[31] C. Green, “A summary of the psi program synthesis system,” in Proc.
of ICAI 1977, 1977.

[32] G. E. Heidorn, “Automatic programming through natural language
dialogue: a survey,” IBM J. Res. Dev., vol. 20, pp. 302–313, July 1976.

[33] E. Kaufmann and A. Bernstein, “How useful are natural language
interfaces to the semantic web for casual end-users?” in Proc. of
ISWC’07/ASWC 2007, 2007.

[34] J. Yu, B. Benatallah, R. Saint-Paul, F. Casati, F. Daniel, and M. Matera,
“A framework for rapid integration of presentation components,” in
Proc. of WWW 2007, 2007.

	Introduction
	Design Rationale
	NaturalMash Controlled Natural Language
	NaturalMash Composition Environment
	Usage Scenario

	Architecture
	Formative Evaluation
	User Study: Second Iteration
	Users
	Method
	Results
	Lessons Learned

	Related Work
	Natural Language Programming

	Conclusion and Outlook
	References

