
Tool Demonstration: Overseer — Low-Level
Hardware Monitoring and Management for Java

Achille Peternier, Daniele Bonetta, Walter Binder, Cesare Pautasso
University of Lugano (USI)

Faculty of Informatics
Lugano, Switzerland

{firstname.lastname}@usi.ch

Abstract
The high-level and portable nature of the Java platform allows ap-
plications to be written once and executed on all the supported
systems. However, such a feature comes at the cost of hardware
abstraction, making it more difficult or even impossible to access
several low-level functionalities. Overseer is a Java framework that
makes it possible on Linux systems by simplifying access to real-
time measurement of low-level data such as Hardware Performance
Counters (HPCs), IPMI sensors, and Java VM internal events.
Overseer supports functionalities such as HPC-management, pro-
cess/thread affinity settings, hardware topology identification, as
well as power-consumption and temperature monitoring. In this pa-
per we describe Overseer and how to use it to extend Java applica-
tions with functionalities not provided by the default runtime. A
public release of Overseer is available.

Categories and Subject Descriptors D.2.2 [Software Engineer-
ing]: Design Tools and Techniques — Software Libraries

General Terms Measurement, Performance

Keywords Hardware performance counters, hardware surveying,
thread scheduling, IPMI, JVMTI

1. Introduction
Since it has become difficult to further increase the clock rate of
processors, nowadays chip manufacturers are delivering more pro-
cessing power by increasing the number of cores in their proces-
sors. Modern hardware infrastructures for enterprise-level server
applications feature several processing units aggregated into one or
more CPUs that are often part of a Non-Uniform Memory Access
(NUMA) architecture.

To simplify exploitation of such highly parallel computational
power, the standard Java class library provides synchronizers and
concurrent data structures to build scalable applications [5]. How-
ever, the standard Java class library does not offer enough sup-
port for developing applications that are aware of the hardware
they are running on. This hardware awareness could enable fur-
ther optimizations based on machine-level data (e.g., improved

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PPPJ ’11, August 24–26, 2011, Kongens Lyngby, Denmark.
Copyright © 2011 ACM 978-1-4503-0935-6. . . $10.00

benchmarking with Hardware Performance Counters (HPCs), con-
figuring thread affinities and NUMA settings to improve processor
cache and memory usage, etc.).

In order to give developers a detailed understanding of the run-
time hardware-level behavior of their Java applications, and to give
them the necessary instruments to influence the way software pro-
cesses are performed by the hardware Processing Units (PUs, either
cores or SMT units according to the machine), we developed a low-
level monitoring and management framework called Overseer.

In this paper we describe the main components of our frame-
work, giving details on: their APIs, the native elements they interact
with, and we describe some real usage examples that can be used
to demonstrate the functionality of the framework.

2. Overseer
The Overseer framework is a set of Java classes interfacing native
C/C++ libraries to implement specific low-level hardware func-
tionalities. The framework is composed of three main components,
each dedicated to a specific domain of tasks and exposed to the ap-
plication level through standard Java classes. The three components
are OverHpc, OverAgent, and OverIpmi (see Figure 1). Each com-
ponent is independent from the others and lazily loaded on the first
use. Since most of the underlying libraries used by Overseer are
written in C/C++, their initialization and de-initialization is trans-
parently managed by our framework to guarantee correct release of
the allocated resources.

3. OverHpc
The OverHpc component addresses dynamic information acquisi-
tion from hardware sources such as HPCs, processor clocks, and

OverHpc OverAgent OverIpmi

Overseer API

Java Applications

libpfm4

OS Kernel

OpenIPMI
JVMTI

JNI JNI

libhwloc

Hosting Hardware

Figure 1. Architecture of the Overseer framework.

String[] getSupportedEvents() Returns a list of events supported
on the current platform.

int initEvents(String[] events) Initializes a list of HPC events to
monitor.

int bindEventsToPu(int pu) Binds the initialized events to a
specific PU.

int bindEventsToThread(int pid) Binds the initialized events to a
specific thread pid.

void start() Starts acquiring HPC measure-
ments.

void stop() Suspends acquisition of HPC
measurements.

double getEvFromPu(int pu) Returns the current value for a
specific HPC being monitored on
a PU.

double getEvFromThread(int pid) Returns the current value for a
specific HPC being monitored on
a thread.

int getThreadId() Returns the pid of the thread this
method is called from.

int setThreadAffinity(long mask) Applies a custom affinity mask to
a specific thread.

long getThreadAffinity(int pid) Returns the current affinity mask
of a specific thread.

Object getHardwareInfo() Returns an XML-formatted report
about the number and topology
of NUMA nodes, CPUs, cores,
shared caches, etc.

Table 1. Overview of the OverHpc API.

hardware architectural topology. OverHpc also provides methods
to modify the way the OS scheduler assigns threads to PUs for ex-
ecution. A brief summary of the main OverHpc API methods is
reported in Table 1.

3.1 HPC Measurements
HPCs are registers embedded into CPUs that can be set to mea-
sure specific hardware events as they happen within each PU. Typ-
ically, counters are used at runtime to measure information such
as numbers of specific cache operations (hit/misses, invalidation,
successful prefetching, etc.), instructions retired, branch mispre-
dictions, etc. The name and type of available HPC events depends
on the microprocessor architecture: each CPU family has different
and specific counters that make it difficult to deliver a portable so-
lution. For this reason, OverHpc provides methods for listing the
HPC events available on the hosting processor hardware.

Events can then be monitored either on a per-PU or per-thread
basis. The per-PU approach allows to keep track for some spe-
cific HPC events happening within a selected CPU processing unit,
while the per-thread approach measures only the HPC events gener-
ated by the code running within the thread, even if the thread is mi-
grated from one PU to another during its execution. To accomplish
per-thread measurement, it is necessary to retrieve the OS process
ID (Unix PID) of the desired thread. Since this information is not
available through the standard Java library, we added this feature
to OverHpc by using native C calls interacting with the OS kernel.
Measurements specific to a thread can be gathered either from in-
side the thread itself or from another thread, enabling in this way
the development of external supervisors.

Thanks to OverHpc it is possible to embed HPC retrieval di-
rectly into Java applications, allowing for detailed measurements
of specific portions of code. The feedback provided by OverHpc is
of great help for performance optimization, as it provides precise
realtime information that can be exploited to profile and carefully
fine-tune performance.

/ / Acqu i r e c u r r e n t t h r e a d p r o c e s s ID :
OverHpc ohpc = OverHpc . getInstance () ;
i n t thisPID = ohpc . getThreadId () ;

/ / Fo rce t h r e a d t o run on PU #1 on ly :
ohpc . setThreadAffinity (thisPID , 1) ;

/ / Measure cache m i s s e s f o r c u r r e n t t h r e a d :
ohpc . initEvents (”PERF COUNT HW CACHE MISSES”) ;
ohpc . bindEventsToThread (thisPID) ;

/ / . . . do some th ing

long misses = ohpc . getEventFromThread (thisPID) ;

Figure 2. OverHpc usage example restricting the execution of the
current thread to PU #1 and measuring cache misses.

3.2 Hardware Topology
When initialized, OverHpc performs a hardware discovery to iden-
tify the underlying architecture. This survey reports information on
the number and kind of available CPUs, including the way pro-
cessor caches are organized into shared levels (if any), and how
NUMA nodes (if present) are aggregated into a group of one or
more CPUs. This feature conceptually extends what Java natively
offers through the Runtime.availableProcessors() method.
OverHpc completes this information including the way PUs are dis-
tributed over several CPUs, the PU ID numbers of cores sharing a
common cache, etc. These complementary data permit the creation
of so called “affinity groups” based on a list of PU IDs physically
running on a same NUMA node or sharing a cache.

3.3 Thread Affinities
While HPCs and hardware topology reports are mainly passive
tools that can be used to observe the runtime behavior of Java
applications, OverHpc also features active instruments to interact
with the OS scheduler by customizing the list of PUs to use for the
execution of selected threads. To do so, given a thread process ID,
OverHpc allows developers to specify the list of one or more PUs
to be used for its execution.

For example, matching the execution of threads accessing and
reusing similar data together with the affinity groups described
in the previous section can improve performance due to a better
exploitation of locality (both at the NUMA memory and processor
cache levels). Figure 2 shows a Java code snippet using OverHpc to
bind the execution of the current thread to the PU number 1, and to
measure the amount of cache misses generated within that thread.

3.4 Implementation
OverHpc relies on libpfm41 for the management of HPCs. Linux
kernels natively embed HPC support since version 2.4.30: the
libpfm4 library allows direct access to hardware events without
kernel patches or OS modifications required by other frameworks.
libpfm4 also includes kernel-level software events, such as num-
ber of thread migrations and total invocations of some specific
kernel API methods. These events are available through OverHpc
as well. Hardware topology information is gathered through the
libhwloc library2. Finally, OS scheduling and thread-related op-
erations are implemented through methods supported by the Linux
kernel API (sched.h).

1 http://perfmon2.sourceforge.net/
2 http://www.open-mpi.org/projects/hwloc/

onThreadNew(int pid, String name) Callback notifying the process
ID and Java thread name of a
newly created thread.

onThreadEnd(int pid, String name) Callback notifying the process
ID and Java thread name of a
terminated thread.

float getThreadSysUsage(int pid) Returns a thread CPU usage
compared to the whole system.

float getThreadRelUsage(int pid) Returns a thread CPU usage
compared to the other threads
running in the JVM.

Table 2. Overview of the OverAgent API.

4. OverAgent
Since HPCs and affinity groups are typically used on a per-thread
basis, Overseer provides a simple mechanism to intercept and no-
tify the Java application of the creation and termination of threads
within the JVM. Such functionality is particularly helpful to im-
mediately apply specific HPC measurements to all threads running
within the application. Similarly, it can be used to implement cus-
tomized scheduling policies. These policies are then applied di-
rectly during the creation of each thread, making sure that subse-
quent memory allocations or processor cache usage happen after
the thread has started to run with the proper settings.

OverAgent is based on a native JVMTI agent that interacts with
the JVM at a lower level than the Java application, intercepting
events such as thread creation and termination. Whenever a thread
is created or terminated, OverAgent sends a notification back at the
Java level through a callback invoking a method specified by the
Java application. In this way, events happening at the JVM level
can be exploited at the application level.

OverAgent invokes the callback with two arguments: the OS
process ID (relative to the thread involved), and its Java name. Like
the process ID functionalities offered by OverHpc, the information
obtained through the OverAgent callback can be used later as
parameter for the methods described in the previous section.

As an additional feature, OverAgent gives feedback about the
CPU usage of each thread allocated within the JVM. This informa-
tion is given either with an absolute percentage (that is, the CPU
time spent by a thread compared to the whole system), or relative
to the JVM (that is, the CPU time spent by a thread compared to
the total CPU time used by all the Java threads of the application).

A brief summary of the OverAgent main API methods is re-
ported in Table 2. Figure 3 shows an example of customized call-
back for OverAgent defined at the Java application level. This call-
back prints a message when a new thread is created or an existing
one ends. The process ID of each thread is appended to the mes-
sage. Additionally, to show how to combine OverHpc with OverA-
gent, when a new thread is created its scheduling is restricted to PU
number 3.

4.1 Implementation
OverAgent is a native C/C++ library written using the JVMTI
interface. The agent registers four Java events: VM start, VM death,
thread start, and thread end. OverAgent keeps track of all these
events, which are immediately notified to the Java application level
using JNI methods to interact with the C/C++ library. On state-
of-the-art JVMs, interception of the aforementioned JVMTI events
introduces only minor overhead.

Thread CPU times are gathered by analyzing the number of
jiffies (i.e., number of ticks of the system timer interrupt) reported
in the Unix /proc file system.

int getNumberOfSensors() Returns the number of available sen-
sors.

String getSensorName(int id) Returns the name of a sensor given its
number.

double getSensorValue(int id) Returns the current value reported by
sensor given its number.

Table 3. Overview of the OverIpmi API.

5. OverIpmi
Besides data gathering on HPCs, architectural topology, and CPU
usage, the Overseer framework completes its hardware report by
acquiring feedback from sensors compatible with the Intelligent
Platform Management Interface3 (IPMI), a standardized interface
used by system administrators to manage computer systems and
monitor their operations. Typically, professional server machines
feature a series of sensors to monitor metrics such as case tem-
perature or power consumption. OverIpmi brings at the Java level
a simplified API for enumerating, initializing, and gathering data
from these sensors.

A brief summary of the main OverIpmi API methods is reported
in Table 3. Figure 4 shows a code snippet looking for the power
consumption sensor and reading data from it.

5.1 Implementation
The IPMI standard is a sophisticated and complex abstraction layer
allowing administrators to remotely monitor a set of machines in
a data center. The OverIpmi library enables Java IPMI information
reading by exposing only a few high-level methods, based on the
C library FreeIpmi4, for discovery, initialization, and data retrieval
from sensors.

6. Related Work
HPCs represent one of the privileged sources of information to im-
prove software performance [3]. HPCs are widely adopted and in-
tegrated in the software development cycle [2] and an increasing
number of tools for accessing and manipulating performance coun-
ters has been proposed.

As an example, the Performance Application Programming In-
terfaces (PAPI) library [2] is a widely adopted tool for measuring

3 http://www.intel.com/design/servers/ipmi/
4 http://www.gnu.org/software/freeipmi/

/ / Add c u s t o m i z e d c a l l b a c k :
OverAgent oagent = OverAgent . getInstance () ;
oagent . initEventCallback (new OverAgent . Callback () {

/ / C a l l b a c k invoked a t t h r e a d c r e a t i o n :
p u b l i c vo id onThreadNew (i n t pid , String tname) {
OverHpc ohpc = ohpc . getInstance () ;
ohpc . setThreadAffinity (pid , 3) ;
System . out . println (”New t h r e a d ” + pid) ;
}

/ / C a l l b a c k invoked a t t h r e a d t e r m i n a t i o n :
p u b l i c vo id onThreadEnd (i n t pid , String tname) {
System . out . println (” Thread end ” + pid) ;
}
}) ;

Figure 3. OverAgent example of customized callback to manage
the notification of thread creation and termination.

/ / Acqu i r e power consumpt ion i n f o r m a t i o n :
OverIpmi oipmi = OverIpmi . getInstance () ;
i n t sensorId = oipmi . getSensorFromName (” System Leve l ”) ;
i f (sensorId != −1) {

do ub l e value = oipmi . getSensorValue (sensorId) ;
System . out . println (” Watt consumed : ” + value) ;
}

Figure 4. OverIpmi example acquiring information from a sensor.

HPCs. This library offers a high-level, platform-independent ac-
cess to CPU counters, providing developers with a standard way to
access specific platform related counters as well as generic plat-
form independent counters. A new version of the library, called
Component-PAPI (PAPI-C [10]) has been announced in late 2009.
The new library extends the standard PAPI framework with the pos-
sibility to obtain information not only from CPU related events, but
also from other sources such as GPUs, memory interfaces, network
cards, as well as BIOS, ACPI and LM sensors.

Compared to PAPI, our library relies directly on the Linux ker-
nel, thus providing more precise measures [12]. The high precision
comes at the price of portability. Since the main target of our li-
brary are server-class Java applications running under Unix envi-
ronments, this is not an issue in our case.

HPCs are not always the best solution in term of accuracy, as
for instance they can not be fully trusted for time measurement [4].
However, counter-based solutions have shown their effectiveness
in several real-world approaches, like memory optimization [11],
thread scheduling [9], realtime power estimation [8], and processor
workload and frequency scaling optimization [7]. All these opti-
mization techniques have been implemented using ad hoc special-
ized solutions. The Overseer framework enables the implementa-
tion of similar optimizations in any Java application.

7. Applying Overseer
In this paper we present concrete code examples and use cases,
showing the simplicity of use of our framework. The Overseer
framework can be easily employed in existing Java applications
for hardware-oriented performance tuning, dynamic analysis, and
evaluation.

The framework has already been adopted in different con-
texts to optimize service-based Java applications on multicore ma-
chines [1, 6], and we are actively using it in other ongoing research
projects. For instance, in Figure 5 we show a recently developed
SOA benchmarking tool that relies on the Overseer framework. A
presentation of this tool completes the live demonstration of our
work at the conference.

A public binary release of the Overseer framework is avail-
able5, and an open-source release of the framework is scheduled for
launch at the PPPJ2011 conference. To further increase the usabil-
ity of our framework, we plan to make our components available
also through a JMX interface.

Acknowledgments
This work is funded by the Swiss National Science Foundation with
the SOSOA project (SINERGIA grant nr. CRSI22 127386).

References
[1] D. Bonetta, A. Peternier, C. Pautasso, and W. Binder. A multicore-

aware runtime architecture for scalable service composition. In Ser-
vices Computing Conference (APSCC), 2010 IEEE Asia-Pacific, pages
83–90, dec. 2010.

5 http://sosoa.inf.unisi.ch/

Figure 5. A screenshot of a real-time SOA monitor implemented
using the Overseer framework.

[2] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci. A portable
programming interface for performance evaluation on modern proces-
sors. International Journal of High Performance Computing Applica-
tions, 14(3):189–204, August 2000.

[3] S. Eranian. What can performance counters do for memory subsystem
analysis? In Proc. of the 2008 ACM SIGPLAN workshop on Mem-
ory systems performance and correctness: held in conjunction with the
Thirteenth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS ’08), MSPC
’08, pages 26–30. ACM, 2008.

[4] M. Kuperberg and R. Reussner. Analysing the fidelity of measure-
ments performed with hardware performance counters. In Proceeding
of the second joint WOSP/SIPEW international conference on Perfor-
mance engineering, ICPE ’11, pages 413–414, 2011.

[5] T. Peierls, B. Goetz, J. Bloch, J. Bowbeer, D. Lea, and D. Holmes.
Java Concurrency in Practice. Addison-Wesley Professional, 2005.

[6] A. Peternier, D. Bonetta, C. Pautasso, and W. Binder. Exploiting mul-
ticores to optimize business process execution. In Service-Oriented
Computing and Applications (SOCA), 2010 IEEE International Con-
ference on, pages 1–8, dec. 2010.

[7] R. Schöne and D. Hackenberg. On-line analysis of hardware perfor-
mance events for workload characterization and processor frequency
scaling decisions. In Proceeding of the second joint WOSP/SIPEW in-
ternational conference on Performance engineering, ICPE ’11, pages
481–486. ACM, 2011.

[8] K. Singh, M. Bhadauria, and S. A. McKee. Real time power estimation
and thread scheduling via performance counters. SIGARCH Comput.
Archit. News, 37:46–55, July 2009.

[9] D. Tam, R. Azimi, and M. Stumm. Thread clustering: sharing-aware
scheduling on smp-cmp-smt multiprocessors. In Proc. of the 2nd ACM
SIGOPS/EuroSys European Conference on Computer Systems 2007,
EuroSys ’07, pages 47–58. ACM, 2007.

[10] D. Terpstra, H. Jagode, H. You, and J. Dongarra. Collecting perfor-
mance data with PAPI-C. In Proc. of the 3rd Parallel Tools Workshop,
Dresden, Germany, 2010. Springer.

[11] M. M. Tikir and J. K. Hollingsworth. Using hardware counters to
automatically improve memory performance. In Proc. of the 2004
ACM/IEEE conference on Supercomputing, SC ’04, pages 46–55,
2004.

[12] D. Zaparanuks, M. Jovic, and M. Hauswirth. Accuracy of performance
counter measurements. In Performance Analysis of Systems and Soft-
ware, 2009. ISPASS 2009. IEEE International Symposium on, pages
23 –32, april 2009.

