
End-User Development of Mashups Using Live
Natural Language Programming

Doctoral Dissertation submitted to the

Faculty of Informatics of the Università della Svizzera Italiana

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

presented by

Saeed Aghaee

under the supervision of

Prof. Cesare Pautasso

February 2014

Dissertation Committee

Prof. Walter Binder Università della Svizzera Italiana, Lugano, Switzerland
Prof. Marc Langheinrich Università della Svizzera Italiana, Lugano, Switzerland

Prof. Mary Beth Rosson Pennsylvania State University, PA, USA
Prof. Fabio Casati Università degli Studi di Trento, Trento, Italy

Dissertation accepted on 24 February 2014

Research Advisor PhD Program Directors

Prof. Cesare Pautasso Prof. Stefan Wolf and Prof. Igor Pivkin

i

I certify that except where due acknowledgement has been given, the work
presented in this thesis is that of the author alone; the work has not been sub-
mitted previously, in whole or in part, to qualify for any other academic award;
and the content of the thesis is the result of work which has been carried out
since the official commencement date of the approved research program.

Saeed Aghaee
Lugano, 24 February 2014

ii

To my mother. . .

iii

iv

Abstract

The emergence of the long-tail in the market of software applications is shifting
the role of end-users from mere consumers to becoming developers of applica-
tions addressing their unique, personal, and transient needs. On the Web, a
popular form of such applications is called mashup, built out of the lightweight
composition of Web APIs (reusable software components delivered as a service
through the Web). To enable end-users to build mashups, there is a key prob-
lem that must be overcome: End-users lack programming knowledge as well
as the interest to learn how to master the complex set of Web technologies re-
quired to develop mashups. End-User Development (EUD) is an emerging re-
search field dealing with this type of problems. Its main goal is to design tools
and techniques facilitating the development of software applications by non-
programmers.

In this dissertation, we designed and implemented NaturalMash, an EUD
system that empowers end-users to develop mashups. NaturalMash adopts a
novel hybrid end-user programming technique combining natural language pro-
gramming with a what-you-see-is-what-you-get interface in a live programming
environment. We followed an iterative user-centered design process, in which
three formative evaluations drove the incremental design of our system. At the
end of the process, we conducted a summative usability evaluation, whose re-
sults suggest that the system is highly usable by non-programmers. Also, we
proposed a novel benchmarking framework to evaluate mashup tools against
each other. Using the framework, we conducted a comparative evaluation of
28 state-of-the-art mashup tools (NaturalMash included) against their expres-
sive power. According to the results, our proposed system has a moderate yet
competitive level of expressiveness. All in all, NaturalMash contributes a novel
design featuring a unique combination of end-user programming techniques, a
suitable metaphor, and the ability to enable an optimal learning experience. Our
extensive evaluation results indicate that NaturalMash is located at a sweet spot
along the classical trade-off between expressiveness and usability/learnability.

v

vi

Acknowledgements

My PhD has been a pleasant and fruitful journey which brought many life-lasting
knowledge, experiences, lessons, memories, friendships, and of course, a pile of
code and documents including this dissertation. As I am writing this, I am miles
away from those who made this journey possible. So I am taking this opportunity
to profusely thank them in writing.

Foremost, I would like to express my greatest gratitude and appreciation to
Prof. Cesare Pautasso, from whom I learned many things. Being always avail-
able, he patiently guided me through ups and downs of my PhD, and believed in
me when I was lost. It was a pleasure and a privilege to do my PhD under your
supervision.

I am sincerely grateful to Daniele Bonetta, Marcin Nowak, Dr. Achille Pe-
ternier, Masiar Babazadeh, and Vasileios Triglianos for being friends, giving con-
tinuous constructive feedback on my work, proofreading my papers, and partic-
ipating in my user studies. I wish you luck in your lives and hope to see you
again.

I would like to thank Mauro Prevostini for giving me the opportunity to con-
duct a usability test on high school students, Dr. Monica Landoni for her valuable
input into the design of the formative evaluation of my work, and Prof. Antonella
De Angeli for hosting me in University of Trento, Italy, to properly conduct a user
study of my system.

I am thankful to my best friends, Ehsan, Morteza, Lea, Marco, Andrea, and
Silvia, who made the beautiful and wonderful city of Lugano socially pleasant
for me. Your memory lingers on.

I profusely thank my parents, Akram and Hassan, and my brothers, Farid and
Amir, without whom I wouldn’t be where I am today. All I ever need is you by
my side, so live forever.

Last but not least, I wish to thank my love of life, Negin, for her loving care
and support. I am so lucky to have you in my life.

vii

viii

Contents

Contents ix

List of Figures xiii

List of Tables xvii

1 Introduction 1
1.1 The Rise of “Citizen Developers” . 2
1.2 The Potential of Web Mashups . 3
1.3 Problem Statement . 4
1.4 Thesis Statement . 5
1.5 Contributions . 6
1.6 Structure . 7

2 A Survey of the State-of-the-art Mashup Tools 9
2.1 Defining Mashup Tools . 9
2.2 Survey Methodology . 11
2.3 Design Issues and Alternatives . 11

2.3.1 Design Issue: Automation Degree 11
2.3.2 Design Issue: Liveness . 13
2.3.3 Design Issue: Live Layout . 15
2.3.4 Design Issue: Online Community 17
2.3.5 Design Issue: End-User Programming Technique 17
2.3.6 Design Issue: Visual Language 20
2.3.7 Design Issue: Design Distance 21

2.4 Survey Summary . 24
2.5 The Need for Another Mashup Tool 24

3 NaturalMash: A Live Natural Mashup Tool 31
3.1 Design Decisions . 31

ix

x Contents

3.2 NaturalMash Controlled Natural Language 34
3.2.1 Grammar and Syntax . 35
3.2.2 Semantics . 36

3.3 NaturalMash Component Meta-Model 37
3.3.1 Modeling Ingredient Technologies 38
3.3.2 Mapper and Rule . 43
3.3.3 JSON Schema for The Component Model 44
3.3.4 Formal Description of ingredients in Natural Language . . 46

3.4 Ontology-based Data Integration Framework 47
3.4.1 Schema Specification and User-defined Data Formats . . . 48
3.4.2 Integration Process . 50

3.5 NaturalMash Composition Environment 52
3.5.1 Usage Scenario . 55

4 The Architecture of NaturalMash 57
4.1 Design Challenges for Live Mashup Tools 57
4.2 A liveness-friendly Architecture . 58

4.2.1 User Interface . 59
4.2.2 Incremental Change Detector of Mashup Models 59
4.2.3 Compilation and Deployment 60
4.2.4 Client-server Communication 65
4.2.5 Mashup Runtime . 66

5 Evaluating NaturalMash In-The-Lab 67
5.1 First Iteration . 67
5.2 Second Iteration . 69

5.2.1 Participants . 69
5.2.2 Tasks and Methods . 70
5.2.3 Results . 71
5.2.4 Lessons Learned . 71

5.3 Third Iteration . 72
5.3.1 Participants . 72
5.3.2 Tasks and Methods . 73
5.3.3 Results . 73

6 Summative Evaluation of NaturalMash 77
6.1 Evaluation Questions and Hypotheses 77
6.2 Evaluation Methods Overview . 78
6.3 Data Collection Methods . 78

xi Contents

6.3.1 Task-based Metrics . 78
6.3.2 End-of-session Metrics . 81

6.4 Technology . 81
6.4.1 Participant Recruitment and Sample Collection 81

6.5 Evaluation Procedure . 84
6.5.1 Starter Questions . 84
6.5.2 Tasks . 84
6.5.3 Post-Task Questions . 86
6.5.4 Post-Session Questions . 87
6.5.5 Wrap-up . 87

6.6 Results . 87
6.6.1 Task Performance Data . 87
6.6.2 Self-reported Data . 91
6.6.3 Logs . 93

6.7 Conclusion and Lessons learned . 96

7 Comparative Evaluation of Mashup Tools 99
7.1 A Benchmarking Framework for Mashup Tools 100

7.1.1 Benchmarking Strategy . 102
7.2 Benchmarking the State-of-the-art Mashup Tools 102

7.2.1 Methods . 105
7.2.2 Results and Discussion . 107

8 Conclusion 109
8.1 Limitations . 111

8.1.1 Comparative Usability Evaluation 111
8.1.2 Summative Usability Evaluation 112
8.1.3 Comparative Expressive Power Evaluation 112

8.2 Future Directions . 113

A Usability Evaluation Forms 115
A.1 Background Assessment Questionnaire 115
A.2 Exit Questionnaire: First Iteration Formative Evaluation 118
A.3 Exit Questionnaire: Second Iteration Formative Evaluation 120
A.4 Exit Questionnaire: Summative Evaluation 122
A.5 Post-task Class 1 Questionnaire: Summative Evaluation 123
A.6 Post-task Class 2 Questionnaire: Summative Evaluation 124
A.7 Post-task Class 3 Questionnaire: Summative Evaluation 125
A.8 Post-task Class 4 Questionnaire: Summative Evaluation 126

xii Contents

Bibliography 127

Figures

1.1 The long tail of software applications. The part on the left is the
traditional market of large-scale software applications, and the
part on the right represents the infinite market of niche software
applications. 3

2.1 A high-level classification of of integration systems based on the
type of input and output software artifacts. Mashup tools (gray
boxes) integrate data, application logic, and presentation artifacts
and produce Web applications with at least a presentation layer
(mashups). A Mashup Enabler (ME) scrapes and integrates un-
published data, and publishes them as Web APIs (application logic
layer) to be composed by mashup tools. 10

2.2 Mashup tool design space overview. 12
2.3 Live layout classification. 15
2.4 The state-of-the-art mashup tools classified according to expres-

siveness and usability by non-programmers. An optimal usable
mashup tool (gray box), that is missing from the state-of-the-art,
is highly usable by non-programmers and provide a medium level
of expressive power. 28

3.1 NaturalMash environment: end-users type the recipe of the ma-
shup in the text field and immediately see the output in the visual
field. The output contains interactive widgets that can be resized
and relocated. The ingredients toolbar helps with API discovery,
while the dock gives a summary of the Web APIs (ingredients)
used in the current mashup. Ingredients are abstracted away from
the technologies they use and are represented as icon. 32

3.2 The grammar of NaturalMash CNL represented in Extended Backus–
Naur Form (EBNF). 36

3.3 A meta-model for ingredients (Web APIs). 38

xiii

xiv Figures

3.4 Wrapper hierarchy. 39

3.5 The meta-model to which parameter schemas conform. 48

3.6 Typing “tweet” results in the autocomplete list showing the labels
associated with the Twitter API. 54

3.7 The source of the object (the “map click” label) as well as the
object itself (“location”) get highlighted as soon as the cursor is
placed in the object text. 55

4.1 The liveness-friendly architecture of NaturalMash aims at sup-
porting live programming by minimizing the response time and
providing a mechanism to cope with the service call rate limits. . 58

4.2 The visualized output of Step 1 (linguistic information) for the
Listing 3.1 example using the Stanford CoreNLP online tool (http:
//nlp.stanford.edu:8080/corenlp/). The input is split into
two sentences. Part-of-speech tags (VB: base form verb, NNS:
noun plural, IN: proposition, DT: determiner, WRB: wh-adverb,
NN: noun, VBZ: present verb, VBN: past participle verb) are as-
sociated with each word in the input text. Grammatical depen-
dencies (det: determiner, advmod:adverbial modifier, nsubjpass:
passive nominal subject, auxpass:passive auxiliary, dobj: direct
object, nn: noun compound modifier, prep_about: prepositional
modifier) are shown using arrows. 61

4.3 The annotated syntax tree corresponding to the mashup label of
Listing 3.1. 62

4.4 The intermediate model generated for Listing 3.1. It contains two
control flow graphs: Main Control Flow that corresponds to the
imperative sentence “find slides about APIDays”, and Event

1 that is associated with the causal sentence “when a slide is

selected, find youtube videos about slide title”. The pass-
ing of input data flows to output data flows are represented by
ovals. 63

http://nlp.stanford.edu:8080/corenlp/
http://nlp.stanford.edu:8080/corenlp/

xv Figures

4.5 The generated JOpera visual composition code [94] for Listing 3.1:
(a) list of processes created for the mashup: main_control_flow
implements the control flow for the imperative sentence, slide_selected
implements the control flow associated with the causal sentence
(slide select event), and show is the process responsible for creat-
ing the user interface of the mashup, (b) control flow implement-
ing Main Control Flow in the intermediate model (Figure 4.4),
(c) control flow triggered whenever a slide is selected (it cor-
responds to Event 1 in the intermediate model), and (d) data
flow associated with main_control_flow (“apidays” is a con-
stant passed to the search_slides input parameter). 64

5.1 NaturalMash environment in the first iteration. 69
5.2 NaturalMash environment in the second iteration. 70
5.3 The completion time grows with the complexity of the task at

hand. Programmers have a slightly shorter completion time than
non-programmers. 74

5.4 The majority of tasks were accomplished successfully (correctly).
In terms of accuracy, however, there is no major difference be-
tween programmers (P) and non-programmers (NP). 74

6.1 The welcome screen of the evaluation website. It contains a wel-
come message and a consent form. 82

6.2 This is how NaturalMash is presented to participants in the evalu-
ation website. It contains an Iframe that shows NaturalMash and
one auto-hide Task Bar that includes the task description and al-
lows participants to “Finish” or “Skip” the tasks as well as leave a
“Message” reflecting what they think while doing the task. 83

6.3 The number of participants recruited by each method (invitation,
and crowdsourcing). 84

6.4 Average accuracy of the pre-constructed tasks. P = Programmers,
NP = Non-programmers. 88

6.5 Average completion time (in second) for the pre-constructed tasks.
P = Programmers, NP = Non-programmers. 89

6.6 Number of “correct” tasks per minutes (efficiency) for program-
mers, non-programmers, and both (overall). 89

6.7 The participants’ reasons for skipping the open task. 90
6.8 Accuracy of the open tasks for programmers and non program-

mers as well as overall participants. 91

xvi Figures

6.9 Perceived ease-of-use for different features of the system. 92
6.10 Perceived usefulness for different features of the system. 93
6.11 Percentage of all the keystokes classified as not-permitted. 94
6.12 Top 4 not-permitted keys with their frequency (in percentage). . . 94
6.13 Ratio of using the two discovery methods segmented by the par-

ticipant groups and task classes. 95
6.14 Difference between programmers and non-programmers in terms

of the ratio of using the discovery methods. 95
6.15 The text field should lift the restriction on using Delete keys at the

beginning and end of data objects. 98

7.1 A benchmarking framework for mashup tools with four dimensions.100

Tables

2.1 Summary of the mashup tool design decisions over the mashup
design space (part 1). In the “interaction techniques” issue, the
big # and smaller # represent, respectively, the main and sec-
ondary techniques. 22

2.2 Summary of the mashup tool design decisions over the mashup
design space (part 2). In the “interaction techniques” issue, the
big # and smaller # represent, respectively, the main and sec-
ondary techniques. 23

2.3 The effect of design decisions on the usability of mashup tools for
non-programmers . 26

2.4 The effect of design decisions on the expressive power of mashup
tools. 27

5.1 The evolution of NaturalMash during the formative user-centered
design process in terms of added/removed features. V0, V1, and
V2 correspond to the versions of the tool during, respectively, the
first, second, and third iterations. 68

6.1 The metrics used in this evaluation to assess the evaluation ques-
tions and hypotheses (Section 6.1 on page 77). They are collected
either automatically or in a self-reported manner. 79

7.1 Comparison of the state-of-the-art mashup tools in terms of composition
model expressive power. The light gray lines highlight mashup
tools with more composition expressive power than NaturalMash
(highlighted with a dark gray line). 103

7.2 Comparison of the state-of-the-art mashup tools in terms of component
model expressive power. The light gray lines highlight mashup
tools with (almost) the same component model expressive power
as NaturalMash (highlighted with a dark gray line). 104

xvii

xviii Tables

Chapter 1

Introduction

Hoc and Nguyen-Xuan [59] define computer programming as “the process of
transforming a mental plan in familiar terms into one compatible with the com-
puter.” In simple words, computer programming is the process of writing source
code in a scripting or programming language. According to the Oxford dictio-
nary of English, a programmer is “a person who writes computer programs”,
and an end-user (or simply a user) is “the person who actually uses a particular
product”, which is, in this case, a computer program.

Based on the programmers’ intent, Ko et al. [70] categorized programming
into five types: (i) professional programming, that is performed by experienced
programmers (e.g., programmers hired by a software company), and the out-
come program is indented for a group of end-users, (ii) expert programming,
that requires highly experienced programmers, and targets not only end-users
but also the programmers themselves, (iii) novice programming, that is done
by inexperienced programmers to serve themselves as well as other end-users,
(iv) computer science students programming, that is similar to professional pro-
gramming with the exception that the programmers are inexperienced (fresh
graduate students), and finally (v) End-User Programming (EUP) that can be
done by end-users (programmer or non-programmers) and is primarily intended
for the end-users themselves [89]. In this dissertation, we would like to focus
on EUP, particularly when it is carried out by non-programmers.

The history of EUP goes way back to early days of computing, when pro-
gramming (e.g., using punch cards) was mostly intended for the programmers
themselves. Later with the enormous growth of software industry, professional
programming became mainstream. The rapid increase in the complexity and
size of software products and solutions resulted in the emergence of software
development and engineering, which refer to the systematic cycle of design, im-

1

2 1.1 The Rise of “Citizen Developers”

plementation (computer programming), and testing. This has also resulted in
the emergence of a new profession called software developer.

Interestingly, in the U.S. alone, Scaffidi et al. [101] estimated that the num-
ber of end-user programmers (i.e., end-users practicing EUP), who primarily use
spreadsheets and databases, lies between 12 million and 50 million — compare
it with the number of software developers which is approximately 3 million.
With the growing number of end-user programmers, EUP is and will remain a
vital research area for many years as also predicted by Scaffidi et al. [101].

1.1 The Rise of “Citizen Developers”

The term “citizen developer” was first coined by a 2011 Gartner report1, and
refers to an emerging generation of users who “create new business applications
for consumption by others using development and runtime environments sanc-
tioned by corporate IT.” These so-called citizen developers are the same old end-
user programmers with a fundamental difference as mentioned in the report: “In
the past, end-user application development has typically been limited to single-
user or workgroup solutions built with tools like Microsoft Excel and Access.
However, today, end users can build departmental, enterprise and even pub-
lic applications using shared services, fourth-generation language (4GL)-style
development platforms and cloud computing services.” In simple words, citi-
zen developers, unlike the traditional end-user programmers, are not limited to
spreadsheets and databases, and are expected to build much more sophisticated
software applications that might be used by other end-users as well.

The same Gartner report predicted that citizen developers would be building
at least a quarter of software applications by 2014. This is not, however, entirely
surprising. As we are more and more depending on software technologies, the
demand for software developers is dramatically increasing. According to the
U.S. Bureau of Labor Statistics2, the number of U.S. jobs for software developers
is expected to grow by 30% from 2012 to 2020. This is 16% more than the
expected job growth across all U.S. occupations over that time. As a result, the
fast-growing software industry will fall short of developers. This is where citizen
developers come in as vital IT human resources.

But what type of software applications do citizen developers create? Are they
expected to create large-scale software applications like Facebook? The answer
to the latter is absolutely no. No matter how short the industry is on develop-

1https://www.gartner.com/doc/1726747
2http://www.bls.gov/

https://www.gartner.com/doc/1726747
http://www.bls.gov/

3 1.2 The Potential of Web Mashups

Software Applications

Sc
al

e
of

 S
of

tw
ar

e
A

pp
lic

at
io

ns

Long-tail "niche" applications

Main stream "complex" applications

Figure 1.1. The long tail of software applications. The part on the left is
the traditional market of large-scale software applications, and the part on the
right represents the infinite market of niche software applications.

ers, large-scale applications are to be built by experienced software developers
who can take into account critical software quality issues. Answering the former
question requires considering the concept of “the long tail” popularized by Chris
Anderson [12]. The long-tail of software applications (Figure 1.1) suggests that
there exists an infinite market of niche software applications, which is much
larger than the traditional market of large-scale software applications. The de-
velopment of these niche applications is motivated by situational requirements
that are transient and apply to a small group of end-users. This marginally ex-
ploited market provides a large potential for EUP to be carried out by the emerg-
ing citizen developers. Thereby, a considerable software development contribu-
tions from citizen developers can be anticipated in the future.

1.2 The Potential of Web Mashups

The proliferation of Web APIs (i.e., reusable software components published
on the Web) has turned the Web [93] into a programmable environment. Web
mashups (or simply mashups) are a lightweight form of Web applications widely
developed and used in this environment [19]. Their development is character-
ized by the metaphor of hardware components, and is driven by the integration
of two or more Web APIs at any of the application layers, i.e., at the data, appli-
cation logic, and presentation layer [54; 117].

4 1.3 Problem Statement

Both in academia and industry, mashup has been a hot topic in recent years.
Another Gartner report3 identified mashup as one of the top 10 strategic tech-
nologies for 2009. ProgrammableWeb4 is a website listing Web APIs and mashups.
Since 2006, this website has registered an exponential growth of both Web APIs
and mashups. In academia, also, the past 5 years have witnessed an enormous
amount of research on mashups [17].

One of the things that makes mashups interesting is their potential to rein-
force the vision of “citizen developers”. Mashups are usually lightweight, and
thanks to the high level of reuse inherently employed in their development, they
guarantee a reasonable level of software quality as well as minimal development
costs in terms of time and required skills. Also, the diversity and ever-growing
number of Web APIs enable mashups to address a wide range of requirements
derived from both established and emerging domains of application [62]. More
importantly, mashups run on the Web that is widely considered to be the future
platform of all software applications. We believe all these characteristics qualify
mashups as the most practical and efficient type of niche software applications.

1.3 Problem Statement

In terms of technical knowledge and skills, there is a spectrum of citizen de-
velopers, ranging from non-programmers to experienced programmers. In fact,
citizen developers are mainly identified as non-programmers, whose obvious
inability to develop software applications (e.g., using general-purpose program-
ming languages) is the main issue hindering the vision of “citizen developers”.
This inability does not imply a naive nature for non-programmers, but stems
from their lack of motivation to learn and master computer programming. As
opposed to software developers who embrace programming as a job, citizen de-
velopers are merely driven by personal situational needs that do not outweigh
the barriers of learning how to program. This lack of motivation also profoundly
concerns programmers as well. They may not be willing to spend days to de-
velop a niche software application from scratch that might be useful for a tran-
sient time. The low development cost and high added-value of mashups can be
a positive force in this respect. Nonetheless, even the development of mashups
faces major barriers that are not by definition mastered by non-programmers.
These barriers range from knowing how to reuse Web APIs, to at least a basic
understanding of Web technologies and scripting languages (e.g., JavaScript).

3http://www.gartner.com/newsroom/id/777212
4http://www.programmableweb.com/

http://www.gartner.com/newsroom/id/777212
http://www.programmableweb.com/

5 1.4 Thesis Statement

Hence, citizen developers cannot or are not willing to develop niche software
applications unless they are properly and adequately supported to do so.

With a focus on mashups, we formulate our research problem as:

How to support citizen developers (end-users) to develop mashups as
niche software applications?

For the sake of convenience, throughout this dissertation, we refer to citizen
developers in this context as “end-users” unless we specify otherwise. Since
the emphasis is on mashups, the end-users we target are characterized by their
active presence on the Web.

1.4 Thesis Statement

To address the stated problem, we consider two particular research fields. The
first one is End-User Development (EUD) defined by Lieberman et al. [74] as
“a set of methods, techniques, and tools that allow users of software systems,
who are acting as non-professional software developers, at some point to create,
modify or extend a software artefact.” While EUP entails the intent of program-
ming for self, EUD is concerned with empowering non-programmers to carry
out EUP. EUD is an interdisciplinary research field that combines participatory
programming [73], meta-design [43], and psychology of programming [23].

The second topic is mashup that is mainly rooted in Web engineering [26].
The research on mashups spans areas including model-driven engineering [41],
programming languages [39], and software and service composition [77].

The research scope of this thesis lies at the intersection of EUD and mashups.
Within this scope, we aim at developing an EUD system that effectively and
efficiently enables end-users to develop mashups.

We assume that:

An EUD system for mashups confronts a trade-off between expressive
power and usability by non-programmers. The sweet-spot in this trade-
off can be found through providing (i) a proper combination of EUP
techniques that ensures both high level abstraction and expressiveness,
(ii) metaphors that are familiar and meaningful to everyone, and (iii) an
optimal learning experience that supports and develops the skills of non-
programmers.

6 1.5 Contributions

On the basis of the above assumption, we hypothesize the design of an EUD
system — that can hit the sweet-spot in the trade-off between expressive power
and usability by non-programmers — to adopt:

(i) a hybrid EUP technique combining natural language programming
and what-you-see-is-what-you-get, (ii) the “cooking” metaphor in which
the “ingredients” (Web APIs) are mixed according to a “recipe” (natural-
language source code) for the purpose of preparing “food” (mashup),
and (iii) live programming and recommendation techniques to boost
optimal learning experience.

We validated the above hypothesis through empirical and conceptual re-
search methods. We designed and implemented the hypothesized EUD system
for mashups (NaturalMash), and thoroughly evaluated the novel system in the
forms of formative, summative, and comparative evaluation. The formative and
summative evaluations were done by conducting empirical user studies, and
the comparative evaluation was based on a conceptual framework encompass-
ing factors and dimensions that define expressive power of EUD systems for
mashups.

1.5 Contributions

In the light of the stated hypothesis, we made the following research and devel-
opment contributions to the fields of EUD and mashup:

• A reusable decision space for designing EUD systems for mashups
[1; 5; 6]. We conducted a survey of existing EUD systems for mashups
with the goal of harvesting their reusable architectural design decisions
(see Chapter 2). The decisions are structured into a design space, which
(i) helps to classify and explain the heterogeneity of existing systems, and
(ii) provides a valuable guidance model to the designers of these systems
by enumerating relevant design issues and their dependencies.

• Natural language programming for mashups [8; 9]. We designed the
first natural-language-like programming language for developing the ap-
plication logic of mashups (see Chapter 3, Section 3.2). The language is
highly abstract in a way that it can be understood by non-programmers
without prior training. In terms of expressive power, the language allows

7 1.6 Structure

to express data flow and data integration tasks as well as various control
flow dependencies (e.g., event and sequencing).

• A specification language for modeling Web APIs [3; 2]. A technical
challenge concerning the development of mashups, is the lack of a for-
mal specification language dedicated for describing Web APIs in a unified
way. We proposed a JSON-based specification language for modeling and
describing various Web APIs (see Chapter 3, Section 3.3). The specifica-
tion language is expressive, extensible, and highly abstract — these are
qualities missing from existing specification languages for Web APIs.

• NaturalMash [8; 9; 4; 7]. We developed NaturalMash, a novel EUD sys-
tem for mashups (see Chapters 3 and 4). Our natural language program-
ming technique is implemented and integrated in a simple What-You-See-
Is-What-You-Get editing environment. The novel environment provides
guidance and support for editing in the language, allows to discover Web
APIs using natural-language searching, and adopts the live programming
technique [107] to automate the repetitive task of compiling, deploying,
and running.

• A benchmarking framework for mashups [3; 5]. One of the drawbacks
of research in mashups (specially EUD for mashups) is the lack of a sys-
tematic approach to compare the state-of-the-art solutions. This short-
coming is largely due to the heterogeneity of existing EUD systems for
mashups, making it difficult to arrive at a common ground against which
they can be compared. We addressed this shortcoming by proposing a
multi-dimensional benchmarking framework (see Chapter 6). We also
used the framework to benchmark the state-of-the-art EUD systems for
mashups.

1.6 Structure

The rest of the dissertation is structured as follows.
In Chapter 2, we propose a decision space that encompasses a variety of

issues and alternatives concerning the design of EUD systems for mashups. The
decision space forms a framework based on which we survey the state-of-the-art
systems. Also, using the decision space, we classify these systems based on their
expected level of expressiveness and usability for non-programmers. Thereby,

8 1.6 Structure

we characterize the design of an EUD system that is missing from the state-of-
the-art, which, in turn, helps motivate the rest of this dissertation.

In Chapter 3, we explain the main design components of NaturalMash in-
tended to fill the identified gap in the state-of-the-art. Using several examples,
we outline the grammar, vocabulary, and semantics of the natural programming
language, used as the main EUP technique in the system. We describe the JSON-
based syntax of the Web API specification language that conforms to an expres-
sive component meta-model. The meta-model not only hides the technological
complexity of Web APIs behind a uniform interface but also allows to anno-
tate their capabilities with formal labels. These labels eventually constitute the
vocabulary of our natural programming language. Finally, we showcase the in-
tuitive environment of the system by way of a usage scenario.

Next, in Chapter 4, we overview the architecture and implementation of
the system. EUD systems for mashups are interactive, and therefore their design
involves the notion of perceived response time that is the time an end-user senses
from the beginning of input (e.g., editing) and the end of response. Minimizing
the response time is a major design challenge that can profoundly enhance the
user experience. We propose a high-performance architecture for NaturalMash
that is set to addresses this challenge.

We followed a user-centered approach, comprising three iterations of forma-
tive evaluation, towards the design of NaturalMash. We report the results of
the formative evaluations in Chapter 5. We also show how the results of the
evaluations gradually drove the design of the system user interface.

To conclude that the system is usable for non-programmers, we conducted a
summative evaluation that is thoroughly reported and discussed in Chapter 6.
The results showed that non-programmers can effectively and efficiently use the
system to create mashups. We also identified a number of usability problems in
a formative way sought to be addressed in future work.

In Chapter 7, we get across the multi-dimensional benchmarking framework,
using which we also compared NaturalMash with the state-of-the-art. Unlike
Chapter 2 where we merely determine the expected level of expressive power, in
this chapter we actually measure it and compare existing mashup tools accord-
ingly. Combined with the summative evaluation, the comparison results shows
that NaturalMash is both highly expressive and usable by non-programmers and
that we have obtained the desired design.

Finally, in Chapter 8 we remark final conclusions including the limitations of
our research as well as the ideas for future work.

Chapter 2

A Survey of the State-of-the-art
Mashup Tools

EUD systems for mashups are all consolidated under one single name — Mashup
tools. The past few years have witnessed many interactive mashup tools, both
from research and industry, offering a broad range of characteristics and affor-
dances. Some are based on visual composition languages [67], others feature
a high degree of automation and liveness [107], many support collaborative
development [46], engaging public and private online communities.

In this chapter, we define mashup tools and survey their state-of-the-art de-
sign. The survey is done through the lens of architectural knowledge manage-
ment [16] with the goal of harvesting reusable architectural design decisions
from existing mashup tools. We exploit these decisions to create a unified de-
sign space that helps to classify and explain the heterogeneity of the surveyed
tools. Finally, we scrutinize the the state-of-the-art by characterizing and collat-
ing against a better design for mashup tools.

2.1 Defining Mashup Tools

It has been quite a while since enterprises and software companies realized the
benefits of integrating information systems across their organizational bound-
aries [10]. This integration process can receive (input) and produce (output)
software artifacts at any layer of information systems architecture [45], namely
presentation, application logic, and data. Based on the input and output soft-
ware artifacts, Figure 2.1 presents a high-level classification of systems enabling
information system integration.

9

10 2.1 Defining Mashup Tools

Presentation

Logic

Data

PresentationLogicData

Input

Output

DW

SOA

SOA EII

EAIME

EAI

EII: Enterprise Information Integration
EAI: Enterprise Application Integration

DW: Data Warehousing

SOA: Service Oriented Architecture
ME: Mashup Enabler
WP: Web PortalMT MT MT

ME

WP MT : Mashup Tools

Figure 2.1. A high-level classification of of integration systems based on the
type of input and output software artifacts. Mashup tools (gray boxes) in-
tegrate data, application logic, and presentation artifacts and produce Web
applications with at least a presentation layer (mashups). A Mashup Enabler
(ME) scrapes and integrates unpublished data, and publishes them as Web
APIs (application logic layer) to be composed by mashup tools.

At the data layer, integrating data from disparate sources across an enter-
prise can provide powerful business and technical insight throughout the enter-
prise [53]. Enterprise Information Integration [22] (EII), and Data Warehouse
[27] (DW) are the early forms of systems for data integration.

With the help of integration, new functionalities (application logic) can be
easily obtained by integrating existing application logics. Service-Oriented Ar-
chitecture [40] (SOA) streamlines integration at this level by advocating the
idea of publishing software applications as services in the cloud with standard-
ized interfaces to be discoverable and understandable by any potential client.
These services provide access to not only the application logic of an enterprise
application but also its underlying data layer. Consequently, SOA can enable
data integration in an easier and more standard way than DW and EII systems.

At a higher layer, even a full-fledged enterprise applications can be devel-
oped by putting together existing ones at their presentation layer. Enterprise
Application Integration [119] (EAI) was an early attempt in this regard. EAI can
also be used to integrate data and application logic extracted from enterprise ap-
plications. This is specially useful when the target data and application logic are
not published in a database or encapsulates as a standard service. On the Web,

11 2.2 Survey Methodology

EAI is exploited in Web Portals (WP) that put together one or more Web widgets
into a single page website. A popular type of WP is business dashboards that
show in a single view different performance indicators relevant to a particular
business process (e.g., sales data).

Mashup tools are a new generation of integration systems on the Web. They
integrate data, application logic, and presentation to produce Web applications
with at least a presentation layer, called mashups. We distinguish Mashup En-
ablers (ME) that produce Web APIs to be composed by mashup tools. Examples
of ME include Dapper1 that allows to scrape websites and publish the results as
a data source, and FeedRinse2 that produces new data sources out of the integra-
tion of existing ones.

2.2 Survey Methodology

In order to give a clear structure to the survey, we have constructed a model
(Figure 2.2) conforming to a simple, yet powerful decision meta-model proposed
in [92] and used the corresponding tool3 to gather and process the knowledge.
The meta-model is comprised of design issues and, related to them, design al-
ternatives. The design issues represent a design problem, while each design
alternative serves as a potential solution.

Our model was constructed based on the knowledge gained from using/read-
ing about existing mashup tools. In the surveyed literature, we gathered 27 ma-
shup tools, taking into account their availability and design diversity. We further
refined the knowledge into design decisions by eliminating overlapping issues
and alternatives. Next, we selected 7 top-level design issues and 25 alternative,
based on their impact and relevance to usability and expressiveness qualities.

2.3 Design Issues and Alternatives

2.3.1 Design Issue: Automation Degree

A mashup tool needs to leverage automation to lower the barriers of mashup
development. The automation degree of a mashup tool refers to how much of
the development process can be undertaken by the tool on behalf of its end-

1http://open.dapper.net/
2http://feedrinse.com/
3http://saw.inf.unisi.ch

http://open.dapper.net/
http://feedrinse.com/
http://saw.inf.unisi.ch

12 2.3 Design Issues and Alternatives

O
nl

in
e

Co
m

m
un

ity

Vi
su

al
 L

an
gu

ag
e

Au
to

m
at

io
n

De
gr

ee

Li
ve

ne
ss

EU
P

Te
ch

ni
qu

e

Sp
re

ad
sh

ee
ts

Te
xt

ua
l D

SL
Ex

am
pl

e
M

od
ific

at
io

n
Pb

D
W

YS
IW

YG
Fo

rm
-b

as
ed

Fu
ll a

ut
om

at
io

n
Se

m
i a

ut
om

at
io

n
M

an
ua

l

Le
ve

l 4
Le

ve
l 2

Le
ve

l 3
Le

ve
l 1

Vi
su

al
 L

an
gu

ag
e

Ic
on

ic
W

iri
ng

Pr
iva

te
Pu

bl
ic

Li
ve

 L
ay

ou
t

Su
pe

rim
po

se
d

Co
in

cid
en

t
Di

st
in

ct

Le
ge

nd

D
es

ig
n

Is
su

e

D
es

ig
n

A
lte

rn
at

iv
e

So
lv

ed
 b

y

D
ep

en
de

nc
y

Figure 2.2. Mashup tool design space overview.

13 2.3 Design Issues and Alternatives

users. Considering this, we distinguish between manual, semi-automatic, and
full automatic mashup tools.

• Alternative: Full Automation. Full automation of mashup development
eliminates the need for direct involvement of end-users in the development pro-
cess. Instead, they will gain a supervisory role with the opportunity to provide
input (i.e., requirements) and validate the final result. Since the development
process is carried out by the tool, the burden of learning is considerably lifted.
Also, if designed properly, it can significantly decrease the effort of mashup de-
velopment. A great challenge is to ensure the accuracy of a fully automatic
mashup tool, so that the (automatically) produced mashups do not deviate from
the end-user’s needs. The tool may also allow end-users to iteratively validate
the resulting mashup and in case of deviation to intervene in the development
process. Even though this may partially address the challenge, end-users might
encounter the risk of experiencing many time-consuming iterations. As an exam-
ple, Piggy Bank [63] uses semantic technologies to automate the extraction and
mixing of content from different websites. It falls back to visual screen scraping
techniques, in case the target website does not expose RDF data.

• Alternative: Semi Automation. Semi-automatic tools partially automate
mashup development by providing guidance and assistance. The role of end-
users is to intervene and follow the guidance. The direct involvement of end-
users in the development process results in more accuracy (compared with au-
tomatic tools) and thus a much lower probability of deviation from their needs.
However, the end-users should go through a relatively longer learning curve to
be able to create their desired mashups. ResEval Mash [64] provides control/-
data flow recommendations and guidance. Yet, end-users need to first learn the
semantics of the tool and actively select and connect Web APIs on their own to
create a mashup.

• Alternative: Manual. Manual mashup tools do not offer automation or
guidance on the mashup development process. The absence of automation
makes the design of the tool relatively easy, but increases the burden of com-
plexity on its end-users. Early generation of mashup tools from academia were,
to a large extent, manual. These can be exemplified by MashArt [33].

2.3.2 Design Issue: Liveness

In the context of visual languages, Tanimoto proposed the concept of liveness [107],
according to which four levels of liveness are distinguished. We believe that the
applicability of the concept can be found in the domain of mashups as well.

14 2.3 Design Issues and Alternatives

• Alternative: Level 1. Flowchart as ancillary description. At the first
level, a tool is just used to create prototype mashups that are not directly con-
nected to any kind of runtime system. A prototype mashup usually only has
the final user interface without underlying functionality. The goal of mashup
tools is to provide a development environment for creating executable mashups.
This does not comply with the implications of liveness Level 1, as tools at this
level can only help to create non-executable prototype mashups. However, vi-
sual tools such as Microsoft Visio can be tailored to create prototype mashups as
explained in [115].

• Alternative: Level 2. Executable flowchart. At the second level of live-
ness, a mashup tool only produce some executable blueprints that need to be
manually fed to another tool for the purpose of execution. These blueprints are
self-contained in terms of documentation, and therefore can serve as reference
for end-users. The fact that these blueprints can be automatically transformed
into executable mashups implies that they might need to carry on some amount
of low-level technical design details, which may make them difficult to inter-
pret by non-programmers. The Enterprise Mashup Markup Language4 (EMML),
a standard XML-based mashup modeling language from the Open Mashup Al-
liance (OMA), can be used to produce such blueprints. Even though EMML is
not a mashup tool by definition, there are other tools such as JackBe Presto5,
capable of executing EMML blueprints.

• Alternative: Level 3. Edit triggered updates. Mashups characterized to
the third level of liveness can be rapidly deployed into operation. Deployment
in this case can be triggered for example by each edit-change or by an explicit
action executed by the developer. The problem at this level is that end-users may
be unsure whether the design and runtime environments are in sync with each
other, unless they manually press the “run” button, or make use of any other
means to trigger the automatic redeployment of the mashup. A good example of
a mashup tool at this level is JOpera [94]. In the tool design environment, there
is a “run” button which automatically executes a mashup and switches the screen
to the runtime environment used for debugging and monitoring purposes.

• Alternative: Level 4. Stream-driven updates. The fourth level of ma-
shup liveness is obtained by the tools that support live modification of the ma-
shup code, while it is being executed. End-users are allowed to tinker with
mashup code in the real time. In turn, changes are (almost) instantly observ-
able, and therefore, quick adaptation is possible. As a result, the development

4http://www.openmashup.org/
5http://www.jackbe.com/enterprise-mashup/

http://www.openmashup.org/
http://www.jackbe.com/enterprise-mashup/

15 2.3 Design Issues and Alternatives

(1) Distinct (3) Coincident (2) Superimposed

Design perspective Output perspective

Figure 2.3. Live layout classification.

cycle is very rapid. High design agility comes with the risk that uncontrolled
changes to an operational system could make it fail. The same danger applies
in case of live collaboration on mashup development that can potentially leave
the system inconsistent. Finally, an important challenge is that highly responsive
environments can result in high costs of running the mashup, as – for example –
remote Web APIs need to be invoked every time a change is done on the mashup
code. This can become problematic when, for instance, the Web API has a call
rate limit. DashMash [25], Omelette [28], and RoofTop [61] support liveness at
Level 4 by merging the mashup design and runtime environments, and proving
a mechanism to keep both of them synchronized.

2.3.3 Design Issue: Live Layout

At Level 4 of liveness, we distinguish three variations of mashup tools: distinct,
coincident, and superimposed (Figure 2.3). The classification is made based
on how design and output perspectives are positioned in a mashup tool envi-
ronment. Design perspective is where the end-user creates or manipulates a
mashup. Likewise, output perspective constitutes the result of the run-time exe-
cution of the mashup being created or modified in the design perspective.

• Alternative: Distinct. This type of live mashup tools separates the design
and output perspectives, in a way that the two perspectives are recognizable
from each other. It should be noted that the expected output perspective might
be integrated into the same user interface as the design perspective or not. The
former case has the advantage of allowing the tool environment to be more
self-contained. In the latter case, however, the output perspective resides in
the actual target environment, in which the output mashups are to be deployed
and executed. The output perspective is thus remotely connected to the design
perspective that is the main part of the mashup tool environment. For instance,

16 2.3 Design Issues and Alternatives

the output perspective may be integrated with a Web browser (e.g., FireFox) that
gets connected to the mashup tool environment using a plug-in. The advantage
of a realistic output perspective is that it shows not only the final execution of
the mashup being created, but also its final deployment environment. Still, this
separation imposes more barriers on the end-users’ side, as they need to be able
to distinguish and switch between the two perspectives. This is specially the case
when the output perspective is remotely connected to the tool environment. The
distinct variation is exemplified by MashStudio [116], in which the environment
interface only consists of a visual editor (design perspective) that is remotely
connected to the output perspective (a mobile client).

• Alternative: Coincident. This variation comes in effect when the design
and output perspectives of the mashup tool environment completely fold over
each other, in a way that they are not distinguishable anymore. This is synonym
to What You See Is What You Get (WYSIWYG), where the interface shown to the
end-user allows to see and manipulate content (e.g., graphical object, text, etc.)
that is very similar to the output mashup begin created. The main advantage of
this variation is the direct manipulation feedback governed by the WYSIWYG in-
terface. From the mashup tool design perspective, Its major shortcoming is the
inability of choosing other interaction techniques than WYSIWYG for mashup
programming. WYSIWYG interfaces since they mainly target the user interface
of the mashup are unable to provide adequate expressive power for manipu-
lations of the business logic and data integration layers of the mashup being
created. Intel MashMaker [38] is an example of this type of mashup tools.

• Alternative: Superimposed. In this type, part of, or the whole of, the out-
put perspective is superimposed with the design perspective, but does not cover
it completely. The output perspective is basically based on WYSIWYG (similar to
the coincident variation) that has the advantage of allowing direct manipulation.
In contrast to the coincident variation, the design perspective is not limited to
the WYSIWYG part (the output perspective). This allows to use other interac-
tion techniques in the design perspective to further compensate the shortcoming
of WYSIWYG in business logic creation. Analogous to the distinct live mashup
tools, the output can be integrated or remotely connected. In other words, super-
imposed live mashup tools take the best of the other two variations (coincident
and distinct) and apply them to their own shortcomings. Spreadsheet-based ma-
shup tools, if implemented as a live tool, can be included in this variation.

17 2.3 Design Issues and Alternatives

2.3.4 Design Issue: Online Community

Online communities are an important resource in assisting end-users to pro-
gram [89]. They can potentially support technical discussion as well as collab-
orative mashup categorization, sharing, rating, and recommendation [48]. An
online community can take the form of a blog, a newsgroup, a chat room, or
even a social network, depending on the role it is supposed to fulfill. From a
security and privacy point of view, currently available online communities for
mashup tools fall into two distinct types: public, and private.

• Alternative: Public. The content published in public communities are ac-
cessible by any end-user on the Web who wishes to join them. This, however,
does not imply that these communities do not require registration prior to ac-
cessing them. The added value of a public community lies in its great potential
for growth, ultimately resulting in the increased number of the tool end-users.
As the content shared in the community is public, end-users may refuse or refrain
from sharing certain details. Yahoo! Pipes6 maintains one of the largest public
communities of mashup developers. Members of the community can share, dis-
cuss, reuse, and categorize mashups created with the Yahoo! Pipes tool.

• Alternative: Private. The authority to join a private or a gated commu-
nity is granted on the basis of compliance with some special criteria. These
criteria can be having an invitation or being a registered member of a certain or-
ganization. Private communities are usually small in number of end-users. The
content stored in private communities is inaccessible to non-members, resulting
in a higher level of confidence for end-users to discuss issues related to their
organization. These communities require much more effort to start. Content
should be mostly created by the community staff, since with a small number
of end-users, there will not be much user-generated content initially. IBM Ma-
shup Center (IMC)7 allows enterprises to build their own private community,
organized around a centralized catalog. End-users can publish mashups to this
catalog so that others can discover and reuse them.

2.3.5 Design Issue: End-User Programming Technique

There have been a number of interaction techniques through the use of which
the barriers of programming can be lifted from end-users [87]. We list below
some representative techniques which have been used by mashup tools. Some
tools are known for using multiple techniques in combination.

6http://pipes.yahoo.com/
7http://www.ibm.com/software/info/mashup-center/

http://pipes.yahoo.com/
http://www.ibm.com/software/info/mashup-center/

18 2.3 Design Issues and Alternatives

• Alternative: Spreadsheets. Spreadsheets are one of the most popular and
widely used end-user programming approaches to store, manipulate, and display
complex data. The advantage of using spreadsheets for creating mashups lies in
their ease-of-use, intuitiveness, and expressive power to represent and manage
complex data ([58]). The main shortcoming of spreadsheets-based tools is the
lack of support for designing the mashup UI. Mashroom ([112]) adapts the idea
of spreadsheets and adds the nested tables to support complex data formats
such as XML and JSON. Husky8 is also another spreadsheet-based tool aiming
at streamlining service composition. Vegemite [75] extends the CoScripter web
automation tool [76] with a spreadsheet-like environment

• Alternative: Programming by Demonstration (PbD). As opposed to di-
rect programming, Programming by Demonstration (PbD) suggests to teach a
computer by example how to accomplish a particular task [30]. This is a pow-
erful technique that helps remove much of programming barriers. End-users
demonstrate what is the mashup they want without worrying about how it
should be programmatically implemented. Termination conditions and branches
are two important artifacts in the design of a mashup control flow graph—a
graph that defines the execution order of components and statements. These ar-
tifacts are not, however, feasible to be directly articulated by PbD technique [89].
Karma [109], for example, allows extract, filter, and aggregate content on the
Web through demonstration ([102]). Intel MashMaker utilizes PbD to extract,
store, manage, and integrate data from the Websites being browsed by the end-
user.

• Alternative: Visual Language. A visual programming language, as op-
posed to a textual programming language, is any programming language that
uses visual symbols, syntax, and semantics [86]. If designed properly, a visual
language offers a high level of abstraction, thus better targeting the needs of end-
users. One of their strengths is their ability to support more than one view at the
same time, e.g. showing both the design and runtime environments in the same
screen. A potential challenge is to make the most of the available screen space
(i.e., visual scalability), as the ability to layout diagrams in two dimensions can
be outweighed by the complexity and the size of the diagrams. SABRE [81] is
based on a visual language corresponding to Reo [13], a coordination language
that is used to define the logic of the mashup.

• Alternative: Textual Domain-Specific Language (DSL). Textual Domain
Specific Languages (DSL) are small languages targeted for solving certain prob-
lems in a specific domain ([110]). DSLs can also be used as a EUP technique for

8http://www.husky.fer.hr/

http://www.husky.fer.hr/

19 2.3 Design Issues and Alternatives

reducing programming efforts ([97]). Textual DSLs define textual syntax, that
may or may not resemble an existing general-purpose programming language.
DSLs, particularly those built internally on top of a general purpose program-
ming language, usually offer a high expressive power. In terms of learning barri-
ers, textual DSLs are similar to programming languages, and still cannot be used
by non-programmers [30]. Swashup offers a textual DSL for mashups, based on
Ruby-on-Rails. WMSL exemplifies a DSL having its own paradigm and syntax.

• Alternative: What-You-See-Is-What-You-Get. WYSIWYG enables end-
users to create and modify a mashup on a graphical user interface which is
similar to the one that will appear when the mashup runs. Since end-users al-
ways see the resulting mashup, the whole development process is streamlined.
Another potential benefit is the increase of the tool directness. End-users place
visual objects exactly in the places where they are meant to be. However, the
application logic of a mashup such as data filtering and conversion happens in
the backend where is not visible in the graphical user interface, and therefore is
not directly accessible for modification using a pure WYSIWYG tool. DashMash
is a WYSIWYG tool. End-users can drag-drop-and-connect a set of boxes (wid-
gets) whose current visual positions are the same both in the design time and
runtime.

• Alternative: Form-based. In form-based interaction, end-users are asked
to fill out a form to create a new or change the behavior of an existing object.
Filling out online forms has nowadays become an ordinary task for end-users
on the Web. This can be interpreted as a proof for “naturalness” of form-based
tools [108]. However, form-based tools cannot handle complex composition pat-
terns for mashups [66]. ServFace Builder [90] allows to customize user interface
and data sources using a form.

• Alternative: Programming by Example Modification. Another powerful
technique to remove the burden of programming is to let end-users modify and
change the behavior of existing examples, instead of programming from scratch
[79]. Provided that adequate mashup examples are available, in most cases the
modification of a mashup example or the customization of a predefined mashup
template requires a small effort. Searching for appropriate example as a suitable
starting point for the work is a challenging task for non-programmers, as they are
not familiar with any programming languages. With the ever increasing number
of Web APIs, providing adequate mashup examples derived from all possible
combinations of these APIs is not feasible. d.mix [55] allows to sample elements
of a website, and then generates the corresponding source code producing the
selected elements. These source codes are stored in a repository, where they can
be discovered and edited by end-users.

20 2.3 Design Issues and Alternatives

• Alternative: Natural Language Programming. Open Mashup ([18]) in-
corporates natural language programming for composing mashups on mobile
devices. Even though natural language is considered a natural way for hu-
mans to command computers [49; 56; 68] it cannot be efficiently used for
user interface integration and design which are integral part of mashup devel-
opment [118]. In the area of personal information management, Automate [18]
uses a simplified CNL for context-sensitive personal automation. Another similar
system is IFTTT9 which, even though it is based on natural language, restricts
the end-user’s input using a structured visual editor. Also, IFTTT only allows to
create mashups based on a specific control-flow pattern (if this then that) using
a predefined list of components

2.3.6 Design Issue: Visual Language

Visual programming languages proposed by existing mashup tools fall into two
main classes. The first class contains the tools that are based on a visual wiring
language. The second consists of those incorporating an iconic visual language.

• Alternative: Wiring. In a visual wiring language for mashups, activities
are visualized as solid or form-based boxes that can be wired to each other.
Each activity can represent a mashup component or a predefined operation like
filtering, sorting, and merging. Wires indicate the connection between these ac-
tivities. In the realm of service composition, wiring languages can be considered
one of the most explicit and popular approaches to express a composite service,
due to the one-to-one relationship between the flow of control and data from one
activity to another and visual boxes wired to each other. Wiring languages can
cause readability problems, when there are multiple crossing edges, or when the
visual graphs exceed the screen size. In the latter case, it is essential for a tool
to provide auto-layout features. The visual language incorporated by MashArt
represents queries and processing tasks over data sources as form-based boxes,
which are able to connect to each other.

• Alternative: Iconic. An iconic visual language represents objects to be
handled by the language as graphical icons. Sentences are made with one or
more icons that are related to each other according to a predefined syntax.
Properly designed icons are generally easily interpreted, understood and re-
membered by end-users. An iconic visual language requires to invest significant
effort and thought into icon design [71]. This is essential to avoid any further
changes to the appearance of the icons, which causes confusion due to unex-

9https://ifttt.com

https://ifttt.com

21 2.3 Design Issues and Alternatives

pected behavior. VikiBuilder [57] enables generation of visual wiki instances by
combining various data sources. The tool uses iconic annotations to represent
various predefined entities like adapter, data source, and semantic extractor.

2.3.7 Design Issue: Design Distance

The user interface of a mashup tool contains presentation objects (e.g., but-
tons, icons representing components, and domain-specific symbols) that abstract
their underlying implementation in a programming language. The gap between
presentation objects and their underlying implementation is called design dis-
tance [85]. A long design distance in a mashup tool results in the increase of
its usability (the objects will be closer to the end-user’s way of thinking). Even
though usability here has the upper hand, a long design distance may potentially
endanger expressiveness. To cope with this, [84] proposes three techniques:
customization, integration, and extension. When combined together, these tech-
niques (from left to right) enable a gradual shortening of the design distance to
ensure both usability and expressiveness.

• Alternative: Customization. In mashup tools, customization shortens
the design distance by allowing to modify the functionality or user interface
of an existing mashup through parameterization. Many mashup tools, such as
MyCocktail10, use this technique to enable the alteration of Web API calls or
modification of the size and position of widgets in a mashup user interface.

• Alternative: Integration. This technique allows to create new mashups
out of the composition of available Web APIs. This technique considerably short-
ens the design distance but still relies on the Web APIs available in the tool li-
brary. Most mashup tools, exemplified by CRUISE [96], accommodate this tech-
nique as an integral part of their design.

• Alternative: Extension. This technique provides the shortest design dis-
tance and allows to extend a mashup tool by adding new Web API to its li-
brary. To accommodate this technique, the mashup tool needs to possess an
open Web API library, to which end-users can contribute new Web APIs. For in-
stance, JackBe Presto offers an open Web API library that can be extended by its
end-users.

10http://www.ict-romulus.eu/web/mycocktail

http://www.ict-romulus.eu/web/mycocktail

22 2.3 Design Issues and Alternatives

Design issues
and alternatives

M
as

hr
oo

m

H
u

sk
y

K
ar

m
a

M
as

hM
ak

er

Ve
ge

m
it

e

Ya
ho

o!
Pi

pe
s

IM
C

JO
pe

ra

Ja
ck

B
e

Pr
es

to

M
ar

m
it

e

M
as

hA
rt

R
es

Ev
al

M
as

h

SA
B

R
E

M
as

hS
tu

di
o

Automation degree
Manual # # # #

Semi-automatic # # # # # # # # # #

Full automatic
Liveness
Level 1
Level 2
Level 3 # # # # # # # # # # # # #

Level 4 #

Live Layout
Distinct #

Superimposed
Coincide
Online communities
Private #

Public # #

EUP techniques
Spreadsheets # # # # # #

PbD # #

Visual language # # # # # # # # #

DSL
WYSIWYG # # # # #

Form-based # # # # # # # #

Example modification
NLP #

Visual language
Iconic #

Wiring # # # # # # # #

Design distance
Customization # # # # # # # # # # # # # #

Integration # # # # # # # # # # # # # #

Extension # # # # # #

Table 2.1. Summary of the mashup tool design decisions over the mashup
design space (part 1). In the “interaction techniques” issue, the big # and
smaller # represent, respectively, the main and secondary techniques.

23 2.3 Design Issues and Alternatives

Design issues
and alternatives

M
yC

oc
kt

ai
l

M
as

ha
bl

eL
og

ic

Sw
as

hu
p

W
M

SL

Se
rv

Fa
ce

D
as

hM
as

h

O
m

el
et

te

C
R

U
IS

E

R
oo

fT
op

d.
m

ix

O
pe

n
M

as
hu

p

Pi
gg

y
B

an
k

IF
T

T

Automation degree
Manual # #

Semi-automatic # # # # # # # # # #

Full automatic #

Liveness
Level 1
Level 2
Level 3 # # # # # # # # # #

Level 4 # # # #

Live Layout
Distinct
Superimposed
Coincide # # # #

Online communities
Private
Public # # #

EUP techniques
Spreadsheets #

PbD
Visual language #

DSL # #

WYSIWYG # # # # # #

Form-based # # # # # # # # # #

Example modification #

NLP # #

Visual language
Iconic
Wiring #

Design distance
Customization # # # # # # # # # # # # #

Integration # # # # # # # # # # # #

Extension # # # # # #

Table 2.2. Summary of the mashup tool design decisions over the mashup
design space (part 2). In the “interaction techniques” issue, the big # and
smaller # represent, respectively, the main and secondary techniques.

24 2.4 Survey Summary

2.4 Survey Summary

Tables 2.1 and 2.2 summarize the survey of the design of 27 mashup tools based
on the proposed decision space. As it can be seen in the tables, the majority
of the surveyed mashup tools are semi-automatic. Full automation is rarely
an option (only Piggy Bank) mostly due to the technological complexity and
heterogeneity of mashup development.

Interestingly, the vast majority of the tools already support liveness at Level
3 through a “run” button that takes the end-users to the runtime environment
where the mashup will be deployed and executed. Few recent mashup tools
(Omelette, RoofTop, DashMash, and MashStudio), however, support Level 4, mostly
in a coincident layout form.

Establishing an online community, despite its benefits [113], is not a popu-
lar design decision. This is probably due to the fact that most of the surveyed
mashup tools are research prototypes that have not been yet deployed for real
use. Therefore, only some industrial mashup tools (e.g., Yahoo! Pipes, and IBM
Mashup Center) provide an online community for their end-users.

According to the tables, the most popular EUP techniques are visual wiring
language programming and form-based interaction. When these two techniques
are used together in one mashup tool, the visual wiring language commonly
consists of graphical boxes that represent data sources or processing operators,
and contain a form for customization. The combination of these two techniques
is in fact the old software composition metaphor [14] that dates back to be-
fore the invention of mashups. As a result, other techniques such as NLP and
programming by example modifications are not that common.

Regarding the design distance issue, all of the semi-automatic and manual
tools support integration and customization techniques. Enabling extension re-
quires an open architecture that is not widely adopted by these tools.

2.5 The Need for Another Mashup Tool

Mashup tools must possess two important qualities: expressiveness, and high us-
ability for non-programmers. It is the top priority for a mashup tool to be highly
usable by non-programmers, as they are the dominant population of end-users.
Expressiveness is also important as it enables end-users to develop sophisticated,
feature-rich mashups. However, the interpretation of “useful” expressiveness
may differ from one mashup tool to another depending on the application do-
main they target [65]. For instance, a mashup tool designed for research per-

25 2.5 The Need for Another Mashup Tool

formance evaluation [64] is considered expressive as long as it allows end-users
to accomplish the required tasks (e.g., calculating a h-index score). Since there
is a long-tail of application domains for mashups, in our thesis, we favor the
highest level of expressiveness as possible for the design of mashup tools. This is
due to the fact that a highly expressive mashup tool can be potentially useful in
any application domain, assuming that its high usability for non-programmers is
assured and not compromised.

In this section, we illustrate the trade-off between the two qualities of ma-
shup tools (expressiveness, and usability for non-programmers). To this end, we
first discuss how these qualities are affected by the design issues mentioned in
this chapter, and then analyze and classify the surveyed mashup tools accord-
ingly. In doing so, we also conceptualize the design of a desired mashup tool
as the sweet-spot in the trade-off, and show that it is missing from the surveyed
state-of-the-art.

The main design issues that affect expressiveness (Table 2.4) include design
distance, EUP techniques, and automation. Likewise, the design issues deter-
mining whether a tool is usable by a non-programmer (Table 2.3), are liveness,
live layout, EUP techniques, automation, and online community.

The three techniques to shorten the design distance (customization, integra-
tion, and extension), when properly implemented within a mashup tool, can
significantly increase its expressive power. As mentioned previously, most of
mashup tools support the first two techniques (customization and integration),
and only a handful of them employ the three techniques together. Supporting
extension technique is important as the number of new Web APIs providing in-
teresting functionality and data is rapidly increasing.

EUP techniques also each allow up to a certain level of expressiveness. For
instance, whereas textual DSLs are capable of offering a high level of expres-
sive power, the form-based technique limits the user’s interaction to customiza-
tion tasks. To be specific, textual DSL, visual wiring language programming,
and natural language programming allow the highest level of expressive power.
Moreover, there is an association (Figure 2.2) between EUP techniques and
the techniques to minimize the design distance. For instance, form-based, vi-
sual language programming, and textual DSLs can be respectively associated to
customization, integration, and extension techniques. Additionally, EUP tech-
niques have different level of abstraction, which in turn have impacts on usabil-
ity. Highly abstract techniques such as PbD, Form-based, and WYSIWYG, are
more suitable for non-programmers. There is, therefore, a trade-off here be-
tween the levels abstraction and expressive power: higher level of abstraction
compromises expressiveness. Nevertheless, the metaphor of the EUP technique

26 2.5 The Need for Another Mashup Tool

Design issues and alternatives Low Medium High

Automation degree
Manual #

Semi-automatic #

Full automatic #

Liveness
Level 1 #

Level 2 #

Level 3 #

Level 4 #

Live Layout
Distinct #

Superimposed #

Coincide #

Online communities
Private #

Public #

EUP techniques
Spreadsheets # #

PbD #

Visual language # #

DSL #

WYSIWYG #

Form-based #

Example modification # #

NLP # #

Table 2.3. The effect of design decisions on the usability of mashup tools for
non-programmers

27 2.5 The Need for Another Mashup Tool

Design issues and alternatives Low Medium High

Automation degree
Manual #

Semi-automatic #

Full automatic #

Design distance
Customization #

Integration #

Extension #

Online communities
Private #

Public #

EUP techniques
Spreadsheets # #

PbD #

Visual language # #

DSL #

WYSIWYG #

Form-based #

Example modification # #

NLP #

Table 2.4. The effect of design decisions on the expressive power of mashup
tools.

28 2.5 The Need for Another Mashup Tool

Optimal Usable

Low Medium High

Low

Medium

High

Yahoo! Pipes

WMSL

Swashup

JackBe Presto
IMC

DashMash

MashArt

Omelette
IFTTT

Piggy Bank

RoofTop

ServFace

Open Mashup

d.mix

MashableLogic
myCocktail

MashStudio

ResEval Mash

Marmite

MashMaker

Vegemite

Karma

Husky

MashroomSABRE

Expressive power

U
sa

bi
lit

y
by

 n
on

-p
ro

gr
am

m
er

s

Highly Expressive

Highly Usable

JOpera

Moderately Expressive

Moderately Usable Moderate

Bad Design

Optimal Expressive

Ideal

CRUISE

Figure 2.4. The state-of-the-art mashup tools classified according to expres-
siveness and usability by non-programmers. An optimal usable mashup tool
(gray box), that is missing from the state-of-the-art, is highly usable by non-
programmers and provide a medium level of expressive power.

29 2.5 The Need for Another Mashup Tool

is an influential factor on usability as well. In spite of the popularity of visual
languages based on the wiring paradigm, according to a study conducted by
Namoun et al. [88], these languages in the context of mashups are not “natural”
to many non-programmers. In other words, a diagram representing the flow of
data and control is more of a metaphor suitable for programmers rather than
non-programmers.

Automation is another issue that directly affects both expressiveness and us-
ability. The increase of automation results in the decrease of expressiveness. The
more tasks are automated by the tool, the less opportunities end-users have to
express and communicate their ideas. In the same way, more automation is com-
monly believed to better serve non-programmers [44]. In case of full automa-
tion, however, the challenge lies in how to support end-users to communicate
their requirements (so the system will take of the rest) and give guidance and
feedback if automation fails and falls back. The trade-off here is that increasing
automation results in decreasing expressive power, while having the opposite
effect on usability.

Liveness is an important issue affecting the usability of a tool. The higher
the level of liveness, the better cognitive support for non-programmers. Level
3, which is supported by most of mashup tools, still requires end-users to dis-
tinguish between the design-time modeling and composition environment and
its run-time version, where the mashup execution occurs. On the other hand,
liveness at Level 4, which is not supported by most mashup tools, helps non-
programmers to gradually develop their skills in using the tool. Accomplishing
and then immediately validating small steps one at a time towards solving a big-
ger problem lead the end-users towards a gradual and gentle learning process.
Moreover, the best way to implement liveness at Level 4 is based on superim-
posed layout. This way, due to the possibility of using another EUP technique,
much more expressive power can be added to the tool.

Empowering end-user communities is of value and can improve usability [89].
They can be used to promote sharing of mashups, technical discussion, and col-
laborative categorization [48]. One of the most promising approaches to lower
cognitive costs and increase motivation is to facilitate collaborative develop-
ment [43]. To this end, establishing an online community is crucial as it brings
together users with similar interests and common ground [113]. It should also
be noted that the full potential of an online community is exploited only when
it is internally built upon the actual end-users of the tool (like in Yahoo! Pipes
and JackBe Presto), not externally in the form of a technical blog or a fan page
(like in MashableLogic). Online communities and collaborative development are
fascinating topics, which, however, will not be explored in this dissertation.

30 2.5 The Need for Another Mashup Tool

By considering the discussed impacts of the above design issues on expres-
siveness and usability for non-programmers, as well as based on what decisions
the surveyed mashup tools have made about these issues, we roughly classify
these tools into one of the following groups (Figure 2.4): highly expressive,
highly usable, moderately expressive, moderately usable, moderate, optimal expres-
sive, optimal usable, ideal, and bad designed tools. Clearly, high expressive tools
are domain-specific scripting and programming languages designed for mashup
development such as Swashup and WMSL. Almost all WYSIWYG tools, such as
DashMash and Omelette, are classified as highly or moderately usable, due to
their high level of abstraction and direct manipulation. Mashup tools based on
visual wiring languages (e.g., JackBe Presto, and IBM Mashup Center) mostly
fall into the moderate and moderately expressive groups. Both ideal and bad
designed groups are empty, with a difference that it is possible to have a bad de-
signed mashup tool, whereas an ideal tool is implausible to achieve. This is due
to the mentioned trade-offs within and between the design issues (e.g., automa-
tion and EUP techniques issues) making it impossible to reach the highest levels
of both expressiveness and usability for non-programmers within the design of
one mashup tool. We also introduced two optimal groups — one focusing on
expressiveness and the other on usability. Since usability for non-programmer
has the upper hand, we opt for the development of an optimal usable mashup
tool, which is missing from the state-of-the-art. Such a tool hits the sweet-spot
in the trade-off between expressiveness and usability for non-programmers.

Chapter 3

NaturalMash: A Live Natural Mashup
Tool

In Chapter 2, we reviewed the state-of-the-art mashup tools and identified the
need for an “optimal usable” one, and defined it as an EUD system that, given
the trade-off, provides the highest level of usability by non-programmers and a
moderate level of expressive power. In this chapter, we explain the design of
NaturalMash that we claim is an “optimal usable” mashup tool. We first out-
line the top-level design decisions (Section 3.1), and then move on to describe
the core components of the system including, natural language programming
(Section 3.2), Web API specification modeling language (Section 3.3), and the
development environment (Section 3.5).

3.1 Design Decisions

The design of NaturalMash requires a novel hybrid EUP techniques ensuring
both high level abstraction and expressiveness. Moreover, it is essential that the
metaphors used in the design are familiar and meaningful to a wide range of
end-users. Above all, the design should be able to provide an optimal learn-
ing experience [31] that supports and develops the skills of non-programmers.
Accordingly, we made the following top-level design decisions:

• Semi-automated mashup development (D1): According to the trade-
off between automation on one side and expressive power and usability on the
other side, we decided to design NaturalMash as a semi-automatic tool. Thereby,
while the development of mashups should be carried out by end-users, partial
automation is provided through recommendation.

31

32 3.1 Design Decisions

Ingredients Toolbar

displays a searchable list of
available Web APIs.

Text Field

allows to edit the mashup description.

Ingredient Dock

shows the list of ingredients used
in the mashup.

Widgets

are interactive, resizable, and can be
moved around.

Ingredients (Web API)

are draggable and represented
by an icon.

Visual Field

renders the mashup output while it is
being edited.

Figure 3.1. NaturalMash environment: end-users type the recipe of the mashup
in the text field and immediately see the output in the visual field. The output
contains interactive widgets that can be resized and relocated. The ingredients
toolbar helps with API discovery, while the dock gives a summary of the Web
APIs (ingredients) used in the current mashup. Ingredients are abstracted
away from the technologies they use and are represented as icon.

33 3.1 Design Decisions

• Natural language programming combined with WYSIWYG (D2): Nat-
ural language programming as an end-user programming technique can poten-
tially provide a good level of expressive power. Also, natural languages (e.g.,
English) are readily understandable by their speakers. In the design of Natural-
Mash, natural language programming is enabled through a Controlled Natural
Language (CNL) — a subset of a natural language (e.g., English) restricted in
terms of vocabulary and grammar. The reason for using a CNL is to ensure the
accuracy of the system compiler. From the expressive power point of view, the
NaturalMash CNL empowers end-users to describe relatively complex process
orchestration and data integration logic as well as the composition of widgets
(all at a very abstract level).
While natural language programming is intuitive and can give a high level of
expressive power for developing the mashup back-end, it cannot be effectively
and efficiently used for the front-end (user interface) design. On the other hand,
WYSIWYG provides intuitive direct manipulation facilities for the front-end de-
sign — while it falls short of providing adequate expressive power for developing
the back-end.
The reason for selecting and combining these techniques (natural language pro-
gramming and WYSIWYG) lies in the fact that they augment one another’s
strengths and compensate for one another’s weaknesses. To the best of our
knowledge, NaturalMash is the only mashup tool that adopted this novel hybrid
EUP technique.

• Superimposed live programming (D3): NaturalMash incorporates the
live programming paradigm [29] (liveness level 4). As a result, end-users can
more easily bridge the gulf of evaluation (the degree of difficulty of assessing
and understanding the state of the system [91]). This in turn leads towards an
optimal learning experience [98].
We also adopted a superimposed live layout, in which the design (WYSIWYG)
and output perspective are partially overlapped. The overlapped area is the
output/design perspective consisting of the WYSIWYG interface, and the disin-
terested area the design perspective powered by natural language programming.
As it was mentioned previously, the advantage of the disinterested perspective is
achieving added expressive power.

• “Cooking” Metaphor (D4): Many end-users, specially non-programmers,
might not be familiar with the technical terminology related to mashups such
as service composition and Web APIs [88]. In order to bridge this gap, we
designed NaturalMash based on the familiar metaphor of cooking, according to
which Web APIs are referred to as “ingredients”, and the mashup source code
(in natural language) is the “recipe” to mix these ingredients.

34 3.2 NaturalMash Controlled Natural Language

• Simple Graphical User Interface (D5): A simple yet powerful graphical
user interface can potentially reduce the learning barriers and make the sys-
tem more intuitive. Hence, we designed NaturalMash (Figure 3.1) to have a
Single Page Application (SAP) interface composed of merely four main compo-
nents that together control all the functions of the system: (i) text field providing
advanced support for the natural language programming, (ii) visual field imple-
menting the PbD WYSIWYG interface for both the design and preview of the user
interface of the mashup being created, (iii) ingredient dock graphically represent-
ing the Web APIs used by the mashup, and (iv) ingredients toolbar containing all
the mashups created by the end-users and a searchable list of Web APIs.

3.2 NaturalMash Controlled Natural Language

The NaturalMash CNL is an abstract, executable language for modeling the de-
velopment of mashups at all the layers of presentation, application logic, and
data. We first introduce the language with a few examples as follows.

Listing 3.1 is the recipe (executable text written in the CNL) of a mashup
that searches Slideshare1 (it is a Website for sharing and finding presentations
and documents) for a topic or event (in this example “APIDays”), and then uses
the title of each resulting slide to accurately search for its corresponding presen-
tation video in YouTube2.

Find slides about APIDays. When an item is selected,

find YouTube videos about slide title.

Listing 3.1. A presentation search mashup.

Listing 3.2 is an example recipe of a map-based mashup. The mashup in-
cludes a user interface composed of a Google Maps widget3 and an HTML table
widget. The content of the table displays a stream that aggregates content from
the BBC News4 and CNN News feeds5. When a news item in the table is selected,
the Yahoo! Placemaker service6 extracts geographical data (e.g, longitude and

1http://www.slideshare.net/developers
2https://developers.google.com/youtube/
3https://developers.google.com/maps/
4http://www.bbc.co.uk/news/10628494
5http://rss.cnn.com/rss/edition.rss
6http://developer.yahoo.com/geo/placemaker/

http://www.slideshare.net/developers
https://developers.google.com/youtube/
https://developers.google.com/maps/
http://www.bbc.co.uk/news/10628494
http://rss.cnn.com/rss/edition.rss
http://developer.yahoo.com/geo/placemaker/

35 3.2 NaturalMash Controlled Natural Language

latitude) from the text. The geographical data is used to place a marker repre-
senting the news item on the map.

Combine BBC Top News with CNN Top News.

When an item is selected, extract the location of the item,

and place a marker on the map.

Listing 3.2. A location-based news feed mashup.

Listing 3.3 builds a mashup combining Twitter7, the YouTube player, a HTML
table, and a regular expression component, extracting values from an input us-
ing a set of predefined patterns (e.g., “YouTube video link”, “Flickr image

link”, etc.). It displays tweets about a certain keyword in a table, and allows to
play them if they contain a link to a YouTube video.

Find tweets about Lugano.

When an item is selected, extract youtube video from it, and

play video.

Listing 3.3. A player for videos linked from tweets.

The above recipe examples all conform to the CNL grammar and vocabulary
and can be automatically executed by NaturalMash.

3.2.1 Grammar and Syntax

Figure 3.2 illustrates the grammar of the NaturalMash CNL represented in Ex-
tended Backus–Naur Form (EBNF). The top-level structure of a mashup recipe is
decomposed into paragraphs, which are, in turn, a collection of sentences. The
CNL accommodates specific grammatical constraints that allow only two types
of sentences to be built:

• Imperative sentences. They are composed of multiple imperative mood
clauses called commands. As a syntactic structure, commands should be sepa-
rated by commas or “and”. For example, “Find tweets about Lugano, and

find YouTube videos about Lugano” is an imperative sentence composed of
two commands (separated by “and”).

7https://dev.twitter.com/

https://dev.twitter.com/

36 3.2 NaturalMash Controlled Natural Language

(*MASHUP DESCRIPTION*)
nlmd = paragraph (EMPTY_LINES paragraph)* (EMPTY_LINES? EOF);

(*PARAGRAPH*)
paragraph = sentence+;

(*SENTENCE*)
sentence = imperative | causal;

(*IMPERATIVE SENTENCE*)
imperative = command (command_delimiter command)* DOT;
command = (*natural language description of a Task*)
command_delimiter = COMMA AND?;

(*CAUSAL SENTENCE*)
causal = WHEN case COMMA imperative;
case = (*natural language description of an Event*)

Figure 3.2. The grammar of NaturalMash CNL represented in Extended
Backus–Naur Form (EBNF).

• Causal sentences. They are written in causal form in which the time
conjunction “when” introduces a passive clause (called a case) followed by one
or more commands. The case describe the cause of the event (e.g., an event
triggered by user interactions with a widget); the commands represent the ef-
fect to be realized when the case happens. Like in imperative sentences, case a
commands should be separated by commas or “and”. As an example, consider
the causal sentence in the Listing 3.1:“When an item is selected, search

youtube videos about title”.
Commands and cases are built according to the vocabulary of the language

that is derived from the NaturalMash component model. We will explain the
component model in Section 3.3.

3.2.2 Semantics

Like its grammar, the CNL is compiled to an executable language with both
imperative and event-driven semantics. Its imperative aspect is that the natural
sequential order of the sentences in English (i.e., from left to right) defines the
control flow of a mashup from one sentence, or one command to another.

37 3.3 NaturalMash Component Meta-Model

The event-driven execution semantics of the NaturalMash CNL is modeled by
causal sentences. Causal sentences are activated (but not immediately executed)
when the main control flow reaches them. An activated causal sentence is ready
to later receive control whenever its case happens, after which the control is im-
mediately passed to its imperative part. In doing so, the imperative part initiates
a parallel and independent control flow, which can be repeatedly executed for
every occurrence of the Event. We will explain the compilation process of the
CNL in detail in Chapter 4.

3.3 NaturalMash Component Meta-Model

Mashup ingredients (Web APIs) not only span all tiers (user interface, applica-
tion logic, and data) of a Web information system [117], but within each tier
they need to be composed using various techniques (e.g., Web scraping [102],
Web clipping [104], synchronous remote/local service invocation, asynchronous
interaction or subscription to feeds and data streams). Furthermore, different
Web APIs can be made accessible through different access methods and tech-
nologies (e.g., POX, REST [99], or SOAP). As a consequence, one of the main
challenges of mashup tools consists of abstracting away such heterogeneity be-
hind a highly abstract, expressive, and extensible component meta-model. A
highly abstract component meta-model conceals as much as possible the infor-
mation about the technical details of its underlying ingredient. This abstraction,
however, should not compromise the expressiveness of the meta-model, which is
defined as how many different types of ingredients can be defined by the meta-
model. Moreover, new technologies and access methods emerge frequently on
the Web (such as WebSockets), hence, it is important that the meta-model is
easily extensible. These challenges are not fully addressed by the state-of-the-
art meta-modeling solutions for mashup ingredients.

The Enterprise Mashup Markup Language8 (EMML), for instance, is a XML-
based standard component meta-model for mashup components providing ser-
vices and data sources. Though it supports variety of service and data source
types, it does not support ingredients with a graphical interface (widgets) so
lacks a high level of expressiveness. JOpera [94], on the other hand, is based
on a highly expressive meta-model called Opera Modeling Language (OML). For
modeling widgets, however, OML is not abstract enough. The meta-model pre-
sented in [95] is able to describe not only different types of services (HTTP/REST

8http://www.openmashup.org/

http://www.openmashup.org/

38 3.3 NaturalMash Component Meta-Model

Label
Event

Label
Task

Wrapper
Name
Value
Schema

ParameterSource
Destination

Mapper Destination (input)

Source (output)

1 1..*

1..*1

Source (input)
Destination (output)

1..*

1..*

11

Destination (output)

1

1..*

Rule

Rule

Input

Output

Output

1

0..*

0..*0..*

1

1

Interface
1

0..*

1

1..*

Name
Value

Property

1

0..*

Figure 3.3. A meta-model for ingredients (Web APIs).

and SOAP) but also widgets at an acceptable level of abstraction. One disadvan-
tage of the work is nevertheless the lack of support for extensibility.

In this section, we present our component meta-model that is highly ab-
stract, expressive, and extensible. To be specific, our component meta-model is
responsible for: (i) modeling heterogeneous ingredient technologies in a unified
and extensible way, and (ii) describes the capabilities of ingredients in natural
language to form the vocabulary of the CNL.

3.3.1 Modeling Ingredient Technologies

Figure 3.3 depicts our component meta-model as a UML class diagram, whose
main classes as well as the containment and reference relationships existing be-
tween them will be described in the rest of this section. The six classes of the
meta-model (interface, task, event, parameter, mapper, and wrapper) form two
layers of abstraction on top of a given ingredient. The first and underlying layer
is provided by the wrapper class which models various invocation and compo-
sition styles. The second layer is achieved through the interface class which
contains the event and task classes, which, in turn, contain the parameter class.
This layer provides a homogeneous, easy-to-understand interface concealing the
underlying technological heterogeneity. The connection between these two lay-
ers is thus modeled with the mapper class.

39 3.3 NaturalMash Component Meta-Model

-name
Wrapper

+style
Widget

+endPoint
+mode

Service
+streaming

Data Source

+type
+inMessage
+methodName
+outMessage

RPC
+ID
+extScript
+initScript

DIV
+cutFrom
+cutTo

IFrame

+script
Function

+initEvent
+callback

Event
0..* 0..*

+call
+onEvent()

+show()
+hide()
+restyle()

T

I
I

I
I
I

I

E

I
I
I

I
I

I
I

I
T

+type
+server
+port
+user
+pass
+database
+script
+prepare
+interval
+data

Database
I
I
I
I
I
I
I
I

O

src

1

I : Input O : Output T: Task E: Event

O

+invoke()
+stopStreaming()
+onUpdate()

T
E

+invoke()
+onReceive()

T
E

+WSDL
+portType

SOAP
I
I

+method
+requestHeader
+request
+WADL
+responseHeader
+response
+status

HTTP/REST
I
I
I

O
O

I

+frequency
Web Feed

src 1

I

I

I

O

TT

function
event

T

Figure 3.4. Wrapper hierarchy.

• Interface class enables interactions between ingredients. An interface
may also contain some properties that identify the ingredient, exemplified by
publisher, description, version, and call rate limit. As it will be men-
tioned in Chapter 4, the last properties is required to inform the NaturalMash
compiler engine about any call rate limit imposed by the ingredient.

• Task and Event classes are attached to the interface of an ingredient and
represent its passive and active operations. The task class models the functional
operations of the ingredient (called a Task), and represents both the synchronous
invocation of a functionality (such as a call to compute in some input) and a data
source that generates some output given a set of input data. From the control
flow point of view, a Task is considered passive inside a mashup, as it is executed
only when the control reaches it. The task class may contain abstract parameters
associated to its input and output ports. Input parameters should be filled with
values before the invocation. The output parameters will eventually store the
results of the invocation if it does not throw any exception.

The passive operations of ingredients called and Event, is modeled by the event
class. Events fire independently, and can be used to represent updates from
sources of streaming data as well as events caused by user interactions with a
Web widget. Events may produce output data in their associated output port
parameters, even if it is possible to model signal-like Events which do not carry
data but are nevertheless used to trigger the execution of other Tasks.

40 3.3 NaturalMash Component Meta-Model

The task and event classes have two similar attributes. The name attribute is a
human understandable string. The description attribute holds the formal natural
language description of the corresponding Task or Event. These formal descrip-
tions that form he vocabulary of the CNL, are explained in Section 3.3.4.

• Parameter class can be marked as either input or output, and is bound
to the task and event classes. The attributes of this class include: name that is
a human-readable string, schema that is used to facilitate data integration (see
Chapter 4, Section 3.4), and default value that is optional.

• Wrapper class is responsible for modeling different types of ingredients,
distinguished by the technology for their invocation and utilization (Figure 3.4).
Separating the wrapper class (technology specific part) from the interface class
(technology independent concerns) raises the level of abstraction and also en-
sures extensibility in future by adding more wrapper types in an ad-hoc fashion.
The wrapper classes are organized into a hierarchal inheritance structure. At
the top of the hierarchy is the abstract wrapper class, which is inherited by three
subclasses each of which corresponds to a different type of ingredients: data
source, that delivers a snapshot or a stream of data from remote sources on the
Web (e.g., BBC News), service, that provides remotely accessible business logic
(e.g., Yahoo! Placemaker), and widget, that is a stand-alone Web application
with a self-contained (reusable) user interface (e.g., Google Maps widget).
The three main wrappers (widget, service, and data source) have, in turn, a set
of subclasses that are called wrapper types. Each of these types is associated
with a single specific technology or access method. For instance, the database

class, which is a wrapper type defined under data source, is used to model the
interaction with a database. To fully model an ingredient may require more than
one wrapper type depending on how many different technologies are required
for invoking the target ingredient. We attempted to make the meta-model as
expressive as possible by including in the wrapper class all the technologies and
access methods utilized by existing mashup ingredients.
The wrapper types store specialized configuration data structures that model
different interaction protocols of ingredients. Such data structures include a set
of attributes that are conceptually grouped into input, and output, as well as a
number of operations that operate on these attributes. Similar to the interface
layer, these operations are interpreted as either Task or Event. Therefore, a
modeled ingredient has two types of operations: one defined at the interface
level, and the other at the wrapper level. Unlike the interface operations, the
wrapper operations are hidden from end-users and are predefined according to
the wrapper type. The same ingredient can thus be modeled differently at the
interface level, whereas the wrapper part is always the same.

41 3.3 NaturalMash Component Meta-Model

Wrapper Type: Widget

A Web widget consists of an independent visual presentation of its underlying
aggregate data. Some widgets may also give a mashup access to reusable pieces
of functionality or data. A widget life-cycle starts with calling the show Task,
which initializes all input attributes with value, and ends when the hide Task is
called. During this life-cycle, the restyle Task can be called multiple times to
change the value of the style attribute containing a valid CSS stylesheet.

• DIV widgets are created on the client-side using external and internal
JavaScript code. This kind of widgets is well exemplified by Google Maps APIs
offering an external JavaScript library to build customized map visualizations.
The ID attribute of the wrapper type specifies the actual ID of the DIV ele-
ment that is supposed to contain the widget. The URL pointing to the external
JavaScript libraries can be inserted as the value of the extScript attribute. The
InitScript attribute needs to be set by the JavaScript code that actually wraps
the widget in the DIV element.

The function class models JavaScript functions. This class has a Task operation
(call) that executes the script specified in the script attribute. The opera-
tion can be then associated with an interface task whose parameters can be
mapped and used inside the code as regular variables using the template rule
(Section 3.3.2).

In addition to functions, a DIV wrapper can have a set of event objects represent-
ing events in JavaScript. In JavaScript, events are handled through the callback
mechanism, in which a callback function is called whenever its corresponding
event has occurred. The declaration and implementation of the callback func-
tion is the value of callback attribute. The script that attaches the callback
function to the event should be then inserted as value of initEvent attribute.

• IFrame widgets are used to embed HTML-based user interface contents
from a remote website, partially (i.e., Web clipping) or completely. The value
of src attribute is a HTTP wrapper used to fetch the eebsite (with Get method)
that is to be embedded inside the target container. In case of Web clipping, the
CutFrom attribute contains the starting point of the clipping process that can
be a piece of string which matches a part of the target Website HTML code.
Likewise, the CutTo attribute represents the ending point of the cutting process.
For instance, cutting a table from a website in the simplest case requires setting
<table and table> as the values of the cutFrom and cutTo attributes.

42 3.3 NaturalMash Component Meta-Model

Wrapper Type: Data Source

A data source provides remotely accessed content on the Web. Data coming from
remote sources can also have a real-time essence. In this case, the wrapper al-
lows the streaming of data from a data source by setting the streaming attribute
to true. This should be done through the first call to the invoke Task which ini-
tiates all the input attributes and starts the ingredient life-cycle. If streaming
is not enabled, the ingredient life-cycle ends as soon as the response from the
invoke Task arrives. Otherwise, it will only end by calling the stopStreaming

Task. Moreover, while streaming is activated, the onUpdate event is fired when-
ever a new data stream item is available.

• Database can be used to generate a stream of data. In the simplest case
(which is the only case supported by our meta-model), this can be done by
running a query (script) in a given time interval. This interval is specified by
the interval attribute, and its length is a factor of how fast the target data
changes.

• Web Feeds is a popular type of ingredient for building data mashups, and
is usually delivered in RSS/Atom format. Feeds can be consumed as a continuous
stream of data using a technique called polling. Using this technique, the feeds
are periodically checked for updates. The feed wrapper type uses the frequency

attribute to specify the update interval.

Wrapper Type: Service

Services are reusable modular business logic that are made available to remote
clients through a URL (“endPoint”). The interaction between a client and a
service provider (mode) can be either blocking, in which the invocation of the
service (by calling invoke()) must wait until the response is ready before it can
proceed, or non-blocking, in which the client invokes the service and registers a
callback (onReceive()) to be triggered whenever the response comes back.

• RPC/SOAP has three popular forms: SOAP, XML-RPC9, and JSON-RPC10.
All of these protocols run over the HTTP or secure HTTP (HTTPS), except
for SOAP messages that can be also transmitted over SMTP and other proto-
cols. The protocol in use, therefore, can be found at the URL to the service
endpoint (“endPoint”). To communicate requests (inMessage) and responses
(outMessage), JSON-RPC messages use JSON, whereas SOAP and XML-RPC
messages are encoded as XML. To determine the type of the RPC service, the

9http://www.xmlrpc.com/
10http://json-rpc.org/

http://www.xmlrpc.com/
http://json-rpc.org/

43 3.3 NaturalMash Component Meta-Model

type attribute can be set to “SOAP”, “XML-RPC”, or “JSON-RPC”. In case of SOAP,
a service usually comes with a Web Services Description Language (WSDL) doc-
ument (WSDL attribute), which defines the service interface. In case that the
interface contains more than one port types, PortType specifies the desired one.

• HTTP/REST is the communication protocol used on the Web. Following
the constraints of the REST architectural style, it is used for stateless client-server
interaction with Web servers by sending and receiving hypermedia documents
(e.g., XML, HTML, etc.) via four methods (GET, POST, PUT, and DELETE). The
HTTP communication mechanism is based on request and response messages,
each of which is decomposed into a header (requestHeader and responseHeader)
and a body (request and response).

3.3.2 Mapper and Rule

The mapper class serves as a mechanism providing a link between the prede-
fined wrapper operations and the interface operations. This is made possible by
defining how the wrapper attributes and the interface parameters are mapped to
each other. This class contains two attributes: destination, and source, which
hold a reference to parameters and wrapper attributes respectively or vise versa,
depending on the mapping direction.

Using the mapper class, abstract parameters can be passed from an interface
as input to a wrapper Task operation which controls the technology-dependent
invocation of its corresponding ingredients. Likewise, the attributes holding the
result of the invocation of a Task, or the data associated with an Event opera-
tion,are transformed to the interface as abstract parameters. The rule class is
used to designate how the data mapping from a source to its destination should
be accomplished. This class contains three subclasses each of which represents
a specific rule prescribed for a particular purpose:

• Correspond rule enables a one-to-one association between a source and
its destination. In doing so, the value of the source is exactly copied to its desti-
nation parameter. This requires both source and destination have the same data
type, or otherwise be implicitly convertible. For instance, the numerical type or
the majority of Media types (such as XML, JSON, etc.) can be converted to the
string type. For example, User and Pass attributes of database wrapper can be
set at run-time by an abstract Task taking two input parameters of string type,
which are mapped with a one-to-one correspondence to these attributes.

• Template rule can be selected to correspond multiple sources to single
destination through a template. This template string consists of the value which
is supposed to be assigned to the destination parameter, as well as a set of place-

44 3.3 NaturalMash Component Meta-Model

URL = http://search.twitter.com/search.atom?q={query}

Listing 3.4. Template rule applied to map the interface parameter “query”
(source) to the “URL” attribute of the HTTP wrapper (destination).

holders distributed within the string value. These placeholders are represented
as pairs of opening and closing brackets, each of which contains the name of
a single source parameter or attribute which will be replaced with its value at
runtime (i.e., during the execution of the ingredient). One frequent use of the
template rule is for passing URL parameters (when the corresponding WADL
document is not present). Consider invoking the Twitter search API with the
HTTP wrapper. Using the template rule we can pass a source parameter to the
URL attribute of the HTTP wrapper (Listing 3.4).

• Parse rule entails splitting a source to multiple values and further associ-
ating these values to destinations. This rule supports different query languages.
A query written in a specified language, is used for extracting the value of the
destination from its source. The language can be one of XPath, exclusively for
XML-based formats (e.g., SOAP, RSS, ATOM, XML-RPC, etc.), or a regular ex-
pression for scraping data out of any kind of text-based formats such as HTML
or JSON. This rule is specially useful for extracting data from Media types such
as SOAP messages, RSS/Atom, and XML.

3.3.3 JSON Schema for The Component Model

Listing 3.5 is the JSON schema corresponding to the component meta-model de-
picted in Figure 3.3. Listing 3.6 is an example of a component model in JSON
for the Twitter API. We choose to rely on the JSON syntax not only to take ad-
vantage of many related tools and libraries but also because ingredient libraries
will be mainly managed from within mashup composition tools running inside a
Web browser, where JSON11 is one of the most efficient data representation and
interchange formats.

The schema contains the classes of the meta-model. The abstract interface
class is represented as interface object containing an array for defining its
properties, as well as two arrays: one for the Tasks and another for the Events.
Parameters are also defined as items of an array which is named as output and
can be included in every Task or Event item. The Task items can also contain
another array of parameters called input, since Tasks in the meta-model, as

11http://www.json.org/

http://www.json.org/

45 3.3 NaturalMash Component Meta-Model

{ Interface: {

name: "",

property: [{name: "", value: ""}],

task: [{name: "", description:"",

input: [{name: "", value": "", schema: ""}],

output: [{name: "", value: "", schema: ""}]

}],

event: [{name: "", description:"",

output: [{name: "", value: "", schema: ""}]

}]

},

service_wrapper: [{type:"", name:"",

input: [{name: "", value: ""}],

output: [{name: "", value: ""}]

}],

datasource_wrapper: [{type:"", name:"",

input: [{name: "", value: ""}],

output: [{name: "", value: ""}]

}],

widget_wrapper: [{type:"", name:"",

input: [{name: "", value: ""}],

output: [{name: "", value: ""}]

}],

mapper: [{source : ["ref"],

destination: [{name:"ref",

correspond:"ref" | template:"" |

parser:{ language:"", query:""}}]

}]

}}

Listing 3.5. JSON schema for the component model.

opposed to Events, can also take input parameters. The parameter items in the
JSON schema take name, value, and type, similar to the abstract parameter
class in the meta-model.

The arrays service_wrapper, datasource_wrapper and widget_wrapper

express, respectively, service, data source, and widget wrappers in the meta-
model. Each array can have multiple items referring to different wrapper types

46 3.3 NaturalMash Component Meta-Model

defined under their meta-model class. These items are identified by the type

variable that takes the wrapper type name as a string such as “HTTP”,“DIV” and
“SOAP”. The input attributes of a wrapper type are defined in the input array,
only when they should be initialized by a constant value.

Finally, the mapper class is expressed as an array whose items identify map-
per objects. The variables source and destination make a reference to either
a parameter name or wrapper attribute. To ensure their uniqueness, references
can be prefixed with the names of the object they belong to. This way they can
also be referenced from the mapper objects. To exemplify this, user which is an
input attribute of the database wrapper can be referred to by dbwrapper.user,
assuming dbwrapper is the name of the wrapper object. Likewise, references to
parameters can be prefixed by the name of the Task/Event they belong to.

3.3.4 Formal Description of ingredients in Natural Language

The label attribute of each interface operation is associated with a formal textual
description (called a label) that not only explains the capabilities of the ingredi-
ent in a human readable text format but also forms the vocabulary of the CNL.
Labels are defined differently for Task and Events. In case of Events, the label
should be a subject-verb-object clause like “an item is selected”, a label as-
sociated with the item-selection event of a table widget. As for the vocabulary, a
case is exactly an Event label.

For Tasks, a label should be an imperative clause. For instance, “find slides

about [keyword]” is a label assigned to the search-slide Task of the Slideshare
API. Moreover, the name of each input parameter (keyword in this case) should
be enclosed within square brackets, creating a placeholder for an object. In a ma-
shup recipe, an object to fill a placeholder can be a parameter name referring to
the output of previous Tasks, a constant value (e.g., a string), or an anaphora —
in linguistic, an anaphora (e.g., “that”) is defined as an expression linking two
elements in a document — pointing to a specific part of the mashup description
text (e.g., in Listing 3.3 the clause “extract video items from it” contains
the anaphora “it” pointing to the output parameter of the event produced by
the table Widget). A case is built from a Task label by replacing the placeholders
of the label with objects. For example, given the label “find songs titled

[keyword]” the corresponding clause can be “find songs titled mashup”,
where the object is replaced with a constant value (“mashup”).

47 3.4 Ontology-based Data Integration Framework

{ Interface: {

name:"Twitter",

property: [{name: "description", value: "It allows to access core

Twitter data"},

{name: "publisher", value: "Twitter"},

{name: "version", value: "1.1"},

{name: "call-rate-limit", value: "150"},

{name: "call-rate-limit-metric", value: "hour"}],

task: [{name: "searchTweets", description:"find tweets about {keyword

}",

input: [{name: "keyword", schema: ""}],

output: [{name: "tweets", schema: ""}]

}]

},

service_wrapper: [{type:"http", name:"searchAPI",

input: [{name: "method", value: "get"}],

}],

mapper: [{source : ["searchTweets.keyword"],

destination : [{name:"searchAPI.url",

template:"http://search.twitter.com/

search.atom?q={query}"}]

},

{source : ["searchAPI.body"],

destination : [{correspond:"searchTweets.tweets"}]

}]

}}

Listing 3.6. An example component model in JSON for the Twitter API.
The schema attributes are intentionally left empty, as they will be thoroughly
discussed later in Chapter 4, Section 3.4.

3.4 Ontology-based Data Integration Framework

Mashup ingredients are highly heterogeneous in terms of not only access pro-
tocol technology (discussed in the previous section) but also data format. They
may receive and produce data in a variety of formats ranging from Media types
to custom data formats. This poses a great challenge when integrating these
heterogeneous data. Data integration is an important part of mashup develop-
ment [11] and consists of converting and transforming data from one ingredient
to another. Therefore given this data format heterogeneity, manually integrating

48 3.4 Ontology-based Data Integration Framework

name
syntax-type
semantics

Parameter
1..*

cardinality
Complex

locator
Primitive

Item

Figure 3.5. The meta-model to which parameter schemas conform.

these data is cumbersome and error-prone. Also, a study [88] shows that non-
programmers can hardly grasp the concept of data flow. Accordingly, mashup
tools should be able to automate data integration as much as possible.

The challenge of facilitating data integration has been addressed differently
before [37]. In most mashup tools data integration is done semi-automatically.
Semi-automatic data integration means that the frameworks provide some rec-
ommendations and the end-user has to intervene and pick one. Yahoo! Pipes,
for example, provides some data flow hints according to the syntax (format) of
the data. Recent tools like DashMash [25] also consider the semantics of the
data when providing data flow hints.

We propose a new semi-automatic approach based on both syntactic and
semantic aspects of data. We emphasis the openness of the approach which has
received little attention so far by similar previous works. Openness ensures the
extensibility of the approach in terms of adding new data formats and schemas.
In the rest of this section, we will describe our approach that is implemented in a
framework integrated in NaturalMash. The framework consists of a specification
language for schemas, formalities to define new data formats, and a mechanism
to provide data flow hints.

3.4.1 Schema Specification and User-defined Data Formats

In NaturalMash, data are communicated through input/output parameters at-
tached to ingredients. The core of the framework lies in associating schema
to these parameters that facilitates their integration. A parameter schema is a
structure of metadata determining how to access and interpret the value of the
parameter.

49 3.4 Ontology-based Data Integration Framework

{

complex: [{

name: ""

syntax-type: "",

semantics: "",

cardinality: "",

items: [{schema-ref: ""}]

}],

primitive: [{

name: ""

syntax-type: "",

semantics: "",

locator: ""

}]

}

Listing 3.7. Parameter schema meta-model represented in JSON syntax.

Figure ?? shows the meta-model to which a parameter schema is conformed.
The schema attributes in a component model will be populated by parameter
schemas. Therefore, in order to be consistent with the component meta-model
(Section 3.3.3), we also use JSON syntax (Listing 3.7) as the meta language to
specify parameter schemas. For instance, Listing 3.8 is a data schema associated
with the output parameter (tweets) of the Twitter API model (Listing 3.6).

According to our schema meta-model, parameters are categorized into either
primitive or complex. Primitive parameters are similar to standard Java vari-
ables with a primitive data type (e.g., integer, double, and float). The “locator”
attribute of a primitive parameter is optional and contains a regular expression
to extract the value of the parameter. The name of the schema (“name” at-
tribute) should match the name of the parameter. In the JSON representation of
a primitive schema, only the “primitive” array exists with one element associated
with the main schema.

The structure of a complex parameters is a data table composed of more
than one primitive or complex parameter called items. In the JSON representa-
tion, the “complex” array should have at least one element (main sub-schema)
corresponding to the parameter (the “name” attribute should be the name of
the parameter), and one or more sub-schemas of either primitive or complex
type. The sub-schemas are referred to in the “items” array by their names. For
instance, in the Twitter example (Listing 3.8) the “items” array of the main sub-
schema contains references to the “tweet” and “user” sub-schemas of primitive

50 3.4 Ontology-based Data Integration Framework

type. If an item makes a reference to a primitive sub-schema, the “locator” at-
tribute becomes mandatory and defines the path (separated with dots) to the
item in the complex parameter (similar to XPath). Nesting can happen when an
item refers to a complex sub-schema, in which case sub-schemas can be reused
(two different items refer to the same sub-schema). The cardinality of a complex
parameter (“cardinality” attribute) refers to the the number of times the data ta-
ble is repeated inside it. For example the cardinality of RSS feeds as as complex
parameter is “1..*”.

Syntax types (“syntax-type” attribute) are equivalent to data formats and can
be primitive, user-defined, or Media types. Primitive data types (e.g., integer)
are associated with primitive parameters or sub-schemas. User-defined and Me-
dia types are only assigned to complex parameters or sub-schemas. The frame-
work supports adding new user-defined types in an ad-hoc manner, following
the syntax shown in Listing 3.9. The items of a user-defined data format can be
either optional or mandatory (by setting the “optional” attribute to, respectively,
true or false). Unlike an optional item, a mandatory item should be present in
data with the user-defined format For example, Listing 3.10 defines a data for-
mat to store a geographical location. It contains two mandatory (“longitude”,
and “latitude”) and two optional items (“radius”, and “address”).

finally, the framework allows to define the semantics (“semantics” attribute)
of parameters using the ontology proposed by [47]. In doing so, we also pro-
mote the practice of reusing existing ontologies. However, we also allow to
modify the ontology in order to make it domain-specific (the target application
domain such as bioinformatics, e-learning, and health care), thus improving the
accuracy of data integration. In the schema, the semantics of a parameter (or an
item) are defined by a set of tags consisting of concept labels from the ontology.
For example, the semantics of the “tweets” parameter is defined by the concept
label “Text” which, in the ontology, is a subclass of “Media_Content” concept.

3.4.2 Integration Process

The framework facilitates data integration by generating a shortlist of candidate
output parameters to feed a given input parameter. In case of more than one
candidate, the end-user has to manually select one of them (disambiguation).
The process of data integration is broken down into two steps. The first step is
called schema mapping in which one or more output parameter schema (source
schema) are mapped to an input parameter schema (target schema). The map-
ping can be one-to-one (one source schema to one target schema), or many-to-
one (more than one source schema to one target schema). All the combinations

51 3.4 Ontology-based Data Integration Framework

{

complex: [{

name: "tweets"

syntax-type: "application/json",

semantics: "Text",

cardinality: "*",

items: ["tweet", "user"]

}],

primitive: [{

name: "tweet"

syntax-type: "string",

semantics: "Message",

locator: "text"

},

{

name: "user"

syntax-type: "string",

semantics: "People",

locator: "user.name"

}]

}

Listing 3.8. An example of a parameter schema for the Twitter API.

of source and target parameter types can be mapped as follows:

Primitive to primitive is a one-to-one mapping. All the data types can be con-
verted to each other automatically. Only in case of double (source) to
integer (target) conversion, the fraction part is omitted.

Complex to complex mapping is performed in a one-to-one fashion. We con-
sider all markup Media types (e.g., XML, JSON, and HTML) convertible
to each other. When mapping a repetitive output parameter to a non-
repetitive input parameter, only the first repeated element of the output
parameter is considered for matching.

Complex to primitive mapping is one-to-one. In this mapping, only one item
of the output complex parameter can be matched with the input primitive
parameter.

Primitive to complex mapping can be either one-to-one or many-to-one. In
doing this mapping, the output primitive parameter is matched with one
of the items of the input complex parameter.

52 3.5 NaturalMash Composition Environment

format: {

name: "",

cardinality: "",

items: [{

name: "",

syntax-type: "",

optional: true | false

}]

}

Listing 3.9. The syntax to define new data formats.

The second and final step is schema matching that consists of one-to-one asso-
ciation of items (or primitive parameter) of two mapped schemas. The matching
is achieved at the following levels:

Syntactic level in which the source and target schema have the same or con-
vertible data types.

Semantic level in which the defined semantic tags (the ontology concepts) al-
low to match two schemas at this level. The framework uses the Peller
semantic reasoner [103] on the source and target schemas to compute
any subsumption relation between them.

Name level in which two schemas are matched at this level, if their names are
similar. The framework uses the SimPack [21] library to compute the
similarity between the names.

A matching between two items or primitive parameters is achieved when
they match at least at one of the levels above. The matching score for a schema
mapping is calculated by counting the number of obtained matching levels. The
mappings for each input parameter will be sorted by their matching score.

3.5 NaturalMash Composition Environment

The NaturalMash environment is designed to provide an innovative selection of
features that are meant to enhance the user experience and the ability of end-
users to build sophisticated mashups. The design of the environment has been
evolved over two years, as a result of a formative user-centered process. In this
section, we consider the current version of the environment as this dissertation

53 3.5 NaturalMash Composition Environment

format: {

name: "location",

cardinality: "1",

items: [{

name: "longitude",

syntax-type: "float",

optional: false

}, {

name: "latitude",

syntax-type: "float",

optional: false

}, {

name: "radius",

syntax-type: "float",

optional: true

}, {

name: "address",

syntax-type: "string",

optional: true

}]

}

Listing 3.10. An example of a user-defined data format storing a geographical
location.

is being written. We postpone the details of the evolution and evaluation of
formative environment to Chapter 5. In the following, we first describe each
feature individually and later show in a usage scenario how they are used in
conjunction to build a mashup.

• Inline Search feature facilitates ingredient discovery directly in the text
field (Figure 3.6) and allows end-users to (i) type in the text editor the (approx-
imate) name of the ingredient they are looking for, which results in the end-user
getting a list of labels associated with the ingredient matching or approximating
the given keyword, or (ii) type what the ingredient is supposed to do (in case
they do not know or cannot guess the exact name of the ingredient), by doing
which the input text will be matched against all the labels associated with all the
ingredients in the library. In the latter case, the mechanism of searching labels
is based on exact match, word synonym (e.g., “search” and “find”), or word
semantics (e.g., “location” and “map”).

• Autocompletion feature lifts the learning barriers of the CNL caused by its
grammatical and vocabulary (labels and objects) constraints (Figure 3.6). Based

54 3.5 NaturalMash Composition Environment

on what end-users type in the text field, a list automatically appears and shows
suggestions for Task/Event labels (to support ingredient discovery and reuse),
and data flow (i.e., referencing suitable objects within Task labels).

Figure 3.6. Typing “tweet” results in the autocomplete list showing the labels
associated with the Twitter API.

• Semi-structured Text Field feature supports the end-users’ learning ex-
perience and ensures that end-users’ input will not cause syntax errors, while
still allowing a high degree of freestyle editing. To be specific, the text field:
(i) restricts input characters to avoid accidental syntax errors (for instance the
new line characters are disabled while typing an object in a placeholder), (ii) au-
tomatically inserts the separators (“,”, “and”, and “and,”) if the cursor is posi-
tioned before and after clauses (manual insertion of the separators is also pos-
sible), and (iii) streamlines selecting and moving text objects (clauses) via, re-
spectively, double-click and drag-and-drop.

• Data Flow Highlighting feature makes the objects indicating flow of data
display in boldface (Figure 3.7). Moving the cursor on an object results in the
highlighting of the object source Task or Event. This way, users can discover
the source of an object both when browsing the data flow suggestions in the
autocomplete list but also after a data flow suggestion has been inserted.

• Error Highlighting feature, similar to many “spell-checking text editors”,
shows an error using a red wavy line under the text that produced it. Fore
example, if there is an ambiguity in the input text (e.g., the input does not
match any Task or Event label), the compiler produces an error that is reported
to the end-user as the text is being entered (Figure 3.6). Whenever the end-user
moves the cursor (or click) on the highlighted erroneous text, an autocomplete
list containing possible suggestions to disambiguate the label is shown, thus
offering the opportunity to the end-user to quickly correct the mistake.

55 3.5 NaturalMash Composition Environment

Figure 3.7. The source of the object (the “map click” label) as well as the
object itself (“location”) get highlighted as soon as the cursor is placed in the
object text.

• Drag-and-Drop feature allows end-users to drag-and-drop an ingredient
from the toolbar into the text field, visual field, or ingredient dock. A drag-and-
drop on an ingredient causes the autocomplete list to appear in the text field
displaying the labels of the ingredient. If the ingredient is a widget, it will also
be added and shown in the visual field.

• Programming by Demonstration feature allows to append an Event la-
bel to the mashup recipe by just manually triggering it in the visual field. For
instance, clicking on Google Maps widgets results in adding the text “when the

map is clicked” to the recipe. To grab the attention of end-users, the label is
highlighted both after it has been added and every time its Event is triggered.

• Synchronized Multi-perspective Modeling feature keeps the three main
interaction components of the environment (ingredient dock, text field, and vi-
sual field) synchronized during every user interaction: (i) editing text in the
field updates the visual field and the ingredient dock; (ii) selecting a widget
from the visual field or a ingredient from the ingredient dock results in high-
lighting its corresponding text in the text field and vice versa (moving the caret
through a portion of the text highlights its associated widgets and ingredient
icons); (iii) deleting an icon from the dock or a widget from the visual field
results in the removal of its corresponding text (and vice versa).

3.5.1 Usage Scenario

The following illustrates a common and complete usage scenario of Natural-
Mash, whereby an end-user builds the mashup example described in Listing 3.1.

The first step is to discover the right ingredients for finding slides. This
step can be facilitated by the inline search feature which enables the end-users
to type what the ingredient he is looking for is supposed to do. For instance,
the end-user can start by typing “search slides”, which results in the text
field providing an autocomplete list of labels that contain the input words or
synonyms for the words. Once the autocomplete list is displayed, the end-user
can select a proper suggestion (in this case, “find slides about [keyword]”)
by either pressing the Enter key or by pointing with the mouse and clicking.

56 3.5 NaturalMash Composition Environment

After selecting a label from the autocomplete list, (i) the label is inserted in
the text field, (ii) ambiguity is resolved, in case there are one or more similar
labels, (iii) the mashup is rebuilt and executed, (iv) another autocomplete list
containing data flow suggestions for the label is displayed. For the input pa-
rameter (“[keyword]”), the end-user may type a constant string like “APIDays”
resulting in a mashup that uses Slideshare API to search for slides and docu-
ment matching the input constant, and automatically shows the results in the
Slideshare widget.

The output mashup is interactive and supports PbD in a way that, for in-
stance, clicking an item in the Slideshare widget results in not only showing
the item in the embedded frame of the widget, but also appending the corre-
sponding Event label (i.e., “when an item is selected”) to the text field as
well as setting the focus in a way that makes it easier for the end-user to add
some Task labels to complete the causal sentence. For example, the end-user
may type “video” in the text field or, alternatively, search for the YouTube API in
the ingredients toolbar and then drag-and-drop the ingredient to the text field,
both of which result in displaying an autocomplete list containing the YouTube
API labels. Immediately after selecting a suggestion, another autocomplete list
containing data flow suggestions is shown. The end-user can select the output
parameter “slide title” from this list, or type an anaphora pointing to the
item such as “it”, both referencing the click Event label of the Slideshare wid-
get. The data flow highlighting feature helps end-users to figure out the source
of an object. Leaving the object placeholder empty results in a compiler error
that is shown by a red wavy line under the placeholder. Clicking on the wavy
red lines displays the autocomplete list associated with the placeholder.

While typing the mashup recipe, the end-user may modify the mashup user
interface layout in the visual field. The final mashup can then be deployed in
production, with a single click. Even after a mashup has been published, it can
still be modified and redeployed at any time.

Chapter 4

The Architecture of NaturalMash

In this chapter, we explain the architecture and implementation of NaturalMash,
which rely on model-driven engineering [69] and natural language processing
techniques and libraries [42]. We first outline a set of challenges that confront
the design feasibility of the system (Section 4.1), including minimizing the over-
all response time, and then comprehensively explain our proposed architecture
to address these challenges (Section 4.2). Our client/server architecture is pri-
marily based on caching and incremental compilation.

4.1 Design Challenges for Live Mashup Tools

NaturalMash is designed as a live mashup tool [7], which completely automates
the repetitive task of compiling, deploying, and running mashup recipes at the
level 4 of liveness (see Chapter 2). Despite the benefits of live mashup tools [7],
their design and development confront two major challenges that we seek to
address in this chapter:

Minimizing the live response time. Response time is the time elapsing between
the instant the end-user manipulates a mashup being created to the instant
the resulting mashup is compiled, executed, and displayed to the end-user.
End-users may be detecting latency in the execution response of a live ma-
shup tool because of a variety of factors. Some of these factors are con-
cerned with the real performance of the system. It means how fast the
system can compile and execute the mashup being created. There are also
factors that deal with the way the live execution response time informa-
tion is managed and provided at the end-user interface level. These refers
to the perceived performance of the system. Failing to minimize the live

57

58 4.2 A liveness-friendly Architecture

User interface

Runtime cacheChange detector

Change modeler Compiler cache

Compiler

JOpera engineServerClient

Response

Mashup server/client communication

Deploy

{

Response time

Figure 4.1. The liveness-friendly architecture of NaturalMash aims at sup-
porting live programming by minimizing the response time and providing a
mechanism to cope with the service call rate limits.

response time through increasing both real and perceived performance of
live mashup tools may cause anxiety in their end-users.

Coping with service call rate limits. The majority of free mashup ingredients
introduce strict call rate limits. For instance, Twitter API, which is one of
the most popular mashup ingredients, allows 150 calls per hour. Moreover,
many existing ingredients still issues developer keys to identify the source
of calls. Within a mashup tool platform (e.g., NaturalMash), an ingredient
is usually developed and shared by one person (there is one developer
key), whereas it might be used by many end-users at the same time. These
issues may pose serious challenges on the feasibility of building mashups
in a live fashion. This is because the live mashup development process
requires continuous execution of the same mashup, and thus there is a
risk of exceeding the call rate limit of the constituent ingredients.

4.2 A liveness-friendly Architecture

To address the above challenges, we present a client/server architecture for Nat-
uralMash (Figure 4.1), with the goal of minimizing the response time and pro-
viding a mechanism to cope with the service call rate limits. The client-side runs
in a Web browser and presents the user interface of the mashup tool and of the
resulting mashup (in the visual field). The server-side handles the compilation
of the recipes into executable representations and supports their runtime.

59 4.2 A liveness-friendly Architecture

4.2.1 User Interface

The end-users interact with the system and experience the response time through
the user interface of the system. The life-cycle of each interaction begins with
the end-user making a single modification to the model of the mashup being
developed on the client. This modification targets either the visual field (mod-
ifying the user interface) or the textual field (editing the recipe). Each modifi-
cation may result in the server (re)compiling, (re)deploying, (re)executing, and
(re)rendering the target mashup. While the end-users are waiting for a response,
it is essential that the system user interface prevents any perceived performance
anxiety experiences. To this end, we adopted the following guidelines:

• Enabling waiting control mechanism (e.g., showing a spinning wheel) af-
ter a reasonable time (e.g., after 150 milliseconds [32]).

• Showing the mashup user interface after the complete load.

• Not preventing end-users from interacting with the mashup while it is be-
ing compiled.

• Making end-users aware of Internet connection errors.

4.2.2 Incremental Change Detector of Mashup Models

Mashup compilation and deployment can be time-consuming tasks. Therefore,
initially, and as soon as the end-user makes a modification to the mashup (e.g.,
editing the recipe), the change detector component (client-side) identifies whether
or not the modification requires issuing a (re)compilation request. The mech-
anism behind this component is based on classifying possible modifications as
follows:

• Front-end modifications are applied to the mashup user interface (e.g., re-
organizing widgets within the mashup user interface layout, and adding
or removing widgets), and therefore, can be handled on the client-side
without a need for recompiling and redeploying the whole mashup. These
modifications are temporarily stored and previewed, and once the user’s
session is finished or idle (to avoid losing the modifications in case of dis-
connection), the modifications are sent to the server for persistent storage.

• Incomplete modifications require further modifications to take a visible
effect. These may leave the mashup recipe in a temporarily incorrect state

60 4.2 A liveness-friendly Architecture

as the end-user needs to complete them before they can be executed. For
instance, a new Task is being added, but since no data flow source has been
bound to its input it is not yet possible to display its results in a suitable
Widget. These modifications may trigger the display of the autocomplete
list or the highlighting of errors so only a partial compilation is required.

• Logic modifications change the back-end of the mashup, and thus require
to recompile, redeploy and re-execute the mashup on the server-side.

Once the change detector decides a recompilation is required, a request is
sent to the server (over WebSockets). To facilitate and speed up the compilation
process, the architecture includes the change modeler component that supports
the notion of incremental compilation [20]. More in detail, a source model and
a target model are required to generate a change model. The source and target
models are, respectively, the high-level (abstract) and low-level (code) models of
the mashup. The change model conforms to a meta-model that defines possible
changes that may occur on the mashup (i.e., both on the source and target
models) and contains information to link these changes from the source model
to the target model. Since in many cases mashups are grown incrementally by
adding one API at a time, it is possible to extend the low-level code without
having to regenerate it from scratch.

4.2.3 Compilation and Deployment

The resulting change model is passed to the compiler component, which is re-
sponsible to (i) generate executable code corresponding to the change model,
(ii) to merge it with the existing code, and finally (iii) redeploy the mashup.
This component should allow to terminate an unfinished compilation process to
avoid continuous compilation requests in short-intervals that puts a heavy load
on the server.

The compiler component in NaturalMash provides a pipeline that transforms
mashup recipes into executable models of Web service compositions that are
executed by the JOpera engine [94]. In the following we briefly describe the
main steps of the NaturalMash compilation process.

The process relies on a representation that initially contains the input recipe
text, but later is augmented with a list of ingredients used by the mashup, the
specifications of the layout of the mashup user interface (e.g., the size and po-
sition of the widgets), and an abstract syntax tree containing data flow infor-
mation (i.e., source and destination of objects) and a mapping between the text

61 4.2 A liveness-friendly Architecture

Find slides about APIDays .

When an item is selected , search YouTube videos about slide title .

VB NNS IN NNS .
dobj

prep_about

WRB DT NN VBZ VBN , NN NNP NNS IN NN NN .
det auxpass nnnn

nsubjpass nn
advmod

prep_about
dobj

1

2

Figure 4.2. The visualized output of Step 1 (linguistic information) for the
Listing 3.1 example using the Stanford CoreNLP online tool (http://nlp.
stanford.edu:8080/corenlp/). The input is split into two sentences. Part-
of-speech tags (VB: base form verb, NNS: noun plural, IN: proposition, DT:
determiner, WRB: wh-adverb, NN: noun, VBZ: present verb, VBN: past par-
ticiple verb) are associated with each word in the input text. Grammatical
dependencies (det: determiner, advmod:adverbial modifier, nsubjpass: passive
nominal subject, auxpass:passive auxiliary, dobj: direct object, nn: noun com-
pound modifier, prep_about: prepositional modifier) are shown using arrows.

chunks (i.e., clauses and phrases) and Task and Event labels. The mashup repre-
sentation is recycled with each round of compilation and is continuously updated
as the mashup is being developed.

• Step 1: Natural Language Parsing The input recipe text is parsed and its
linguistic information is extracted (Figure 4.2). This step is implemented using
the Stanford CoreNLP library (http://nlp.stanford.edu/software/corenlp.
shtml), which enables to tokenize the input text and split it into sentences, parse
the text and assign a part-of-speech tag (verb, noun, etc.) to each word, process
grammatical dependencies, and create the anaphora resolution graph.

• Step 2: Constrained Natural Language Parsing An abstract syntax tree
based on the NaturalMash CNL grammar is produced. In this step, we use a
formal lexer and parser (implemented using ANTLR, http://www.antlr.org/)
to extract and identify sentence types as well as to extract their chunks (i.e.,
imperative or passive clauses).

• Step 3: API Binding The output of Steps 1 and 2 is consumed to build a
mapping between the text chunks extracted in Step 2 and their corresponding
Event/Task label. To attain this mapping, we first gather all the labels associ-
ated with the Tasks and Events of the APIs registered within the NaturalMash
library. These are matched against the text chunks by ignoring the parameter
placeholders. The result is a mapping between each text chunk and the corre-
sponding Task or Event. In this step, ambiguity may occur when more than one

http://nlp.stanford.edu:8080/corenlp/
http://nlp.stanford.edu:8080/corenlp/
http://nlp.stanford.edu/software/corenlp.shtml
http://nlp.stanford.edu/software/corenlp.shtml
http://www.antlr.org/

62 4.2 A liveness-friendly Architecture

Find slides about APIDays. When an item is selected , search youtube videos about slide title .

Mashup description

Imperative sentence Causal sentence

BodyTask description

Object

Event description

Task description
Object

Imperative sentence
an item is selectedfind slides about [keyword]

search youtube videos about [keyword]
APIDays

Figure 4.3. The annotated syntax tree corresponding to the mashup label of
Listing 3.1.

Task/Event label match the same text chunk. Assuming that multiple APIs shar-
ing the same label are equivalent, the ambiguity can be resolved automatically
based on well known QoS-driven dynamic binding techniques [106]. Manual in-
tervention through the system’s autocompletion feature is required only if there
is an aliasing problem.

• Step 4: Data Flow Resolution and Suggestion The mapping generated
from Step 3 is used to extract objects references and complete the syntax tree
(Figure 4.3). To do so, the placeholders found within the Task labels represent-
ing input data are bound to the output data referenced from the actual text.
Using the results of the linguistic analysis (Step 1) also the anaphoric objects
are resolved. The data flow operations (e.g., matching and conversion) are del-
egated to the NaturalMash ontology-based framework for data integration that
was explained in Section 3.4. At this stage, for each schema mapping, the frame-
work dynamically generates the required code to carry out the data integration
at runtime. This is done in a model-driven fashion using JOpera. We have im-
plemented a set of JOpera adapters (extensions) that given some inputs, can
perform a data integration task (i.e., data conversion and transformation). To
be specific, we implemented four JOpera adapters (each for a different type
of schema mapping) that receive as input the source and target schemas, the
schema mapping and matching results, and the value of the output parameters
(obtained at runtime). The output of an adapter is, therefore, the data that is

63 4.2 A liveness-friendly Architecture

find slides about [keyword]

Activate Event 1

a slide is selected

find youtube videos about [keyword]

slide title

keyword

keyword

youtube_find_tag

APIDays Event 1Main Control Flow

slide_selectedsearch_slides

ACTIVATOR

main_control_flow slide_clicked

Figure 4.4. The intermediate model generated for Listing 3.1. It contains
two control flow graphs: Main Control Flow that corresponds to the im-
perative sentence “find slides about APIDays”, and Event 1 that is asso-
ciated with the causal sentence “when a slide is selected, find youtube

videos about slide title”. The passing of input data flows to output data
flows are represented by ovals.

consumable by the input parameter and matches its schema.
• Step 5: Intermediate Model The disambiguated syntax tree is consumed

to generate an intermediate model (Figure 4.4) that includes control flow and
data flow graphs representing the algorithmic structure of the mashup. This
structure includes a “main” control flow graph containing all of the imperative
sentences found in the current mashup recipe (and their constituent executable
chunks like clauses and phrases built from Event and Task labels) as well as a
set of “event-triggered” control flows associated with the causal sentences of
the recipe. Causal sentences get activated in the “main” control flow. The “main”
control flow begins when the mashup starts executing, whereas “event” con-
trol flows are executed every time their corresponding causal sentence occurs.
The nodes of these graphs store a mapping between the executable and data
elements of the recipe (technology-neutral) and the target executable model of
JOpera (technology-specific).

• Step 6: Emitter The intermediate model is transformed into the target
composition code (Figure 4.5), which is directly executable by JOpera mashup
engine, which further transforms it internally to Java bytecode for efficient exe-

64 4.2 A liveness-friendly Architecture

(d) main_control_flow (dataflow)

(a) Generated processes

(c) slide_clicked

(b) main_control_flow

Figure 4.5. The generated JOpera visual composition code [94] for Listing 3.1:
(a) list of processes created for the mashup: main_control_flow implements
the control flow for the imperative sentence, slide_selected implements the
control flow associated with the causal sentence (slide select event), and show

is the process responsible for creating the user interface of the mashup, (b)
control flow implementing Main Control Flow in the intermediate model (Fig-
ure 4.4), (c) control flow triggered whenever a slide is selected (it corresponds
to Event 1 in the intermediate model), and (d) data flow associated with
main_control_flow (“apidays” is a constant passed to the search_slides

input parameter).

65 4.2 A liveness-friendly Architecture

cution.The mashup execution is controlled by NaturalMash through a REST API,
which also allows to retrieve and display its results. By replacing the emitter it
is possible to target other mashup runtime platforms.

The performance of the incremental compilation process is boosted through
the use of the cache storing all the previous target models and their correspond-
ing generated code. In doing so, the compiler component can save consider-
able time and computation resources by first looking up the target model in the
cache and reusing its corresponding generated code. Also, the cache is popu-
lated through crowdsourcing to contain the target models generated not only by
the same end-user but also by other concurrent end-users of the system. This
way, the chances of the compiler finding the appropriate target model is higher.

4.2.4 Client-server Communication

After the mashup is compiled and deployed, a response is immediately sent
back to the client. Since the response is asynchronous, there are three ways
for the client to receive it: (i) using HTTP short polling (i.e., polling the server
by sending continuous requests in short-intervals), (ii) using HTTP long polling
(i.e., keeping the connection open for a long time-interval), and (iii) using Web
Sockets. Among these solutions Web Sockets is much faster and more reli-
able [78], and is therefore, used by NaturalMash as the main communication
mechanism. Moreover, this technology is nowadays mature and fully supported
by the widely-used Web browsers (e.g., Google Chrome, Firefox, Internet Ex-
plorer, etc.).

While compiling and deploying the mashup, following response types may
be send back to the client via Web Sockets:

• Error. The input recipe may contain syntactic and semantic errors. At
this point, the client is immediately notified and the compilation process
is aborted. Syntactical errors involve trespassing the grammar and syntax
of the language, for instance omitting a comma. Semantic errors occur
when there is an ambiguity in matching Task/Event labels or describing
data flows.

• Successful compilation. If the input recipe has no error, it will compile,
and a response will be sent to client upon successful compilation.

• Successful deployment. After compilation, the deployment process will
take place. Once the deployment is completed, a response containing the
URL to the resulting mashup will be sent back to the client.

66 4.2 A liveness-friendly Architecture

4.2.5 Mashup Runtime

Immediately after the client is notified about the end of the deployment, it pro-
ceeds to execute the mashup with the given user input data. With regard to the
response time, the most important phase in mashup runtime life-cycle is the first
phase, in which the mashup is initiated in the visual field. To optimize this phase
we propose two mechanisms based on parallelization and caching.

On the client-side, each widget is initialized in parallel by using WebWorkers
to call the associated JavaScript code. The server is responsible for interacting
with the ingredients due to the Same-Origin-Policy (SOP) sandboxing limita-
tions imposed by browsers. JOpera provides support for a shared cache of Web
service invocation results that can – seen as a form of pre-fetching – reduce
the execution time of popular mashups. caching is also a crucial feature in live
mashup tools minimizing excessive calls to the ingredients of a mashup, which
most probably have some sort of call rate limit that may hinder the continu-
ous re-execution of mashups invoking them. Also, the NaturalMash engine is
aware of ingredients with call rate limit from the meta-data already provided
in the NaturalMash component meta-model (it is defined as a property of the
interface). Therefore, if a component is about to reach its limit, NaturalMash
force-freezes its re-execution. Also, we advocate component providers to use
OAuth1, as opposed to developer keys, to identify the source calls. The advan-
tage is that, the call limit is uniquely allocated to each end-user of the mashup
tool and is not shared by all the end-users.

1http://oauth.net/

http://oauth.net/

Chapter 5

Evaluating NaturalMash In-The-Lab

NaturalMash evolved over the past two years following a formative user-centered
design approach [111], which proposes an iterative and incremental process for
design and development of software systems. In the process, each iteration cycle
consists of design, implementation, and formative evaluation. The evaluation is
conducted at the end of each iteration to inform the next iteration and ensure
that users were kept central in the design so to avoid as much as possible mis-
matches between users’ expectations versus system behavior.

We have completed three iteration cycles. In this chapter, we present the
results from the formative evaluations we conducted at the end of each iter-
ation, and show how the evaluations have driven the design of NaturalMash
(Table 5.1).

5.1 First Iteration

The first iteration involved the design, development, and evaluation of the ini-
tial prototype of the system (Figure 5.2). For the evaluation, we conducted an
expert review with 10 mashup experts. We individually interviewed the experts
in order to shed light on existing usability problems, and asked them to define
how serious these were. Each expert was asked to interact with the system (af-
ter a short tutorial) for as long as they needed to provide feedback. The experts
were researchers and practitioners in mashups that we met in mashup-related
workshops such as the 5th International Workshop on Lightweight Integration on
the Web (ComposableWeb) and the 6th International Workshop on Web APIs and
Service Mashups (Mashups). The goal of the review was to identify common
usability errors before doing a user study.

67

68 5.1 First Iteration

Features V0 V1 V2 Change rationale

Autocompletion # #* #* *In addition to the label text, sugges-
tions are represented with the corre-
sponding ingredient icon

Error highlighting – # # Give immediate feedback about errors
to user

Semi-structured ed-
itor

– – # Prevent syntax errors

Ingredient stack # # – Replaced with Ingredient dock.
Ingredient dock – – # Make the current APIs more visible to

users while interacting with the visual
and text fields.

Side-bar – – # Let users tag favorite ingredients (APIs),
and retrieve their mashups.

API search box # – – Users did not realize they could search
for APIs.

Inline search – # # Replaced the search box to let users
search for APIs from within the text
field.

Ingredients toolbar – – # Search and browse existing APIs.
Drag & drop – – # Let users directly use a API selected from

the ingredients toolbar.
Programming by
Demonstration

– – # Allow users to (visually) demonstrate
what they want.

Auto-visualization – – # Visualizing output data using a suitable
widget, thus reducing the complexity
of the mashup description with natural
language.

Table 5.1. The evolution of NaturalMash during the formative user-centered
design process in terms of added/removed features. V0, V1, and V2 correspond
to the versions of the tool during, respectively, the first, second, and third
iterations.

69 5.2 Second Iteration

API search box

Ingredient stack

Figure 5.1. NaturalMash environment in the first iteration.

5.2 Second Iteration

The valuable feedback from the expert review informed the re-design of the sys-
tem. Specifically, the feedback suggested to: (1) remove the search box, that
was initially designed as part of the component stack to help with component
discovery, and replace it with the inline search functionality (i.e., component
discovery within the text field); (2) reorganize the user interface layout (e.g.,
moving the stack from left to the right); (3) efficiently organize and add icons
to the autocomplete menu; (4) provide visual cues to distinguish labels of ingre-
dients already in use out of all returned suggestions within the autocompletion
menu; and (5) change short-cut keys for properly working with the autocom-
plete menu; and (6) improve the environment color scheme and fonts.

At the end of the first iteration, we conducted a user study with the main
goal of identifying early major usability problems.

5.2.1 Participants

We repeated the study with two groups of participants with similar profiles, re-
spectively: 5 high school students, and 6 first year students attending the USI
Bachelor of Informatics. The recruited high school students had volunteered to

70 5.2 Second Iteration

Icons added to the autocomplete menu

Ingredient stack

Figure 5.2. NaturalMash environment in the second iteration.

attend a one-week computer science promotion program at our University. We
performed the usability testing at the very beginning of the program in order
to avoid students to be influenced by any programming activity. The first-year
students, who just started their studies at our University, even if inexperienced
had an interest in Web technologies and this motivated them to volunteer to par-
ticipate in the user study. In terms of programming knowledge (see Appendix A,
Section A.1), the high school students were all non-programmers. Likewise,
among the group of bachelor’s students, there were 2 programmers, and 4 non-
programmers. Participants in both the groups had neither heard of mashups nor
ever created a Web application.

5.2.2 Tasks and Methods

Following Nielsen’s discount usability based user testing (http://www.useit.
com/alertbox/discount-usability.html) we consider the size of our sample
sufficient to provide meaningful feedback at this early stage of development. In
the beginning of the usability testing, we gave a short tutorial about the sys-
tem and guided them through completion of a warm-up task that, overall, took
around 10 minutes. We then asked the participants to perform five tasks (de-
veloping five different mashups) with increasing complexity (in terms of the
number of APIs to be mashed up):

http://www.useit.com/alertbox/discount-usability.html
http://www.useit.com/alertbox/discount-usability.html

71 5.2 Second Iteration

Warm-up Task Get upcoming events in a place specified using Google Maps
(two APIs).

Task 1 Play YouTube videos selected from Delicious public bookmarks (two APIs).

Task 2 Show Flickr images about the twitter trending topic (two APIs).

Task 3 Aggregate BBC news, CNN news, and Delicious feeds (three APIs).

Task 4 Display tweets and events around a selected map location (three APIs).

Task 5 Create a mashup on your own (open task).

The final open task was designed to assess the ability of the participants to
independently come up with a mashup idea, and then transform it to a concrete
implementation.

Since the tasks themselves were described in English, we attempted to min-
imize the similarity of the Task labels with their corresponding solutions in the
NaturalMash CNL. After the usability testing, we asked the participants to fill out
a questionnaire (see Appendix A, Section A.2) to assess their satisfaction with
the system as well as to gather their opinions on the overall usability of the sys-
tem (e.g., their opinion on how helpful or unhelpful the environment features
were in the context of the given tasks).

5.2.3 Results

Overall, the participants performed correctly 52 out of 55 tasks. On average,
they took less than 5 minutes to correctly complete each task.

82% of the participants believed that the autocomplete and inline search fea-
tures helped them quickly and easily discover appropriate Task or Event labels.
As indicated by 80% of them and according to our observation, the live preview
in the visual field was really engaging and had a positive impact on the comple-
tion of the tasks. However, correcting mistakes in the system was difficult for
55% of them.

5.2.4 Lessons Learned

The evaluation helped to identify early critical usability problems. The freestyle
editor in the text field makes it easy for the participants to make syntax errors,
which in turn causes anxiety and stress. Another usability problem, revealed
in the open task, concerns the lack of an overview of the available ingredients.

72 5.3 Third Iteration

More importantly, most participants expected that the results of their commands
would have been displayed immediately. Instead, in order to display the results
of a Task on the visual field (e.g., “find tweets around location”), they had
to learn how to manually find the right widget and explicitly add its correspond-
ing Task to the mashup recipe (e.g., “show the result in the table”).

5.3 Third Iteration

In this iteration, we attempted to address the usability problems identified in the
previous iteration by implementing a set of feature additions to NaturalMash:

• The semi-structured editor, making it unlikely to make syntax errors, while
allowing freestyle editing.

• The ingredients stack that gives a searchable overview of existing ingre-
dients and the corresponding drag and drop support. We extended the
component library by adding 15 more popular ingredients to enable in-
novation in the open task (it used to contain 7 ingredients in the first
iteration).

• The automatic visualization of the results in a widget (e.g., table, map, or
chart) without end-users having to explicitly mention the widget.

We also moved the component dock from the right side (where the stack cur-
rently is) to the top of the text field to be more visible while end-users interact
with the text field or visual field. After observing some participants dragging the
icons of some ingredients over the widgets in the visual field we decided to add
support for PbD in the second version.

To conclude this iteration, we conducted a formative evaluation on a larger
group of participants. The primary goal of the evaluation was to identify usabil-
ity problems, but also to assess the success of the new features in addressing the
usability problems identified in the previous iteration.

5.3.1 Participants

We recruited a total of 22 participants, mostly from young university staff and
students volunteers both at the University of Lugano and at the University of
Trento. In terms of programming skills (see Appendix A, Section A.1), they were
equally divided into programmers and non-programmers.

73 5.3 Third Iteration

5.3.2 Tasks and Methods

The participants were given four tasks of growing complexity (in terms of the
number of APIs to be mashed up), after receiving a short tutorial (5 minutes) in
the form of a warm-up task (with the complexity of two APIs):

Warm-up Task Get upcoming events in a place specified using Google Maps
(two APIs).

Task 1 Search Flickr images with location from Google Maps (two APIs).

Task 2 Show upcoming events in a selected location on the map. Get informa-
tion about each event from Google (three APIs).

Task 3 Find slides about “Web APIs”. For each slide found, show relevant videos,
tweets, and images (four APIs).

Task 4 Create a mashup on your own (open task).

During the study we recorded the session (video, audio, and screen) and
asked the participants to think aloud about their activities. The recordings were
complemented by an informal interview as well as an exit questionnaire (see
Appendix A, Section A.3) asking them about their overall reaction and satisfac-
tion with the system. The aim of the extended post-study interviews was to have
a deeper, but informal discussion with each participant with the opportunity to
reflect on what was not captured by the questionnaires and to further discuss the
rationale behind some answers. For instance, we asked “do you have any per-
sonal mashup/use-case?” and “why do you feel comfortable with the system?”.

5.3.3 Results

In terms of accuracy and efficiency (Figure 5.3 and 6.4), the majority of par-
ticipants completed all the tasks correctly and in a very short time (around 3
minutes on average), with a slightly better performance on the programmers’
side. Out of the total of 88 tasks, 11 programmers produced 42 correct tasks,
while the 11 non-programmers achieved 40 correct tasks. Moreover, by the end
of each user study session, the majority of participants felt confident about their
mastery of the system and reported on a high level of satisfaction in the exit
survey (72% felt satisfied with the system, 89% were interested in continuing
using it, and 87% wanted to suggest it to their friends).

Our recorded observations together with the feedback from the participants
through both the exit questionnaire and informal discussion, reported positively

74 5.3 Third Iteration

NP P NP P NP P NP P
Task 1 Task 2 Task 3 Task 4

Completion time 89.09 68.18 164.73 124.55 224.00 194.55 297.73 270.00

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

Ti
m

e
in

 s
ec

on
ds

Figure 5.3. The completion time grows with the complexity of the task at hand.
Programmers have a slightly shorter completion time than non-programmers.

NP P NP P NP P NP P
Task 1 Task 2 Task 3 Task 4

Missed 0.00% 0.00% 9.09% 9.09% 9.09% 0.00% 0.00% 0.00%
Incorrect 0.00% 0.00% 0.00% 0.00% 18.18% 9.09% 0.00% 0.00%
Correct 100.00% 100.00% 90.91% 90.91% 81.82% 90.91% 100.00% 100.00%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

P
ar

tic
ip

an
ts

Figure 5.4. The majority of tasks were accomplished successfully (correctly). In
terms of accuracy, however, there is no major difference between programmers
(P) and non-programmers (NP).

75 5.3 Third Iteration

on the individual features of the NaturalMash environment (see Chapter 3, Sec-
tion 3.5). More in detail, the following percentage of participants reported that
the features were helpful or very helpful for the completion of the given tasks:
autocomplete (92%), inline search (91%), live execution (86%), ingredients
toolbar (82%), and PbD (73%). The ingredients toolbar was more frequently
used for component discovery and selection than the inline search with the text
field (in average, 84% of component discovery and selection tasks were done us-
ing the ingredients toolbar). Instead, the participants employed the inline search
feature when they were looking for a specific operation that could be perfectly
described verbally.

Overall, the participants were engaged with the system (77% felt the system
was stimulating or very stimulating). In the open task, all created distinct, use-
ful, and non-trivial mashups. One example was a mashup that finds an audio
album in eBay and plays it in YouTube by first searching and finding the exact
name of the album using the Last.fm API. Another example was a mashup that
shows news, Flickr images, and tweets all related to a selected location on the
map, and then allows to share the results on Facebook. Indeed, some of the
mashups created in the open task were actually meant to address a real pressing
need of the participants. For instance, one of the participants created a mashup
to automate the analysis of online presence within the tourism domain. The ma-
shup searches tweets for a specific tourism-related keyword, and then for each
tweet found, it searches for the Facebook profile given the name of the author
of the tweets.

Lessons Learned

We observed that some participants – especially non-programmers who lack al-
gorithmic thinking abilities – would benefit from receiving suggestions not only
for individual Event/Task labels but also for hints on how to compose them to-
gether in the right order.

Another major usability problem is concerned the way PbD is applied in the
visual field, i.e., interacting with widgets results in the corresponding Event label
being added to the text field. However, many participants confused capturing
the general behavior of a widget (i.e., the event) with the recording of the con-
crete action on the widget they just triggered (e.g., a specific location they have
clicked). For example, clicking on the map would add the map-click Event label
(“when the map is clicked”) to the text. This is meant to be completed by
appending Task labels (e.g., “show upcoming events around location”) that
form the body of the causal sentence. Indeed, we observed – in the same map

76 5.3 Third Iteration

example – the participants correctly generating the Event labels using PbD and
completing it with an imperative clause, expected to immediately see the re-
sults from the location they had originally selected (demonstrated) to create the
causal sentence, as opposed to having to click again on the map to obtain the
results. In other words, they did not realize they had created a parametric ma-
shup that shows events for any location on the Map. A similar problem occurred
with other widgets supporting PbD, such as the table.

Chapter 6

Summative Evaluation of NaturalMash

As discussed already, one of the goals of NaturalMash as an optimal usable ma-
shup tool is to ensure a high level of usability by non-programmers (we will dis-
cuss expressive power in the next chapter). Throughout the user-centered design
of the system, we conducted three formative evaluations to identify the usability
problems hindering this goal (Chapter 5). In this chapter, we comprehensively
assess the attainment of this goal by measuring how usable NaturalMash is to its
potential end-users.

6.1 Evaluation Questions and Hypotheses

The evaluation seeks to answer the following questions:

• RQ1 How usable the system is for end-users with different programming
backgrounds?

• RQ2 How do end-users with different programming backgrounds interact
with and feel about the features of the system (i.e., the text field, the visual
field, and the ingredient toolbar)?

• RQ3 How much can the system help its end-users to create the mashups
they need?

We also consider the following hypotheses in relation to the above questions
(each hypothesis corresponds to the similarly numbered research question):

• H1 The the level of the usability experienced by end-users is independent
from their programming background.

77

78 6.2 Evaluation Methods Overview

• H2 For API discovery tasks, programmers tend to use the text field more
frequently than the ingredient toolbar. The situation may be opposite for
non-programmers.

• H3 The major user-perceived limitation of the system is the lack of re-
quired ingredients.

6.2 Evaluation Methods Overview

In order to meet the evaluation goals and comprehensively address the stated re-
search questions, the evaluation should be summative. A summative evaluation,
as opposed to previously conducted formative evaluations, judges the system as
it is and makes statistically significant statements about it. Therefore, a summa-
tive evaluation involves a relatively larger number of subjects that, for instance,
a formative evaluation. Lab usability testing methods used in previous forma-
tive evaluations, despite their strengths in identifying major usability problems,
are time-consuming and thus cannot be easily scaled to large number of partici-
pants. For these reasons, the current summative evaluation uses online usability
testing methods, in which the test is conducted remotely (the participant and
moderator are not in the same physical location), and asynchronously (it is not
“live” with a moderator). These characteristics of online usability testings allow
to test many participants simultaneously, and therefor to collect larger samples
of both qualitative and quantitative data in a short time.

6.3 Data Collection Methods

In this evaluation, we collected both qualitative and quantitative metrics (Ta-
ble 6.1). These metrics are collected either automatically or in a self-reported
manner, and are categorized into task-based and end-of-session groups.

6.3.1 Task-based Metrics

Task-based metrics give detailed information about task effectiveness and effi-
ciency.

M1 Task status. This metric provides three status information for tasks: (a) Cor-
rect, (b) Incorrect, (c) and Skipped. The participants self-report “skipped”
status for a task or indicate that it is complete by clicking, respectively,

79 6.3 Data Collection Methods

Metrics Description Type Research
questions

Task status (M1) The status of a task as Cor-
rect, Incorrect, or Skipped.

Self-reported RQ1

Task time (M2) For each participant, the
time spent on the tasks

Automatic RQ1

Efficiency (M3) Number of correct tasks per
minute

Automatic RQ1

Clickstream (M4) Captures mouse activities
(e.g, movements and clicks)

Automatic RQ2

Activity logs (M5) Number of using different
discovery methods (M5.1)
as well as the rate of using
permitted keys in the text
field (M5.2)

Automatic RQ2

After task rating
scales (M6)

Measuring perceived ease-
of-use (M6.1) and useful-
ness (M6.2)

Self-reported RQ2, RQ3

After task open-
ended questions
(M7)

Qualitative explanation af-
ter the skipped tasks

Self-reported RQ2, RQ3

Comments (M8) Arbitrary feedback while do-
ing the tasks

Self-reported RQ2, RQ3

Satisfaction (M9) The system usability scale
(SUS) to assess the user sat-
isfaction with the tool

Self-reported RQ2, RQ3

End-of-session
open-ended
questions (M10)

Overall qualitative feedback
about the tool

Self-reported RQ2, RQ3

Table 6.1. The metrics used in this evaluation to assess the evaluation questions
and hypotheses (Section 6.1 on page 77). They are collected either automati-
cally or in a self-reported manner.

80 6.3 Data Collection Methods

the “Skip” and “Finish” buttons (Figure 6.2). Whether the tasks marked as
completed are “correct” or “incorrect” is later assessed by the moderator.

M2 Task time. For each participant, the metric is the amount of time spent on
both the skipped and completed tasks.

M3 Efficiency (correct tasks per minute). This metric combines both task status
and time metrics into a single measure. For each participant, it is calcu-
lated by dividing the total number of correct tasks by the time spent on all
the tasks (in minutes).

M4 Clickstream data. It captures and logs mouse activities (e.g, movements
and clicks) on different parts of the user interface.

M5 Activity logs. This set of metrics provide a fuller picture of how individual
participants behave and interact with different parts and features of the
system user interface. They are measured at both task time and session
time interval.

M5.1 Number of using different discovery methods. As it was mentioned in
the design chapter, NaturalMash provides two different methods for
API discovery. Name-based discovery using the toolbar and functionality-
based discovery using the text field inline search feature. This metric
captures how many times each of the two methods has been used.

M5.2 Number of permitted and non-permitted keys used in the text field.
The text field provides a semi-structured editor, meaning that not all
keys are permitted to be used. This metric is the frequency of using
permitted keys vs non-permitted keys.

M6 Rating scale metrics: Self-reported metrics are captured after each task is
done.

M6.1 Ease of use. It shows the degree of perceived ease-of-use for different
features of the system.

M6.2 Usefulness. It suggests how useful different features of the system
are to the participants.

M7 open-ended questions. After a task is skipped, open-ended questions seek
to collect qualitative explanation.

M8 Comments. Participants are also allowed to make arbitrary comments
while performing the tasks.

81 6.4 Technology

6.3.2 End-of-session Metrics

These metrics are collected at the end of the session (after conducting the tasks)
through self-report questionnaires.

M9 Satisfaction. The system usability scale (SUS) is a ten-item Likert scale
showing the overall attitude of the participants towards the system.

M10 open-ended questions. Overall qualitative feedback about the the system is
collected using open-ended questions.

6.4 Technology

We developed a website (available at http:\test.naturalmash.com) that self-
contains all the necessary information and functions to carry out an unmoder-
ated remote usability evaluation. Figure 6.1 and 6.2 illustrate two snapshots of
the website. The website is powered by a central database (MongoDB) storing
all the metrics data mentioned above, except for activity logs. The system it-
self is responsible for collecting the activity logs metrics and storing them in the
database. All the data is tied together with unique participant IDs generated by
the website. In addition to the evaluation process, we also fully automated the
data analysis task. We created a script that fetches the data from the database,
analyzes it, and subsequently generates Excel files containing the results.

6.4.1 Participant Recruitment and Sample Collection

In this study, we recruited a sample of 40 participants with different program-
ming backgrounds. The sampling mechanism made sure that we have enough
and equal number of participant for each group of users (i.e., 20 programmers
and 20 non-programmers). Since we did not have access to all the potential
users of the system (adult Web users), we used a convenience non-probability
sampling method, in which subjects are selected because of their background
(programmer or non-programmer) and the fact that they are available to partic-
ipate in the study.

We used two different recruitment methods to assemble the participants (Fig-
ure 6.3). Part of the participants were recruited by direct invitation. They had
already registered in the main website of the system, or had been personally
asked to join the user study (they were mostly from first year bachelor students

http:\test.naturalmash.com

82 6.4 Technology

Figure 6.1. The welcome screen of the evaluation website. It contains a welcome
message and a consent form.

83 6.4 Technology

Task bar

Task bar

Figure 6.2. This is how NaturalMash is presented to participants in the evalua-
tion website. It contains an Iframe that shows NaturalMash and one auto-hide
Task Bar that includes the task description and allows participants to “Finish”
or “Skip” the tasks as well as leave a “Message” reflecting what they think while
doing the task.

84 6.5 Evaluation Procedure

12

18

8

2

0 2 4 6 8 10 12 14 16 18 20

Programmer

Non-programmer

P
ar

tic
ip

an
ts

Invitation

Crowdsourcing

Figure 6.3. The number of participants recruited by each method (invitation,
and crowdsourcing).

in the University of Lugano). The rest (30) were directly recruited from crowd-
sourcing websites (e.g., microWorkers) and incentives were provided in the form
of money (2 U.S. dollars).

6.5 Evaluation Procedure

6.5.1 Starter Questions

The starter questions (see Appendix A, Section A.1) assess the participants back-
ground in terms of (i) knowing how to program, and (ii) the the level of aware-
ness about different services on the Web (e.g., LinkedIn, Google Maps, etc.).

6.5.2 Tasks

Before conducting the tasks the participants are given a short tutorial. The tuto-
rial is a 9 minutes video in which the system is explained to participants through
demonstrating a warm-up task. The warm-up tasks is about creating a mashup
that helps with finding the music videos of songs wit the title “remix”, and also
allows to share the music videos on Facebook. The mashup uses Last.fm API,
Facebook API, and Youtube API.

85 6.5 Evaluation Procedure

The evaluation consists of 4 tasks, in each of which the participants are
asked to create a mashup. 3 out of the 4 tasks are pre-constructed and 1 is
self-generated (open task). The participants are asked to self-generate the open
task (writing the text description in natural language) after completing the pre-
constructed tasks. The goal of the open task is to assess how useful the system
is in real situational use-cases suggested by the participants.

The pre-constructed tasks are sub-selected from a pool of 9 tasks, equally
divided into three classes:

Class 1 This class of tasks aims at inspecting the usability of the name-based
discovery method by deliberately including the list of to-be-used compo-
nents in the task description. As a result, we expect the participants to
more frequently use the toolbar to search for and then drag and drop the
required components to complete the task. We pre-constructed three tasks
in this class with the same level of complexity as follows:

Task 1.1 “Show recent images and videos about PS4.”
(list of to-be-used component: Flickr, and Youtube)

Task 1.2 “Show tweets and Google search results about singularity.”
(list of to-be-used component: Google, and Facebook)

Task 1.3 “Find people with the name John in both Facebook and Twitter.”
(list of to-be-used component: Twitter, and Facebook)

Class 2 The functionality-based component discovery is examined by this class
of tasks, whose descriptions does not come with a list of to-be-used com-
ponents. Thereby, the participants are led to use the inline search feature
to discover the needed components based on their functionality. Following
tasks are designed for this class:

Task 2.1 “Get news and upcoming events from Switzerland.”
(List of components not given)

Task 2.3 “Get recent tweets and news from Switzerland.”
(List of components not given)

Task 2.3 “Find macbook pro products and images.”
(List of components not given)

Class 3 Another important feature of the system is the possibility of using PbD
in the visual field to generate event labels. This feature is mainly tested in

86 6.5 Evaluation Procedure

by tasks of this class, where the to-be-used components are mostly widgets
that should be chained to each other through their event behavior. The
tasks are as follows:

Task 3.1 “Show slides about Web APIs, and then get related videos for
each slide found.”
(list of to-be-used component: Slideshare, and Youtube)

Task 3.2 “Get software engineer jobs in Switzerland, and then allow to
share the results in Facebook.”
(list of to-be-used component: Linkedin, and Facebook)

Task 3.3 “Get music albums with the keyword “mashup” in the title, and
then show related images for each album found.”
(list of to-be-used component: Last.fm, and Flickr)

The sub-selection process is based on the participants’ answers to the Web
API familiarity questions in the beginning of the study (starter questions). The
three sub-selected tasks each fall into a different class.

Like the previous formative evaluations, in order not to lead the participants,
we tried to avoid any similarity between the task descriptions and their corre-
sponding solution in the NaturalMash CNL. However, we did not design and sort
the tasks based on their level of complexity. Instead, the tasks in this study each
probe specific features of the system user interface. The reason for these deci-
sions lies in the shift in our evaluation objective: from formative to summative,
or in other words, from receiving general feedback on the major usability issues
that have a high chance to be discovered through increasing the complexity of
the tasks, to comprehensively measuring the usability of different components
of the system user interface.

6.5.3 Post-Task Questions

The post-tasks questions (see Appendix A, Section A.5, Section A.6, Section A.7,
and Section A.8) are asked straight after the completion of each task and reflect
the experience of the participants with the system. These questions are different
for each class of tasks depending on what part of the user interface the task is
intended to assess. For instance, the post-task questions for the class 2 tasks
tap into the usefulness and usability of the autocomplete menu. Additionally, in
case of skipping a task, the participant is required to explain why (open-ended
question).

87 6.6 Results

6.5.4 Post-Session Questions

The exit questionnaire (see Appendix A, Section A.4) consists of the SUS as well
as an open-ended question asking the participants for general feedback about
the system.

6.5.5 Wrap-up

The last page is set as a “Thank You” page, where we also ask participants to give
use emails of those who might be interested in doing the evaluation. The page
also contains a confirmation ID (built from the unique ID of the participant)
which is useful if the participant has been recruited via crowdsourcing. In this
case, the confirmation ID is used as a proof that the work (completing the user
study) is done by the participant.

6.6 Results

In the following we present and analyze the data collected from the study. We
mainly performed segmentation analyses by slicing up the data based on the
groups of participants (i.e., programmer and non-programmer) and tasks (i.e,
three classes of tasks plus the open tasks). This type of analysis helped us gain a
deep insight into the usability of the system.

6.6.1 Task Performance Data

In this section, we only consider the data collected from the tasks of the three
classes. We postpone the analysis of the open tasks to the next section. Out
of 120 tasks, 7 were skipped, and the rest (113) were reported finished. From
the finished tasks, we then assessed 100 as “correct” and the rest (13) as “incor-
rect”. A task is graded as “correct” if the produced mashup does what the task
description says, otherwise the task is scored as “incorrect” We obtained an av-
erage accuracy (percentage of correct tasks) of 83% (i.e., 83% of the tasks were
scored as “correct”). Looking into the segments of the data obtained by the three
classes of tasks (Figure 6.4), the average accuracy value, however, differs from
one class to another. The highest and lowest average accuracy values are for the
tasks of, respectively, class 1 and class 3, which are also significantly different
(chi-square test with confidence 95% and p = 0.006).

The average completion time for all the correct tasks and for all the partic-
ipants is less than 3 minutes (Figure 6.5). The class 3 and class 1 tasks have,

88 6.6 Results

P	 NP	 P	 NP	 P	 NP	 P	 NP	
All	 tasks	 Task	 class	 1	 Task	 class	 2	 Task	 class	 3	

Skipped	 5.00%	 6.67%	 0.00%	 5.00%	 10.00%	 15.00%	 5.00%	 0.00%	

Incorrect	 10.00%	 11.67%	 5.00%	 0.00%	 5.00%	 5.00%	 20.00%	 30.00%	

Correct	 85.00%	 81.67%	 95.00%	 95.00%	 85.00%	 80.00%	 75.00%	 70.00%	

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
Pa
rA
ci
pa
nt
s	

Figure 6.4. Average accuracy of the pre-constructed tasks. P = Programmers,
NP = Non-programmers.

respectively, the longest and shortest completion time (both correct and over-
all). In general, programmers have spent moderately less time on completing
the tasks (both correct and overall).

Figure 6.6 shows the efficiency metric combining task success rate with com-
pletion time into a single measure. This metric allows us to more easily com-
pare the performance of programmers with non-programmers. To this end,
we conducted a TOST (Two One-Sided Test) equivalence test on the two sam-
ple groups (confidence of 95% and equivalence range of 0.15) that produced
p = 0.044 < 0.05 and p = 0.017 < 0.05. The p numbers imply that the two
groups have equal efficiency in the range of ±0.15.

Open Task

The participants self-generated many interesting tasks. Below we list some of
them:

Open task example 1: “I want to plan a travel between a certain list of places
and then compute the shortest path between these places and display it on a
map with some images of each place.”

Open task example 2: “I want to collect the top songs and then create a mashup
song out of them.”

89 6.6 Results

P	 NP	 P	 NP	 P	 NP	 P	 NP	
All	 tasks	 Tasks	 class	 1	 Tasks	 class	 2	 Tasks	 class	 3	

Overall	 145.58	 186.08	 124.95	 171.30	 123.75	 160.95	 188.05	 226.00	

Correct	 162.64	 187.53	 131.53	 175.37	 150.44	 151.44	 215.07	 245.29	

0.00

50.00

100.00

150.00

200.00

250.00

300.00

Ti
m
e	
in
	 se

co
nd

s	

Figure 6.5. Average completion time (in second) for the pre-constructed tasks.
P = Programmers, NP = Non-programmers.

0.502	 0.476	

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Programmers Non-programmers

Co
rr
ec
t	 t
as
k	
pe

r	 m
in
ut
e	

Par8cipants	

Efficiency	

Figure 6.6. Number of “correct” tasks per minutes (efficiency) for programmers,
non-programmers, and both (overall).

90 6.6 Results

2

7

1

Irrelevant

Missing ingredients

Technical

Figure 6.7. The participants’ reasons for skipping the open task.

Open task example 3: “I would like to look for a love song and find it on Youtube
then share in my twitter account.”

We assessed the open tasks in the same way as the pre-constructed tasks.
We attained that the average accuracy of the open task for all the participants
is 60%. Looking in more detail, the average accuracy for programmers and
non-programmers were, respectively, 50% and 70%. Interestingly and in con-
trast to the pre-constructed tasks, programmers scored notably a lower accuracy
and produced more “incorrect” tasks. After manual analysis of the participants’s
explanation for skipping the open tasks, we concluded that their main reason
was the lack of required ingredients in the library (Figure 6.7). Another reason
claimed by only two participants was concerned with bugs in the system (e.g.
crashing, freezing, etc.). For instance, below is a sample answer provided by one
of the participants to the post-task question asking why the participant skipped
the open task:

“There was not an ingredient for movies so I cannot complete the task”

Also in case of the “incorrect” tasks, inspecting the provided solutions as well
as the comments left while doing these tasks, led us to arrive at the same reason
(lack of required ingredients). Here is a sample comment left by one of the
participants:

91 6.6 Results

programmer	 non-‐programmer	
Skipped	 27.78%	 25.00%	

Incorrect	 22.22%	 5.00%	

Correct	 50.00%	 70.00%	

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Pa
r;
ci
pa
nt
s	

Figure 6.8. Accuracy of the open tasks for programmers and non programmers
as well as overall participants.

“I couldn’t get the video location, and i don’t think i can entirely do
what i wanted, so i just switched to search video, display it in lugano
and search tweets for the video title.”

The average completion time was overall around 60 seconds (1 minutes),
and 80 seconds for “correct” tasks. These average completion times are particu-
larly lower than those of the pre-constructed tasks.

6.6.2 Self-reported Data

The post-task questions were designed to objectively assess the ease-of-use and
usefulness of the system. Figure 6.9 illustrate the perceived ease-of-use of the
three main features of the system: the autocomplete menu (for selecting and
adding labels), the ingredient toolbar (for selecting and adding ingredients),
and the text field (for edting). The three features mentioned above received
different scores, whose mean is 2.9 (maximum is 4). After analyzing the data
we learned that autocomplete menu and ingredient toolbar were perceived to
have a (marginally) significantly different level of ease-of-use (independent one-
tailed t-test with confidence 95% and p = 0.05).

Figure 6.10 shows the perceived usefulness of the autocomplete menu, the
live and interactive visual field, PbD to generate Event labels, and the text high-

92 6.6 Results

2.84	
3.21	

2.68	

0

1

2

3

4

5

Autocomplete Toolbar Text field

Lo
w
es
t	 =

	 0
,	 H

ig
he

st
	 =
	 4
	

Ease of use

Figure 6.9. Perceived ease-of-use for different features of the system.

lighting feature for data flows and errors. These features were perceived to be
useful with the average total score of 2.8 out of 4. The live and interactive visual
field was ranked the lowest.

The average score of the SUS questionnaire was 82, in a scale of 0 to 100.
Programmers and non-programmers yielded slightly different SUS scores (80
and 83, respectively).

The optional open-ended question was answered by 25 participants. The
answers included praise, constructive criticism, and new ideas. Below are some
of these answers from the crowdsourced participants:

• “Nice project hope you’ll launch it soon, I must say that at the first time it
looked so boring but after the first task all things started to connect one with
the other.”

• “I do not like the fact that there are too many pop up windows.”

• “I think it will be a great tool for any normal user like me if it had a more
graphical environment. I would use it daily if it acts as a browser too. I need
to hide those icons on the left sidebar and use the software as a browser. when
required, I can just unhide them and make use of the functionality. I think it
would be a wonderful tool for me if it was integrated with free google chrome
browser. Anyway the idea behind this work is really appreciable. I believe it
would be a great tool in the future for a lot of people.”

93 6.6 Results

3.11	
2.54	 2.66	

3.08	

0

1

2

3

4

5

Autocomplete Live &
Interactive

output

PbD Text
Highlighting

Lo
w
es
t	 =

	 0
,	 H

ig
he

st
	 =
	 4
	

Usefulness

Figure 6.10. Perceived usefulness for different features of the system.

6.6.3 Logs

We collected a large amount of activity logs in accordance with the metrics we
mentioned previously. One of the metrics was the percentage of not-permitted
keystrokes relevant to all the keystrokes captured in the text field. In average,
the value of this metric is around 8.87% for all the participants, 9.40% for pro-
grammers, and 8.47% for non-programmer (Figure 6.11).

Looking deeper into the used-keys data, Delete keys (i.e., Backspace and
Del) were the most used not-permitted keys. With a big difference, Enter was
the second most used not-permitted key. The rest of the used not-permitted
keys without significant frequency were comma (“,”), Dot (“.”), and Backslash

(“\”). Also, as depicted in Figure 6.12, the top 2 used not-permitted keys for
both programmers and non-programmers are the same.

Another collected metric was the ratio of using the two different Web API
discovery methods (i.e., functionality-base and name-based). The results are
depicted in Figure 6.13. The functionality-based discovery method was uti-
lized more frequently in the tasks of class 2. Moreover, as it is shown in Fig-
ure 6.14, programmers used functionality-based method more often than non-
programmers (chi-square test with confidence 95% and p = 0.008).

94 6.6 Results

8.87%	 9.40%	
8.47%	

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

Overall Programmer Non-programmer

O
ve
ra
ll	
ke
ys
tr
ok
es
	

Par5cipants	

Not-‐permi=ed	
keystrokes	

Figure 6.11. Percentage of all the keystokes classified as not-permitted.

Overall Programmers Non-programmers

Delete (80%) Delete (79%) Delete (80%)

Enter (13%) Enter (13%) Enter (13%)

 , (2%) , (3%) , (1%)

 \ (1%) \ (1%) . (1%)

Figure 6.12. Top 4 not-permitted keys with their frequency (in percentage).

95 6.6 Results

P	 NP	 P	 NP	 P	 NP	 P	 NP	
Tasks	 class	 1	 Tasks	 class	 2	 Tasks	 class	 3	 Tasks	 class	 4	

Func1onality-‐based	 19.4%	 18.1%	 86.7%	 79.1%	 29.3%	 23.5%	 37.1%	 33.7%	

Name-‐based	 80.6%	 81.9%	 13.3%	 20.9%	 70.7%	 76.5%	 62.9%	 66.3%	

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Di
sc
ov
er
y	
ta
sk
s	

Total	 number	 of	
discovery	 tasks	

1184	 1411	 1008	 1270	 1192	 1402	 874	 1140	

Figure 6.13. Ratio of using the two discovery methods segmented by the par-
ticipant groups and task classes.

Programmer	 Non-‐programmer	
Func0onality-‐based	 43.1%	 38.6%	

Name-‐based	 56.9%	 61.4%	

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Di
sc
ov
er
y	
ta
sk
s	

Figure 6.14. Difference between programmers and non-programmers in terms
of the ratio of using the discovery methods.

96 6.7 Conclusion and Lessons learned

6.7 Conclusion and Lessons learned

In summary, the results answered all the evaluation questions, approved our
hypotheses, and more importantly showed that NaturalMash is usable by non-
programmers. To be specific, the accuracy of 82% and the low average com-
pletion time of less than 3 minutes for the pre-constructed tasks, as well as the
level of perceived ease-of-use for the main features of the system (3 out of 4) all
prove the practical usability of the system.

Since programmers and non-programmers both obtained a high level of effi-
ciency, the answer to RQ1 is that the system is highly usable for end-users with
different programming backgrounds. The equivalence test results on the effi-
ciency of programmers and non-programmers showed that the hypothesis H1
is also true (i.e., having a programming background does not have significant
impact on the usability of the system).

On the other hand, the results provided evidence that there is a difference
between programmers and non-programmers in terms of favoring either of the
API discovery methods, and that H2 is true. As an answer to RQ2, we can thus
say that programmers prefer the text field over the ingredient toolbar, whereas
non-programmers prefer it the other way around. On the other hand, for API
discovery tasks, the ingredient toolbar is perceived by both the groups to have
a higher level of ease-of-use than the text field. A possible explanation is the
difference between the mental model of programmers and non-programmers.
Programmers are used to text-based environments, while non-programmers do
not have this bias and naturally use the method they perceive to be easier to
use. Moreover, the higher level of perceived each-of-use for the ingredient tool-
bar might be rooted in the accuracy of the name-based discovery method, as
opposed to the functionality-based discovery method that, depending on the
ambiguity of the input keywords, is probable to produce irrelevant suggestions
in the text field. In fact, the rational behind introducing the functionality-based
discovery method was to let end-users find their desired ingredients when they
are not able to directly recognize and target them using the name-based method.
Our rational was approved by the higher rate of using the functionality-based
discovery method (by both programmers and non-programmers) in the tasks of
class 2, where the list of to-be-used ingredients are not given.

The usefulness of the system is supported by the high SUS score (82) as well
as the positive answers to the open-ended and self-reported questions on the
perceived usefulness of the system. However, the low accuracy in the open task
may seem to hinder proving the usefulness of the system. As it was indicated
in the results, the main reason for the high amount of “skipped” and “incorrect”

97 6.7 Conclusion and Lessons learned

tasks was lack of required ingredients. Even though it is clearly a limitation
perceived by the participants, — this approves H3 — it is not by definition within
the scope of the core design, as the library can always be extended by new
ingredients (no matter what technology they use). Therefore, the answer to
RQ3 is that the system is potentially useful in real situational use cases, provided
that the needed ingredients are available in the library.

The evaluation also helped us identify a number of usability problems that
we intend to address with the following solutions:

• Stateful live programming. The low perceived usefulness of the live out-
put compared with the rest of the features is caused by a usability problem
pointed out in some of the participants feedback (e.g., comments left while do-
ing the tasks, and answers to the exit open-ended question in the exit question-
naire). For instance:

“The refresh frequency is a bit annoying. Every time I type even a single
character, something is moving, refreshing, or updating.”

Every time a single change is made in the text field, the visual field gets updated
by re-compling and re-executing the output mashup. However, the way this
mechanism is currently implemented, i.e. the new mashup replaces the old one
in the output Iframe, introduces two major usability problems. First, during the
replacement of the output mashup the visual field may flash multiple times. This
can cause distraction and interrupt the flow of the user’s activity. Second, when
the old mashup is replaced, the state of its user interface will be vanished too
as though it is reset. The end-user will then have to manually alter the user
interface state to what it used to be. Using model-driven engineering, we can
store the old state and automatically restore it in the new mashup user interface.
To avoid flashing during the replacement and state restoration processes, one
solution is to display the new mashup only when it is completely loaded.

• Crowdsourced ingredients development We verified in this evaluation
that the main perceived limitation of the system is revealed when the required
ingredients are missing. As a matter of fact, there is a large and rapidly grow-
ing number of Web APIs, providing various services, contents, and data. One
practical solution to keep the ingredient library up-to-date is therefore to use
crowdsouring. In doing so, non-programmers in need of certain ingredients can
make a call to the crowd (i.e., other end-users of the system) with all the rel-
evant information. This information is partially generated by the system (e.g.,
the keywords used in the failed discovery, and the mashup recipe written right
before the failed discovery task), and then completed with the explanation of the

98 6.7 Conclusion and Lessons learned

Delete keys are currently disabled here

Delete keys should move the caret to the end of the previous object and make it highlighted

Figure 6.15. The text field should lift the restriction on using Delete keys at
the beginning and end of data objects.

end-user about the required ingredient. Professional end-users (e.g., program-
mers), who we call ingredient developers and are familiar with Web APIs, will
respond to the call by finding, developing, and adding the requested ingredients
to the library. Like any other crowsdsourcing approach, there can be some sort of
incentives (e.g., money) to motivate the ingredient developers. Moreover, non-
programmers should be able to choose to whether share their new ingredients
publicly, with a certain end-users, or even privately.

• Enhanced deletion in the text field The low percentage of using not-
permitted keys (around 9%) to a large extent shows that we have applied the
right restrictions in the semi-structured text field. On the other hand, the fact
that Delete keys were the most frequently used not-permitted keys (around
80%) may indicate a potential usability problem. In the text field, Delete keys
are not permitted at the beginning and end of data objects as though the text
of the object is isolated form the rest of the recipe. The fact that all the non-
permitted Delete keys were used in these areas (beginnings and ends of objects)
suggests that the isolation of objects is not an appropriate restriction. Therefore,
the text field should allow end-users to continue deleting the previous or next
object when they reach the beginning or end of the object they are deleting
(Figure 6.15). In doing so, highlighting or blinking can be used to notify the
end-users that they are about to delete (or edit) a new object.

Chapter 7

Comparative Evaluation of Mashup
Tools

One of the major criticisms of the current research in mashups is that the ma-
jority of the proposed mashup tools in literature do not come with adequate
and appropriate evidence on their superiority over existing ones. As a result,
research in mashups has not yet reached its full potential. In addition to its
scientific importance, evaluation of existing mashup tools gives valuable insight
and guidance for both industrial mashup tool designers as well as end-users who
are to select a proper tool suiting their needs.

An impediment to such an evaluation is the lack of agreed benchmarks for
how well a mashup tool is designed. In this case, however, benchmarking can
become a very challenging task. First, there are more than one aspect against
which a tool can be benchmarked. Some of these aspects have been consid-
ered previously but not thoroughly. For instance, [34] proposes a framework
which assesses mashup tools against their expressive power to create mashups.
In terms of the composition environment, [48] collects and categorizes some of
the features offered by current mashup tools into a coherent framework. Sec-
ond, mashup tools have been evolving rapidly in terms of architecture and ca-
pabilities [1]. This makes it significantly difficult to arrive at a set of common
measurement indicators. Likewise, due to their focus on end-user development
it may be difficult to rely exclusively on quantitative metrics as some qualitative
aspects of the tool usability may need to be taken into account in the evaluation.

In this chapter, we propose a benchmarking framework for mashup tools
(Section 7.1). Using the framework, we also comparatively evaluate the state-
of-the-art tools (including NaturalMash) against their expressive power (Sec-
tion 7.2).

99

100 7.1 A Benchmarking Framework for Mashup Tools

EUP technique
Soft

ware
 qu

alit
y

Env
iro

nm
en

t fe
atu

res
Exp

res
siv

e p
ow

er

Benchmarking
framework

Figure 7.1. A benchmarking framework for mashup tools with four dimensions.

7.1 A Benchmarking Framework for Mashup Tools

In the following, we organize our proposed benchmarking framework into four
dimensions (Figure 7.1), namely EUP techniques, environment support features,
expressive power, and software quality. We explain these dimension, and within
each dimension, in turn, we discuss a number of possible measurement indica-
tors. Finally, we explain the strategy that should be adopted to use the proposed
benchmarking framework.

Dimension: EUP Techniques

As discussed in Chapter 2, Mashup tools use various EUP techniques to facili-
tate the development of mashups. Each technique provides a different level of
abstraction and expressive power. Thereby, mashup tools can be benchmarked
against the techniques they accommodated in their design. Since they usually
combine two or more techniques, it may be necessary to select the major tech-
niques of interest and only subject that one to the benchmark. For example, in
case of Yahoo! Pipes the major technique is visual language programming, even
though it also utilizes form-based technique. The challenge is, however, to arrive
at a set of factors for benchmarking EUP techniques. These factors should focus
on the design of the interaction technique, and thus should not be confused with
usability evaluation. For instance, [24] proposes a design benchmark for visual
programming languages, which appear to be widely utilized by existing mashup
tools. The proposed benchmarking framework contains various indicators ex-
tracted from the generic characteristics of visual programming languages such
as multidimensionality (e.g., 2D vs. 3D visual languages).

101 7.1 A Benchmarking Framework for Mashup Tools

Dimension: Environment Support Features

The composition environment of a mashup tool is of utmost importance, as this
is where the end-users accomplish complex development tasks. As a matter of
fact, the composition environment should provide adequate features support-
ing and guiding end-users through their tasks. These features may include col-
laborative development [46], online community [48], liveness [1], suggestion
mechanism [35], and so on. Evaluation within this dimension can be performed
either horizontally or vertically. In the former case, the evaluation can be based
on the number of features each tool can offer. In doing so, each feature might
have a different weight to the final sum. The same features might be imple-
mented by different tools using different methods. The latter form of evaluation
is applicable when the methods are the subject of evaluation. For instance, in
case of recommendation mechanism, one may be interested in evaluating the
efficiency or performance of existing recommendation mechanisms.

Dimension: Expressive Power

The expressive power of a mashup tool represents how many different classes of
a mashup can be generated using the tool. In terms of model-driven engineering,
the expressive power of a tool stems from its composition and component model.
The more heterogeneous types of Web APIs a component model can describe, the
more expressive it is. Likewise, a composition model describes different ways the
Web APIs can be glued together, and the more ways of composition the model
supports, the higher level of expressiveness it possesses.

Dimension: Software Quality

Depending on the domain where the mashup tool is going to be deployed, dif-
ferent quality requirement might be imposed on the design of the tool. These
quality aspects concern not only the mashup tool as whole, but also the mashups
generated by the tool.

• Mashup Tool: Some of the most easy-to-measure quality attributes that
a mashup tool might be benchmarked against are performance (in terms of the
responsiveness of its user interface or the overhead of the mashup execution
runtime) and scalability (in terms of the number of components and mashups
models that can be managed at design-time and executed concurrently at run-
time). The usability of the mashup tool is also an important quality to evaluate,
which may be difficult to measure without recurring to end-user studies. This

102 7.2 Benchmarking the State-of-the-art Mashup Tools

quality is also correlated with the choice of interaction techniques and the fea-
tures of the composition environment of the tool, which have been previously
mentioned.

• Generated Mashup: In addition to its runtime performance, one of the
key quality attribute for the generated mashups by a tool concerns its security.
Since mashups expose potential security threats, as they combine third-party
data from untrusted, anonymous sources on the Web [80].

7.1.1 Benchmarking Strategy

Benchmarking for mashup tools is based on the same rationale and methodology
as in software engineering and performance optimization. In the following, we
discuss a possible benchmarking strategy tailored for mashup tools.

• Select appropriate benchmarking aspects for comparison. The first
step is to have a clear goal for the benchmarking process. It helps to narrow
down the evaluation process by selecting only the necessary benchmarking as-
pects from the whole framework.

• Know existing mashup tools. Before starting the benchmarking process,
it is necessary to have sufficient knowledge about existing mashup tools. To
this end, a comprehensive survey, that is currently lacking in literature, seems
essential. A mashup tool should not be necessarily compared against all the
existing tools, but a subset of them, determined by the goal of the benchmarking
process and how the mashup tool can be classified.

• Use or read about the mashup tools under evaluation. After determin-
ing the list of mashup tools subject for evaluation, it is important to learn about
them through either using them (Web-based mashup tools should be readily
accessible online) or reading about them (if they are described in academic pub-
lications but lack an online release).

• Understand and bridge the gap. If the goal of the benchmarking is to
evaluate a mashup tool with respect to a specific aspect, the results inform either
the success or failure of the design. In the later case, it is important to analyze
the results to understand how to overcome the weaknesses.

7.2 Benchmarking the State-of-the-art Mashup Tools

In this section, we use the framework to compare NaturalMash with the state-
of-the-art tools in terms of expressive power. We show that our system offers a
moderate and competitive level of expressive power.

103 7.2 Benchmarking the State-of-the-art Mashup Tools

Mashup Tools
Data

Integration
Process

Integration
Presentation

A
gg

re
ga

te

Fi
lt

er

Se
qu

en
ce

C
on

di
ti

on

Lo
op

Ev
en

t

La
yo

u
t

de
si

gn

W
ir

in
g

NaturalMash # # # – – # # #

Mashroom [112] # # # – – – # –
Husky # # # – – – – –
Karma [109] # # # – – – – –
MashMaker [38] # # # – – – # #

Vegemite [75] # # # – – – – –
Yahoo! Pipes # # # – # – – –
IBM Mashup Center # # # – # – # #

JOpera [94] # # # # # # # –
JackBe Presto # # # – # – # #

Marmite [114] # # # – – – – –
MashArt [33] # # # – – – # #

ResEval Mash [64] # # # – – – – –
MyCocktail # # # – # – # #

MashableLogic # # # – – – # #

Swashup [83] # # # # # # # #

WMSL [100] # # # # # # # #

ServFace [90] # # – – – – # #

DashMash [25] # # – – – – # #

Omelette [28] # # – – – – # #

CRUISE [96] # # – – – – # #

RoofTop [61] # # – – – – # #

d.mix [55] # # # # # – # #

Open Mashup [18] – – # – – – – –
IFTTT – – # – – # – –
SABRE # # # # – # # –
MashStudio # # # # – # # –

Table 7.1. Comparison of the state-of-the-art mashup tools in terms of
composition model expressive power. The light gray lines highlight mashup
tools with more composition expressive power than NaturalMash (highlighted
with a dark gray line).

104 7.2 Benchmarking the State-of-the-art Mashup Tools

Mashup Tools
Data

Formats
Access

Methods
Output Behavior

Pr
im

it
iv

e

C
om

pl
ex

U
se

r-
de

fi
n

ed

La
n

gu
ag

e

Pr
ot

oc
ol

D
at

ab
as

e

D
at

a

Lo
gi

c

Pr
es

en
ta

ti
on

Ta
sk

Ev
en

t

NaturalMash # # # # # # # # # # #

Mashroom [112] # # – – # – # – – # –
Husky # # – – # – # # – # –
Karma [109] # # – – # # # – – # –
MashMaker [38] # # – – # – # – – # –
Vegemite [75] # # – – – – # – – # –
Yahoo! Pipes # # – – # – # – – # –
IBM Mashup Center # # – – # # # # # # –
JOpera [94] # # # # # # # # # # #

JackBe Presto # # # # # # # # # # #

Marmite [114] # # – – # – # # – # –
MashArt [33] # # – – # – # # – # –
ResEval Mash [64] # # – – # # # # – # –
MyCocktail # # – – # # # # – # –
MashableLogic # # – – # # # # # # #

Swashup [83] # # – # # # # # # # #

WMSL [100] # # – # # # # # # # #

ServFace [90] # # – – # # # – # # #

DashMash [25] # # – – # – # – # # #

Omelette [28] # # – – # – # – # # #

CRUISE [96] # # – – # – # – # # #

RoofTop [61] # # – – # – # – # # #

d.mix [55] # # – # # – # # # # #

Open Mashup [18] # – – – # – # # – # –
IFTTT # # – – # – # # – # –
SABRE # # – – # – # # – # –
MashStudio # # – – # – # # – # –

Table 7.2. Comparison of the state-of-the-art mashup tools in terms of
component model expressive power. The light gray lines highlight mashup
tools with (almost) the same component model expressive power as Natural-
Mash (highlighted with a dark gray line).

105 7.2 Benchmarking the State-of-the-art Mashup Tools

7.2.1 Methods

We reused the list of the mashup tools surveyed in Chapter 2, and added Natu-
ralMash to the list, which resulted in a total of 28 mashup tools. We followed
the benchmarking framework presented in this chapter. In doing so, we picked
the expressive power dimension, which, among other dimensions, is the most
relevant to this dissertation.

As mentioned in the benchmarking framework, the overall expressive power
of a mashup tool is characterizes by the expressive power of its composition and
component models. Therefore, separately for component model and composi-
tion model, we proposed a number of factors, in the form of a checklist, that
together define the expressive power of the model. We attempted to include as
many factors as possible that have a sense of generality and can be assessed for
all mashup tools in the list.

Assuming all the factors have the same weight, in order to actually measure
the expressive power of a tool, we simply summed up the number of factors
(both in composition and component model) supported by the tool — in other
words, each factor is a binary metric.

Composition Model

In general, mashup tools can be composed at three layers: data integration,
process integration, and presentation. [54]. Within each layer, thus, different
mashup tools provide different levels of expressive power.

• Data Integration. Data integration is accomplished by aggregating and
filtering data sources [37]. Data aggregation is the process of transforming scat-
tered data from numerous sources into a single new one. Data filtering is the
process of specifying conditions on a data source to extract the exact information
being sought.

• Presentation Integration. Process integration involves constructing the
application logic using conditions, loops, and sequences as well as catching events
triggered by Web APIs (e.g., receiving updates in a stream of data). The differ-
ence between conditions and events is that the latter is triggered by Web APIs,
whereas the former is implemented internally within a mashup tool.

• Presentation Integration. At the presentation layer, various widgets can
be superficially rearranged (layout design) or wired with each other. Wiring is
the process of connecting to widgets in which one end of the wire represents an
event fired by one of the widgets, and the other end is attached to a functionality
offered by the other widget.

106 7.2 Benchmarking the State-of-the-art Mashup Tools

Component Model

The factors that affect the expressive power of a component model, are also the
aspects that technically characterize Web APIs. A Web API is technically spec-
ified by the data formats used by its input/output parameters, access methods
that should be utilizes to remotely communicate with it, application layer it con-
tributes to, and control flow behavior it carries inside a mashup.

• Data Formats. Within a mashup, a Web API interacts with others through
its input and output parameters. To make this interaction possible, the data for-
mats used by these parameters should be defined in the component model, so
that the tool can undertake (or suggest users to perform) necessary data map-
ping and matching processes. In general, these data formats can be primitive,
complex, or user-defined. Primitive formats are equivalent to standard variable
types of a programming language (e.g., string, int, boolean, etc.). On the Web,
complex formats usually constitute MIME types (e.g., XML, JSON, and RSS).
Additionally, many data formats are arbitrary (not standard) and classified as
user-defined.

• Access Methods. Access method is the way a Web API is made accessi-
ble for composition inside a mashup. The access methods utilized by various
Web APIs are highly heterogeneous. Some Web APIs force the use of a spe-
cific programming, scripting or markup language. For instance, JavaScript APIs,
HTML IFrame widgets, Plain Old Object Java Objects (POJOs), Enterprise Java
Beans (EJB) can be all considered within this category. Even though some of
these methods are considered outdated (POJO and EJB), they are still being
used within enterprises. Moreover, Google Maps API, which is the most popular
mashup components according to the ProgrammableWeb, is mainly accessible
via JavaScript APIs. However, Web APIs mostly utilize standard protocols such
as Web services (e.g., RESTful, HTTP, and SOAP) and Web feeds (e.g., RSS and
Atom). According to the ProgrammableWeb, the dominant portion of Web APIs
currently utilize REST Web services. Moreover, within a (enterprise) mashup, a
database can be encapsulated as a Web API and act as either a read-only or a
read/write data source. A database not only can deliver data and functionality
(i.e., query and update features) but also can become a permanent storage for
writing user-related data (e.g., username and password).

• Layer. There are three forms of output a Web API can produce in the fi-
nal mashup composition: data, application logic, and presentation. As discussed
above in the composition model, the development of a mashup can span one
or all of the integration layers. However, supporting a specific layer form by a
component model does not necessarily imply the feasibility of composition at

107 7.2 Benchmarking the State-of-the-art Mashup Tools

that layer. For instance, JOpera accommodates a component model that also
supports presentation layer, while it does not allow composition at that layer.
Web APIs generating data act as external data sources, which deliver data to a
mashup either as continuous data streams with real-time properties or as snap-
shots of a remote or local dataset. Most Web data sources are read-only, but in
some cases they may also support updates. Within the mashup, they are likely to
be converted, transformed, filtered, or combined with other data sources [82].
Web APIs with logic output are delivered as services that contribute to the busi-
ness logic layer of a mashup. Such Web APIs are usually orchestrated together
in a workflow to deliver a capability [36]. Visual output is generated by wid-
gets [60]. Widgets provide some kind of graphical user interaction mechanism
which can be reused at the mashup user interface level. The visual part of a
widget is incorporated in the mashup user interface independently from other
widgets. Widgets may also generate reusable logic and data accessible for com-
position within a mashup (e.g., Google Maps API).

• Behavior. At the runtime, the control flow of a mashup determines the
sequence of component invocation. Nevertheless, the internal execution mecha-
nism of a Web API may also affect its parent mashup control flow. This is referred
to as the runtime behavior of a Web API that can be either task-based or event-
based. A task-based behavior represents a single invocation of a local or remote
operation, which may provide an output given an input. It resembles traditional
functions or methods, which execute and transmit responses only when called.
In the context of the overall mashup, task-based Web APIs are passive (they are
executed only when control reaches them). When a Web API has an event-based
behavior, it is triggered and produces an output only when a specific action (in-
dependent from the composition) has been taken (e.g., user interactions or an
asynchronous message is received from a remote service). An event-based Web
API is, therefore, an active part of a mashup, which may trigger the execution of
a sequence of tasks.

7.2.2 Results and Discussion

As it can be seen in Tables 7.1 and 7.2, industrial mashup tools (e.g., IBM Mashup
Center, and JackBe Presto) generally offer much more expressive power than
academic tools. Interestingly, looking into the results, it can be seen that they
conform to the expressive power dimension (low, moderate, and high) of the
descriptive classification we conducted in Chapter 2, Section 2.5.

In terms of composition model, only a few mashup tools including Swashup,
WMSL, JOpera, and d.mix offer more expressive power. Most of these tools are

108 7.2 Benchmarking the State-of-the-art Mashup Tools

based on textual DSLs, which are tailored for the development of mashups, and
reasonably offer a high level of expressiveness. NaturalMash, however, lacks
the support for expressing loops and conditions, which are supported by non-
DSL tools like Yahoo! Pipes. We believe, explicitly supporting these control flow
constructs is not vary much useful. In fact, iterating over data, for instance,
can be automated without users having to explicitly use loops to do so (we
plan to implement this in future). Moreover, supporting data extraction inside
NaturalMash seems essential and can be done through incorporating a third-
party mashup enabler like Dapper.

Concerning the component model, NaturalMash fully meets all the factors,
thanks to its expressive component model (Chapter 3, Section 3.3). Other tools
with slightly less expressive component model include Swashup, WMSL, JOpera,
and JackBe Presto. The ability to handle user-defined data formats, despite its
importance, is rarely supported by the reviewed component models. As de-
scribed previously (Chapter 3, Section 3.3), NaturalMash provides a convenient
way to create and use user-defined data formats. Another advantages of the
NaturalMash component model is the support for language-based protocols (e.g,
widgets with JavaScript SDK), which is not however supported by most of the
models. ANother overlooked protocol by existing models is database, which is
of value in the enterprise market [60], even though it is not commonly used in
the so-called consumer mashups [72].

Overall, the results show that NaturalMash offers a moderate and compet-
itive level of expressive power that is less than DSL-based tools like Swashup
(highly expressive tools), and more than WYSIWYG tools such as DashMash
(highly usable by low expressive tools).

Chapter 8

Conclusion

With the emergence of the long-tail in the market of software applications, com-
puter programming is no longer viewed as a task for just programmers. The
consequence was the rise of the so-called citizen developer: ordinary end-users
developing niche software applications within specific domains. These niche
applications are not limited to spreadsheets and databases (as it used to be).
Rather, they are small-scale enterprise applications addressing unique, personal,
and transient needs of end-users. One popular form of such applications is called
mashup, built on the Web out of a lightweight composition of Web APIs (reusable
software components delivered as a service through the Web). Thanks to the
reuse of Web APIs, the development of mashups demands lower costs in terms
of time and required skills. In return, they offer a high level of added value to
the end-users, thanks to the diversity and ever-growing number of Web APIs that
can be used as their building blocks.

Nonetheless, the vision of citizen developer is problematic: Can end-users
(i.e., citizen developers) build their own business application? If not, how they
can be supported to do so? These problems arise from the end-users’ lack of
knowledge and will to learn programming or scripting languages required to
create any type of software, including mashups. Hence, end-users cannot really
built their own applications unless they are supported. End-User Development
(EUD) is an emerging research field dealing with this type of problems. It is
geared towards developing tools and techniques facilitating the development of
software applications by non-programmers.

In this dissertation, we designed and implemented an EUD system that em-
powers end-users to develop mashups as niche software applications. EUD sys-
tems for mashups is commonly referred to as mashup tools. We assumed that
mashup tools confront a trade-off between expressiveness and usability for non-

109

110

programmers, and that the sweet-spot in this trade-off can be hit if the tool is
able to provide a proper combination of EUP techniques ensuring both high level
abstraction and expressiveness, metaphors familiar to everyone, and an optimal
learning experience developing the skills of non-programmers. Within this as-
sumption, we hypothesized that such a mashup tool can adopt a hybrid EUP
technique combining natural language programming and WYSIWYG, the “cook-
ing” metaphor in which the “ingredients” (Web APIs) are mixed according to
a “recipe” (natural-language source code) for the purpose of preparing “food”
(mashup), and live programming and recommendation techniques to boost op-
timal learning experience.

Next, we surveyed the state-of-the-art mashup tools based on a decision
space concerning their design. Given the implications of the survey results, we
roughly classified the reviewed tools based on their expected level of expressive-
ness and usability for non-programmers, two important qualities that should be
taken into account in the design of any mashup tool. Within this classification,
we characterized our hypothesized system as an optimal usable mashup tool that
provides a moderate level of expressiveness, while it ensures the highest level of
usability for non-programmers.

We thoroughly presented the design and implementation of NaturalMash, as
our hypothesized optimal usable mashup tool. NaturalMash combines natural
language programming with WYSIWYG and Programming by Demonstration in
a simple single-page user interface. The architecture of the system is geared to-
wards enabling the user’ experience of live programming by ensuring high per-
formance, minimizing the edit/compile/execute response time. Furthermore,
the design of the system adopted a user-centered design process taken over a
two-year period. We explained the design process by reporting the formative
evaluations conducted in three iterations. In the first iteration we performed an
expert review with an early prototype of the system in order to find early usabil-
ity problems. The second and third iterations involved usability testing under-
taken with samples of participants, diverse in terms of programming knowledge
and skills. In reporting the evaluations, we also showed how the results drove
the design of NaturalMash during the process.

Finally, we validated our hypothesis by evaluating NaturalMash. The sum-
mative evaluation was conducted using a usability testing on a sample of 40 par-
ticipants with diverse programming background. The results suggested that the
system is usable by non-programmers. To conduct the comparative evaluation,
we first proposed a benchmarking framework providing a general picture on
possible methods to actually measure mashup tools against each other, and used
the framework to compare NaturalMash with the state-of-the-art tools against

111 8.1 Limitations

their expressiveness level. The results from both summative and comparative
evaluations suggested that NaturalMash is highly usable by non-programmers,
and offers a moderate yet competitive level of expressive power, which together
indicate that the system could be considered as being our hypothesized optimal
usable mashup tool.

To conclude, in this dissertation we addressed a key problem in the design
of EUD systems, being that how to maximize the expressiveness without com-
promising the usability for non-programmers. We believe our approach, sum-
marized below, can be reused in the design of next-generation EUD systems.

The design of mashup tools confronts a major trade-off between expres-
siveness and usability for non-programmers, that should be fine-tuned
to achieve the desired design. Given the problem of supporting citi-
zen developers to exploit the market of niche software applications, we
believe the appropriate balance in the trade-off is achieved by maxi-
mizing the level of usability for non-programmers, and increasing the
expressiveness to reach a sufficient level. To this end, the most impor-
tant design decisions concern choosing and combing EUP techniques
with the right level of abstraction and expressiveness (e.g., natural lan-
guage programming combined with WYSIWYG and PbD), using famil-
iar metaphors for mashup development (e.g., the “cooking” metaphor),
and providing an optimal learning experience to support and develop
end-users’ abilities (e.g., through enabling live programming, and pro-
viding recommendations and suggestions).

8.1 Limitations

The research presented in this dissertation has a number of limitations which
are described subsequently.

8.1.1 Comparative Usability Evaluation

We did not conduct a comparative usability evaluation to see how usable our
system is compared with the state-of-the-art mashup tools. We argue that per-
forming such an evaluation is implausible, and beyond our resources. First, in
order to conduct a comparative usability evaluation, we had to get our hands on
all the mashup tools, which might not be feasible due to the fact that the major-

112 8.1 Limitations

ity of them are lab-based research prototypes. Second, due to the heterogeneity
and large number of mashup tools, it would be extremely challenging to derive
a set of common tasks that can be accomplished by all the mashup tools. Even
if we could, we most probably would end up with a list of tasks that are too
simplified to be of practical use in comparing the usability of the tools. Hence,
our comparative evaluation was focused on the expressive power.

8.1.2 Summative Usability Evaluation

The summative evaluation presented in Chapter 6 has two main limitations. The
first concerns the imbalanced number of participants recruited using different
methods. Participants recruited through crowdsourcing were plausibly moti-
vated by the incentive, whereas the invited participants were only interested in
trying out the system. We, therefore, attempted to have an approximately equal
number of invited and crowdsourced participants. This, however, did not work
out and we managed to recruit only 10 participants by invitation. The reason
might be due to the fact that the interest of the invited people in trying out the
system was not enough to persuade them to finish the study. After inspecting the
logs, we realized that the invited participants, who failed to complete the study,
had been stuck in the first task, and had spent a lot of time on just trialling the
system.

The second limitations is that the open task is self-generated after conducting
the pre-constructed tasks. This introduced a bias causing the similarity between
some of the self-generated tasks and the pre-constructed tasks . Furthermore,
we wanted the participants to freely come up with a personal use-case without
considering and knowing about the system limitations (i.e., getting biased by the
pre-constructed tasks), as the goal here was to measure how useful NaturalMash
is in real situational use-cases. However, we were forced to admit these biases
and postpone self-generating the open task to the end due to one main reason:
According to our experience with past formative evaluations, we anticipated that
most of the participants are not familiar with mashups and Web APIs and that
the tutorial alone might not be enough to introduce these concepts properly.
Therefore, we predicted that many participants will fail to self-generate a task
in the beginning of the study.

8.1.3 Comparative Expressive Power Evaluation

In Chapter 7, we proposed a benchmarking framework, and according to that,
conducted a comparative evaluation of the state-of-the-art mashup tools against

113 8.2 Future Directions

their expressive power. A mashup tool usually comes with a library in which the
end-users can find the required Web APIs. The more the number of available
Web APIs within a tool, the higher its level of expressive power. Also, as it was
reported by the participants in the summative evaluation (Chapter 6), the main
limitation of NaturalMash was the lack of required Web APIs, suggesting that
it also influences the perceived expressive power of a tool (beside the “real”
expressive power measured in this chapter). In the comparative evaluation,
however, we excluded this factor because many of the surveyed mashup tools are
in fact research prototype, to which we did not have real access. Also, acquiring
the required information from the authors of these tools was not an option,
because, again, a prototype comes with a limited list of Web APIs, which would
be unfair to be compared with industrial tools.

8.2 Future Directions

Beside implementing the solutions to the usability problems we found in the
summative evaluation (see Chapter 6, Section 6.7), we envision to conduct fu-
ture research in the following directions:

• End-user development of physical mashups. The Internet of Things is
a paradigm for the future Internet in which everyday objects are equipped with
sensors and connected to the Internet. One of the emerging visions [15] corre-
lated with this paradigm is the so called Web of Things [50]. The goal of this
vision is to use Web standards and technologies to facilitate the connection and
integration of everyday objects. Once these objects are exposed and accessible
as Web APIs, they can be composed with other Web APIs that may or may not
encapsulate physical objects. The resulting composition applications are called
physical mashups [51] and provide added value across the Internet of Things.
Physical mashups are similar to traditional Web mashups with the difference
that they also compose physical Web APIs (i.e., Web APIs encapsulating physical
objects). For example, a physical mashup can give insight into the efficiency of
a home heating system by displaying weather information (e.g., from a weather
Web API) alongside data from different sensors connected to the heating system.
The development of physical mashups follows a long tail model, in which count-
less situational and unique needs of users can drive the development of mashups.
Therefore, EUD can be applied to enable the development of physical mashups in
a “do-it-yourself” manner. So far, existing relevant studies have mainly focused
on the engineering challenges, such as developing a unified interface for physical
Web APIs [105] and designing a scalable architecture for the Web of Things [52].

114 8.2 Future Directions

We will build on these works and extend them if necessary. However, identifying
and tackling the problem of self-service physical mashup development through
an HCI perspective has previously received little research attention.

• Enterprise data integration using natural language programming. In
the enterprise integration industry (e.g., Crossing Tech1), multiple actors such
as business analysts, architects and developers are inevitably involved in the
process of building an integration solution. These actors represent two groups
known as functionals and technicals. There is a clear segregation between these
two groups in terms of communication as they clearly don’t have the same exper-
tise, don’t share the same goals and mostly don’t use the same terminologies. At
the beginning of an integration project, the business analysts usually describe in
a text document what they expect the solution to do and how the different enti-
ties are going to be mediated. This business documentation is to be given to and
analyzed by the architect to design an integration architecture. A new set of doc-
umentation artifacts are created by the architect to describe in more details the
diagram, the architecture and its components. This architecture documentation
will then be provided to the developers who will implement the components.
Nevertheless, the original business documentation is never delivered to the de-
velopers. This situation often leads to misunderstandings as the communication
gap is a serious issue between the business analysts and the developers.
This gap can be addressed through the lens of EUD. To be specific, we plan to
study how to use a controlled natural language to model complex enterprise
integration solutions, which are currently visualized using technical diagrams
that seem to be difficult to understand for business users. The advantage of using
an executable controlled natural language is that it is not only understandable
by business users, but also as expressive as visual diagrams.

1http://www.crossing-tech.com/

http://www.crossing-tech.com/

Appendix A

Usability Evaluation Forms

This appendix contains questionnaire forms used in the usability evaluations
of NaturalMash: formative usability evaluation of iteration 2 (Chapter 5, Sec-
tion 5.2), formative evaluation of iteration 3 (Chapter 5, Section 5.3), and sum-
mative evaluation (Chapter 6).

A.1 Background Assessment Questionnaire

1. How often, if ever, do you use social networks (e.g., Facebook, Twitter,
Linkedin, etc.)?
Never 1� 2� 3� 4� 5� Very frequently

2. How often, if ever, do you check Web feeds, blogs, and podcasts?
Never 1� 2� 3� 4� 5� Very frequently

3. Do you have a Website or blog?
� Yes
� No

4. Which of the following services have you used?
� Flickr
� Facebook
� Twitter
� LinkedIn
� Last.fm

115

116 A.1 Background Assessment Questionnaire

� eBay
� Google Maps
� Google Search
� Google News
� Delicious
� Eventful
� BBC News
� SlideShare

5. How familiar are you with spreadsheet programs (e.g., Microsoft Ex-
cel)?
No familiarity 1� 2� 3� 4� 5� Expert

6. How familiar are you with editing wikis? (e.g., editing Wikipedia)?
No familiarity 1� 2� 3� 4� 5� Expert

7. How familiar are you with Website builders? (e.g., WordPress, Wix,
Weebly, etc.)?
No familiarity 1� 2� 3� 4� 5� Expert

8. How familiar are you with HTML?
No familiarity 1� 2� 3� 4� 5� Expert

9. How familiar are you with XML?
No familiarity 1� 2� 3� 4� 5� Expert

10. How familiar are you with JavaScript?
No familiarity 1� 2� 3� 4� 5� Expert

117 A.1 Background Assessment Questionnaire

11. How familiar are you with Linux shell script?
No familiarity 1� 2� 3� 4� 5� Expert

12. Please, write down the list of programming languages you speak.

13. Please indicate years of continuous experience in programming (the
learning period is also counted).
� 0-1 year
� 1-2 years
� 2-5 years
� 5-10 years
� 10+ years

14. Please indicate years of experience in industry (i.e., working as a de-
veloper in a company).
� 0-1 year
� 1-2 years
� 2-5 years
� 5-10 years
� 10+ years

118 A.2 Exit Questionnaire: First Iteration Formative Evaluation

A.2 Exit Questionnaire: First Iteration Formative Eval-
uation

1. How you felt about the system (please use a scale from 1 to 5)?
Difficult 1� 2� 3� 4� 5� Easy
Frustrating 1� 2� 3� 4� 5� Satisfying
Dull 1� 2� 3� 4� 5� Stimulating
Rigid 1� 2� 3� 4� 5� Flexible

2. The autocompletion list simplifies the editing task for adding new la-
bels:
Strongly disagree 1� 2� 3� 4� 5� Strongly agree

3. Selecting appropriate labels from the autocompletion menu:
Useless 1� 2� 3� 4� 5� Helpful

4. Highlighting the text:
Useless 1� 2� 3� 4� 5� Helpful

5. Exploring new labels by trial and error:
Difficult 1� 2� 3� 4� 5� Easy

6. Autocompletion list helps memorizing the labels:
Strongly disagree 1� 2� 3� 4� 5� Strongly agree

7. Correcting your mistakes:
Difficult 1� 2� 3� 4� 5� Easy

8. Task 1:
Difficult 1� 2� 3� 4� 5� Easy

9. Task 2:
Difficult 1� 2� 3� 4� 5� Easy

119 A.2 Exit Questionnaire: First Iteration Formative Evaluation

10. Task 3:
Difficult 1� 2� 3� 4� 5� Easy

11. Task 4:
Difficult 1� 2� 3� 4� 5� Easy

12. Task 5:
Difficult 1� 2� 3� 4� 5� Easy

13. Do you want to continue using the tool?
� Yes
� Maybe
� No

14. Please tell us briefly why?

120 A.3 Exit Questionnaire: Second Iteration Formative Evaluation

A.3 Exit Questionnaire: Second Iteration Formative Eval-
uation

1. How you felt about the system (please use a scale from 1 to 5)?
Difficult 1� 2� 3� 4� 5� Easy
Frustrating 1� 2� 3� 4� 5� Satisfying
Dull 1� 2� 3� 4� 5� Stimulating
Rigid 1� 2� 3� 4� 5� Flexible

2. Autocomplete menu (the menu that appears as you type in the text
field):
Useless 1� 2� 3� 4� 5� Helpful

3. Label suggestions provided by the autocomplete list (the list that ap-
pears as you type in the text field):
Irrelevant 1� 2� 3� 4� 5� Relevant

4. Correcting your mistakes in the text field:
Difficult 1� 2� 3� 4� 5� Easy

5. Being able to see the output updated as you type:
Useless 1� 2� 3� 4� 5� Helpful

6. Visual editor suggestions (getting suggestions in the text field while
interacting with the output):
Useless 1� 2� 3� 4� 5� Helpful

7. Interacting with the output:
Useless 1� 2� 3� 4� 5� Helpful

8. Highlighting (highlights for texts, Icons, and windows):
Useless 1� 2� 3� 4� 5� Helpful

121 A.3 Exit Questionnaire: Second Iteration Formative Evaluation

9. Ingredients toolbar (the toolbar that contains the list of ingredients):
Useless 1� 2� 3� 4� 5� Helpful

10. Task 1:
Difficult 1� 2� 3� 4� 5� Easy

11. Task 2:
Difficult 1� 2� 3� 4� 5� Easy

12. Task 3:
Difficult 1� 2� 3� 4� 5� Easy

13. Task 4:
Difficult 1� 2� 3� 4� 5� Easy

14. Do you want to continue using the tool?
� Yes
� Maybe
� No

15. Do you want to suggest the tool to your friends?
� Yes
� Maybe
� No

16. Please tell us briefly why?

122 A.4 Exit Questionnaire: Summative Evaluation

A.4 Exit Questionnaire: Summative Evaluation

1. Do you have any personal use case that can be potentially addressed
using NaturalMash?

2. Do you have any additional information or comments to share?

123 A.5 Post-task Class 1 Questionnaire: Summative Evaluation

A.5 Post-task Class 1 Questionnaire: Summative Eval-
uation

1. Label suggestions provided by the autocomplete menu (the menu that
appears as you type in the text field):
Irrelevant 1� 2� 3� 4� 5� Relevant

2. Selecting appropriate suggestions from the autocompletion menu:
Irrelevant 1� 2� 3� 4� 5� Relevant

3. Please briefly explain why you skipped the task?

124 A.6 Post-task Class 2 Questionnaire: Summative Evaluation

A.6 Post-task Class 2 Questionnaire: Summative Eval-
uation

1. Finding ingredients using the toolbar (the bar in the left side of the
screen):
Difficult 1� 2� 3� 4� 5� Easy

2. Adding the ingredients found using the toolbar to the mashup:
Difficult 1� 2� 3� 4� 5� Easy

3. Please briefly explain why you skipped the task?

125 A.7 Post-task Class 3 Questionnaire: Summative Evaluation

A.7 Post-task Class 3 Questionnaire: Summative Eval-
uation

1. Being able to see the output mashup updated immediately after edit-
ing:
Useless 1� 2� 3� 4� 5� Helpful

2. Being able to interact with the output mashup (like clicking and resiz-
ing and moving around widgets):
Useless 1� 2� 3� 4� 5� Helpful

3. Getting highlighted text added to the text field as interacting with the
output (i.e, clicking on a table results in adding and highlighting to
the text “when an item is selected”):
Useless 1� 2� 3� 4� 5� Helpful

4. Please briefly explain why you skipped the task?

126 A.8 Post-task Class 4 Questionnaire: Summative Evaluation

A.8 Post-task Class 4 Questionnaire: Summative Eval-
uation

1. Correcting your mistakes in the text field:
Difficult 1� 2� 3� 4� 5� Easy

2. Text highlighting as you move your mouse on top of widgets and parts
of text:
Useless 1� 2� 3� 4� 5� Helpful

3. Please briefly explain why you skipped the task?

Bibliography

[1] S. Aghaee, M. Nowak, and C. Pautasso. Reusable decision space for ma-
shup tool design. In Proceedings of the 4th ACM SIGCHI symposium on
Engineering interactive computing systems, pages 211–220, 2012.

[2] S. Aghaee and C. Pautasso. Mashup development with html5. In Proceed-
ings of the 3rd and 4th International Workshop on Web APIs and Services
Mashups, page 10, 2010.

[3] S. Aghaee and C. Pautasso. The mashup component description language.
In Proceedings of the 13th International Conference on Information Integra-
tion and Web-based Applications and Services, pages 311–316, 2011.

[4] S. Aghaee and C. Pautasso. Englishmash: Usability design for a natural
mashup composition environment. In M. Grossniklaus and M. Wimmer,
editors, Current Trends in Web Engineering, volume 7703, pages 109–120.
Springer Berlin Heidelberg, 2012.

[5] S. Aghaee and C. Pautasso. An evaluation of mashup tools based on
support for heterogeneous mashup components. Current Trends in Web
Engineering, pages 1–12, 2012.

[6] S. Aghaee and C. Pautasso. Guidelines for efficient and effective end-
user development of mashups. In End-User Development, pages 260–265.
Springer Berlin Heidelberg, 2013.

[7] S. Aghaee and C. Pautasso. Live mashup tools: Challenges and opportu-
nities. In Live Programming (LIVE), 2013 1st International Workshop on,
pages 1–4, 2013.

[8] S. Aghaee and C. Pautasso. End-User Development of Mashups with Nat-
uralMash. Journal of Visual Languages & Computing, 2014.

127

128 Bibliography

[9] S. Aghaee, C. Pautasso, and A. De Angeli. Natural end-user develop-
ment of web mashups. In Proceedings of the 2013 IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC), pages 111–
118, 2013.

[10] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web services. In Web
Services. Springer Berlin Heidelberg, 2004.

[11] M. Altinel, P. Brown, S. Cline, R. Kartha, E. Louie, V. Markl, L. Mau, Y.-H.
Ng, D. Simmen, and A. Singh. Damia: a data mashup fabric for intranet
applications. In Proceedings of the 33rd international conference on Very
large data bases, pages 1370–1373. VLDB Endowment, 2007.

[12] C. Anderson. The Long Tail: Why the Future of Business Is Selling Less of
More. Hyperion, 2006.

[13] F. Arbab. Reo: a channel-based coordination model for component com-
position. Mathematical. Structures in Comp. Sci., 14:329–366, 2004.

[14] U. Aßmann. Invasive Software Composition. Springer, 2003.

[15] L. Atzori, A. Iera, and G. Morabito. The internet of things: A survey.
Computer Networks, 54(15):2787 – 2805, 2010.

[16] M. A. Babar. Software Architecture Knowledge Management: Theory and
Practice. Springer, 2009.

[17] B. Beemer and D. Gregg. Mashups: a literature review and classification
framework. Future Internet, 1(1):59–87, 2009.

[18] M. Belaunde and S. B. Hassen. Service mashups using natural language
and context awareness: A pragmatic architectural design. In Proceed-
ings of the 15th IEEE International Enterprise Distributed Object Computing
Conference Workshops (EDOCW), pages 404–411. IEEE, 2011.

[19] D. Benslimane, S. Dustdar, and A. Sheth. Services mashups: The new
generation of web applications. Internet Computing, IEEE, 12(5):13–15,
2008.

[20] G. Bergmann, I. Ráth, G. Varró, and D. Varró. Change-driven model trans-
formations. Software & Systems Modeling, 11(3):431–461, 2012.

129 Bibliography

[21] A. Bernstein, E. Kaufmann, C. Kiefer, and C. Bürki. SimPack: A Generic
Java Library for Similiarity Measures in Ontologies. Technical report,
Department of Informatics, University of Zurich, 2005.

[22] P. A. Bernstein and L. M. Haas. Information integration in the enterprise.
Commun. ACM, 51(9):72–79, 2008.

[23] A. Blackwell. Psychological Issues in End-User Programming. In
H. Lieberman, F. Patern, and V. Wulf, editors, End User Development,
volume 9 of Human-Computer Interaction Series, pages 9–30. Springer
Netherlands, 2006.

[24] M. M. Burnett. Visual programming. In J. G. Webster, editor, Encyclopedia
of Electrical and Electronics Engineering. Wiley, 1999.

[25] C. Cappiello, M. Matera, M. Picozzi, G. Sprega, D. Barbagallo, and
C. Francalanci. Dashmash: a mashup environment for end user devel-
opment. In Web Engineering, pages 152–166. Springer, 2011.

[26] S. Casteleyn, F. Daniel, P. Dolog, and M. Matera. Engineering Web Appli-
cations. Springer Publishing Company, Incorporated, 2009.

[27] S. Chaudhuri and U. Dayal. An overview of data warehousing and olap
technology. SIGMOD Rec., 26(1):65–74, Mar. 1997.

[28] O. Chudnovskyy, T. Nestler, M. Gaedke, F. Daniel, J. I. Fernández-Villamor,
V. Chepegin, J. A. Fornas, S. Wilson, C. Kögler, and H. Chang. End-user-
oriented telco mashups: the omelette approach. In Proceedings of the 21st
international conference companion on World Wide Web, pages 235–238.
ACM, 2012.

[29] N. Collins, A. McLean, J. Rohrhuber, and A. Ward. Live coding in laptop
performance. Organised Sound, 8(03):321–330, 2003.

[30] A. Cypher and D. C. Halbert. Watch what I do: programming by demon-
stration. The MIT Press, 1993.

[31] M. Czikszentmihalyi. Flow: The psychology of optimal experience. Praha:
Lidové Noviny, 1990.

[32] J. R. Dabrowski and E. V. Munson. Is 100 milliseconds too fast? In CHI
’01 Extended Abstracts on Human Factors in Computing Systems, pages
317–318, 2001.

130 Bibliography

[33] F. Daniel, F. Casati, B. Benatallah, and M.-C. Shan. Hosted universal com-
position: Models, languages and infrastructure in mashart. In Conceptual
Modeling-ER 2009, pages 428–443. Springer, 2009.

[34] F. Daniel, A. Koschmider, T. Nestler, M. Roy, and A. Namoun. Toward pro-
cess mashups: Key ingredients and open research challenges. In Proceed-
ings of the 3rd and 4th International Workshop on Web APIs and Services
Mashups, pages 9:1–9:8, 2010.

[35] A. De Angeli, A. Battocchi, S. R. Chowdhury, C. Rodriguez, F. Daniel, and
F. Casati. End-user requirements for wisdom-aware eud. In Proceedings of
the Third International Conference on End-user Development, pages 245–
250, 2011.

[36] P. de Vrieze, L. Xu, A. Bouguettaya, J. Yang, and J. Chen. Process-oriented
enterprise mashups. In Grid and Pervasive Computing Conference, 2009.
GPC’09. Workshops at the, pages 64–71, 2009.

[37] G. Di Lorenzo, H. Hacid, H.-y. Paik, and B. Benatallah. Data integration
in mashups. ACM Sigmod Record, 38(1):59–66, 2009.

[38] R. Ennals, E. Brewer, M. Garofalakis, M. Shadle, and P. Gandhi. Intel
mash maker: join the web. ACM SIGMOD Record, 36(4):27–33, 2007.

[39] R. Ennals and D. Gay. User-friendly Functional Programming for Web
Mashups. SIGPLAN Not., 42(9):223–234, Oct. 2007.

[40] T. Erl. Service-Oriented Architecture: Concepts, Technology, and Design.
Prentice Hall PTR, 2005.

[41] M. Feldmann, T. Nestler, K. Muthmann, U. Jugel, G. Hübsch, and A. Schill.
Overview of an End-user Enabled Model-driven Development Approach
for Interactive Applications Based on Annotated Services. In Proceedings
of the 4th Workshop on Emerging Web Services Technology, pages 19–28,
2009.

[42] O. Ferschke, J. Daxenberger, and I. Gurevych. A survey of nlp meth-
ods and resources for analyzing the collaborative writing process in
wikipedia. In I. Gurevych and J. Kim, editors, The People Web Meets NLP,
Theory and Applications of Natural Language Processing, pages 121–160.
Springer Berlin Heidelberg, 2013.

131 Bibliography

[43] G. Fischer, E. Giaccardi, Y. Ye, A. G. Sutcliffe, and N. Mehandjiev.
Meta-design: A Manifesto for End-user Development. Commun. ACM,
47(9):33–37, Sept. 2004.

[44] T. Fischer, F. Bakalov, and A. Nauerz. An Overview of Current Approaches
to Mashup Generation. In Wissensmanagement, pages 254–259, 2009.

[45] M. Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley,
2002.

[46] R. Fox, J. Cooley, and M. Hauswirth. Collaborative development of
trusted mashups. In Proceedings of the 12th International Conference on
Information Integration and Web-based Applications Services, pages 255–
262, 2010.

[47] E. M. Goncalves da Silva. User-centric Service Composition - Towards
Personalised Service Composition and Delivery. PhD thesis, University of
Twente, Enschede, May 2011.

[48] L. Grammel and M.-A. Storey. An end user perspective on mashup mak-
ers. Technical Report DCS-324-IR, University of Victoria, September
2008.

[49] C. Green et al. A summary of the psi program synthesis system. In Pro-
ceedings of the 5th International Conference on Artificial Intelligence, vol-
ume 1, pages 380–381, 1977.

[50] D. Guinard and V. Trifa. Towards the web of things: Web mashups for
embedded devices. In Workshop on Mashups, Enterprise Mashups and
Lightweight Composition on the Web (MEM 2009), in proceedings of WWW
(International World Wide Web Conferences), 2009.

[51] D. Guinard, V. Trifa, T. Pham, and O. Liechti. Towards Physical Mashups
in the Web of Things. In Proceedings of the 6th International Conference
on Networked Sensing Systems, pages 196–199, 2009.

[52] D. Guinard, V. Trifa, and E. Wilde. A resource oriented architecture for
the web of things. In Internet of Things (IOT), 2010, pages 1–8, 2010.

[53] A. Y. Halevy, N. Ashish, D. Bitton, M. Carey, D. Draper, J. Pollock,
A. Rosenthal, and V. Sikka. Enterprise Information Integration: Successes,
Challenges and Controversies. In Proc. of SIGMOD, 2005.

132 Bibliography

[54] J. J. Hanson. Mashups: Strategies for the Modern Enterprise. Addison-
Wesley Professional, 2009.

[55] B. Hartmann, L. Wu, K. Collins, and S. R. Klemmer. Programming by a
sample: rapidly creating web applications with d. mix. In Proceedings of
the 20th annual ACM symposium on User interface software and technology,
pages 241–250. ACM, 2007.

[56] G. E. Heidorn. Automatic programming through natural language dia-
logue: A survey. IBM Journal of Research and Development, 20(4):302–
313, 1976.

[57] C. Hirsch, J. Hosking, and J. Grundy. Vikibuilder: End-user specification
and generation of visual wikis. In Proceedings of the IEEE/ACM Interna-
tional Conference on Automated Software Engineering, pages 13–22, 2010.

[58] D. D. Hoang, H.-y. Paik, and B. Benatallah. An analysis of spreadsheet-
based services mashup. In Proceedings of the Twenty-First Australasian
Conference on Database Technologies-Volume 104, pages 141–150. Aus-
tralian Computer Society, Inc., 2010.

[59] J.-M. Hoc and A. Nguyen-Xuan. Language semantics, mental models and
analogy. Psychology of programming, 10:139–156, 1990.

[60] V. Hoyer and M. Fischer. Market overview of enterprise mashup tools. In
Service-Oriented Computing–ICSOC 2008, pages 708–721. Springer, 2008.

[61] V. Hoyer, F. Gilles, T. Janner, and K. Stanoevska-Slabeva. SAP Research
RoofTop Marketplace: Putting a Face on Service-Oriented Architectures.
In Proceedings of the 2009 Congress on Services - I, pages 107–114, 2009.

[62] V. Hoyer, K. Stanoevska-Slabeva, S. Kramer, and A. Giessmann. What are
the business benefits of enterprise mashups? In System Sciences (HICSS),
2011 44th Hawaii International Conference on, pages 1–10, 2011.

[63] D. Huynh, S. Mazzocchi, and D. Karger. Piggy bank: Experience the
semantic web inside your web browser. Web Semant., 5(1):16–27, Mar.
2007.

[64] M. Imran, F. Kling, S. Soi, F. Daniel, F. Casati, and M. Marchese. Reseval
mash: a mashup tool for advanced research evaluation. In Proceedings
of the 21st international conference companion on World Wide Web, pages
361–364. ACM, 2012.

133 Bibliography

[65] M. Imran, S. Soi, F. Kling, F. Daniel, F. Casati, and M. Marchese. On the
systematic development of domain-specific mashup tools for end users.
In Proceedings of the 12th International Conference on Web Engineering,
pages 291–298, 2012.

[66] R. Jeffries and J. Rosenberg. Comparing a form-based and a language-
based user interface for instructing a mail program. ACM SIGCHI Bulletin,
17(SI):261–266, 1986.

[67] M. C. Jones, E. F. Churchill, and M. B. Twidale. Mashing up visual lan-
guages and web mash-ups. In Proceedings of the 2008 IEEE Symposium on
Visual Languages and Human-Centric Computing, pages 143–146, 2008.

[68] E. Kaufmann and A. Bernstein. How useful are natural language inter-
faces to the semantic web for casual end-users? In The Semantic Web,
pages 281–294. Springer, 2007.

[69] S. Kent. Model driven engineering. In Integrated Formal Methods, pages
286–298, 2002.

[70] A. J. Ko, R. Abraham, L. Beckwith, A. Blackwell, M. Burnett, M. Erwig,
C. Scaffidi, J. Lawrance, H. Lieberman, B. Myers, et al. The state of the
art in end-user software engineering. ACM Computing Surveys (CSUR),
43(3):21, 2011.

[71] R. R. Korfhage and M. A. Korfhage. Criteria for iconic languages. In Visual
languages, pages 207–231. Plenum Press, 1986.

[72] A. Koschmider, V. Torres, and V. Pelechano. Elucidating the mashup
hype: Definition, challenges, methodical guide and tools for mashups.
In Proceedings of the 2nd Workshop on Mashups, Enterprise Mashups and
Lightweight Composition on the Web at WWW, 2009.

[73] C. Letondal. Participatory programming: Developing programmable
bioinformatics tools for end-users. In H. Lieberman, F. Patern, and V. Wulf,
editors, End User Development, volume 9 of Human-Computer Interaction
Series, pages 207–242. Springer Netherlands, 2006.

[74] H. Lieberman, F. Paternò, M. Klann, and V. Wulf. End-user development:
An emerging paradigm. In End user development, pages 1–8. Springer,
2006.

134 Bibliography

[75] J. Lin, J. Wong, J. Nichols, A. Cypher, and T. A. Lau. End-user program-
ming of mashups with vegemite. In Proceedings of the 14th international
conference on Intelligent user interfaces, pages 97–106. ACM, 2009.

[76] G. Little, T. A. Lau, A. Cypher, J. Lin, E. M. Haber, and E. Kandogan.
Koala: capture, share, automate, personalize business processes on the
web. In Proceedings of the SIGCHI conference on Human factors in comput-
ing systems, pages 943–946, 2007.

[77] J. López, F. Bellas, A. Pan, and P. Montoto. A Component-Based Approach
for Engineering Enterprise Mashups. In Proceedings of the 9th Interna-
tional Conference on Web Engineering, pages 30–44, 2009.

[78] P. Lubbers and B. Albers. Harnessing the power of HTML5 web sockets
to create scalable real-time applications presentation. Web2.0 Expo SF,
2010.

[79] A. MacLean, K. Carter, L. Lövstrand, and T. Moran. User-tailorable sys-
tems: Pressing the issues with buttons. In Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems, pages 175–182, 1990.

[80] J. Magazinius, A. Askarov, and A. Sabelfeld. A lattice-based approach to
mashup security. In Proceedings of the 5th ACM Symposium on Informa-
tion, Computer and Communications Security, pages 15–23, 2010.

[81] Z. Maraikar, A. Lazovik, and F. Arbab. Building mashups for the enterprise
with sabre. In Proceedings of the 6th International Conference on Service-
Oriented Computing, pages 70–83, 2008.

[82] E. M. Maximilien, A. Ranabahu, and K. Gomadam. An online platform
for web apis and service mashups. IEEE Internet Computing, 12(5):32–43,
Sept. 2008.

[83] E. M. Maximilien, H. Wilkinson, N. Desai, and S. Tai. A domain-specific
language for web apis and services mashups. In Proceedings of the Inter-
national Conference on Service-Oriented Computing (ICSOC 2007), pages
13–26. Springer, 2007.

[84] A. Mørch. Computers and design in context. chapter Three Levels of End-
user Tailoring: Customization, Integration, and Extension, pages 51–76.
MIT Press, 1997.

135 Bibliography

[85] A. I. Mørch. Designing for radical tailorability: coupling artifact and
rationale. Knowledge-Based Systems, 7(4):253–264, 1994.

[86] B. A. Myers. Taxonomies of visual programming and program visualiza-
tion. Journal of Visual Languages & Computing, 1(1):97–123, 1990.

[87] B. A. Myers, A. J. Ko, and M. M. Burnett. Invited research overview: End-
user programming. In CHI ’06 Extended Abstracts on Human Factors in
Computing Systems, pages 75–80, 2006.

[88] A. Namoun, T. Nestler, and A. De Angeli. Service composition for non-
programmers: Prospects, problems, and design recommendations. In
Proceedings of the 8th IEEE European Conference on Web Services (ECOWS),
pages 123–130, 2010.

[89] B. A. Nardi. A small matter of programming: perspectives on end user
computing. The MIT Press, 1993.

[90] T. Nestler, M. Feldmann, G. Hübsch, A. Preußner, and U. Jugel. The serv-
face builder-a wysiwyg approach for building service-based applications.
In Web Engineering, pages 498–501. Springer, 2010.

[91] D. A. Norman and S. W. Draper. User centered system design; new perspec-
tives on human-computer interaction. L. Erlbaum Associates Inc., 1986.

[92] M. Nowak and C. Pautasso. Goals, questions and metrics for architec-
tural decision models. In Proceedings of the 6th International Workshop
on SHAring and Reusing Architectural Knowledge, pages 21–28, 2011.

[93] T. O’Reilly. What is Web 2.0: Design patterns and business models for the
next generation of software. Communications & strategies, (1):17, 2007.

[94] C. Pautasso and G. Alonso. The jopera visual composition language. Jour-
nal of Visual Languages & Computing, 16(1):119–152, 2005.

[95] S. Pietschmann, V. Tietz, J. Reimann, C. Liebing, M. Pohle, and K. Mei.
A Metamodel for Context-aware Component-based Mashup Applications.
In Proceedings of the 12th International Conference on Information Integra-
tion and Web-based Applications & Services, pages 413–420, 2010.

[96] S. Pietschmann, M. Voigt, A. Rümpel, and K. Meißner. Cruise: Composi-
tion of rich user interface services. In Web Engineering, pages 473–476.
Springer, 2009.

136 Bibliography

[97] H. Prähofer, D. Hurnaus, and H. Mössenböck. Building end-user pro-
gramming systems based on a domain-specific language. In 6th OOPSLA
Workshop on Domain-Specific Modeling, page 33, 2006.

[98] A. Repenning and A. Ioannidou. What makes end-user development tick?
13 design guidelines. In End User Development, pages 51–85. Springer,
2006.

[99] L. Richardson and S. Ruby. RESTful web services. O’Reilly, 2008.

[100] M. Sabbouh, J. Higginson, S. Semy, and D. Gagne. Web mashup scripting
language. In Proceedings of the 16th international conference on World
Wide Web, pages 1305–1306. ACM, 2007.

[101] C. Scaffidi, M. Shaw, and B. Myers. Estimating the numbers of end users
and end user programmers. In Proceedings of the 2005 IEEE Symposium on
Visual Languages and Human-Centric Computing, pages 207–214, 2005.

[102] M. Schrenk. Webbots, spiders, and screen scrapers: A guide to developing
Internet agents with PHP/CURL. No Starch Press, 2012.

[103] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz. Pellet: A practical
owl-dl reasoner. Web Semantics: science, services and agents on the World
Wide Web, 5(2):51–53, 2007.

[104] I. Smith. Doing web clippings in under ten minutes. Technical report,
Intranet Journal, March 2001.

[105] V. Stirbu. Towards a restful plug and play experience in the web of
things. In Semantic Computing, 2008 IEEE International Conference on,
pages 512–517, 2008.

[106] A. Strunk. Qos-aware service composition: A survey. In Proceedings of the
8th IEEE European Conference on Web Services (ECOWS), pages 67–74.
IEEE, 2010.

[107] S. L. Tanimoto. Viva: A visual language for image processing. Journal of
Visual Languages & Computing, 1(2):127–139, 1990.

[108] J. C. Thomas and J. D. Gould. A psychological study of query by example.
In Proceedings of the May 19-22, 1975, national computer conference and
exposition, pages 439–445. ACM, 1975.

137 Bibliography

[109] R. Tuchinda, C. A. Knoblock, and P. Szekely. Building mashups by demon-
stration. ACM Transactions on the Web (TWEB), 5(3):16, 2011.

[110] A. Van Deursen, P. Klint, and J. Visser. Domain-specific languages: an
annotated bibliography. ACM Sigplan Notices, 35(6):26–36, 2000.

[111] K. Vredenburg, J.-Y. Mao, P. W. Smith, and T. Carey. A survey of user-
centered design practice. In Proceedings of the SIGCHI Conference on Hu-
man Factors in Computing Systems, pages 471–478, 2002.

[112] G. Wang, S. Yang, and Y. Han. Mashroom: end-user mashup program-
ming using nested tables. In Proceedings of the 18th international confer-
ence on World wide web, pages 861–870. ACM, 2009.

[113] E. Wenger. Communities of practice: Learning, meaning, and identity.
Cambridge university press, 1998.

[114] J. Wong and J. I. Hong. Making mashups with marmite: towards end-
user programming for the web. In Proceedings of the SIGCHI conference
on Human factors in computing systems, pages 1435–1444. ACM, 2007.

[115] S. D. Wright et al. Designing mashups with excel and visio. In Expert
SharePoint 2010 Practices, pages 513–539. Apress, 2011.

[116] J. Yang, J. Han, X. Wang, and H. Sun. Mashstudio: An on-the-fly envi-
ronment for rapid mashup development. In Proceedings of the 5th Inter-
national Conference on Internet and Distributed Computing Systems, pages
160–173, 2012.

[117] J. Yu, B. Benatallah, F. Casati, and F. Daniel. Understanding mashup
development. IEEE Internet Computing, 12(5):44–52, Sept. 2008.

[118] J. Yu, B. Benatallah, R. Saint-Paul, F. Casati, F. Daniel, and M. Matera.
A framework for rapid integration of presentation components. In Pro-
ceedings of the 16th international conference on World Wide Web, pages
923–932. ACM, 2007.

[119] J. Zhou, M. Wang, and H. Zhao. Enterprise information integration: State
of the art and technical challenges. In Knowledge Enterprise: Intelligent
Strategies in Product Design, Manufacturing, and Management. Springer
US, 2006.

138 Bibliography

	Contents
	List of Figures
	List of Tables
	Introduction
	The Rise of ``Citizen Developers''
	The Potential of Web Mashups
	Problem Statement
	Thesis Statement
	Contributions
	Structure

	A Survey of the State-of-the-art Mashup Tools
	Defining Mashup Tools
	Survey Methodology
	Design Issues and Alternatives
	Design Issue: Automation Degree
	Design Issue: Liveness
	Design Issue: Live Layout
	Design Issue: Online Community
	Design Issue: End-User Programming Technique
	Design Issue: Visual Language
	Design Issue: Design Distance

	Survey Summary
	The Need for Another Mashup Tool

	NaturalMash: A Live Natural Mashup Tool
	Design Decisions
	NaturalMash Controlled Natural Language
	Grammar and Syntax
	Semantics

	NaturalMash Component Meta-Model
	Modeling Ingredient Technologies
	Mapper and Rule
	JSON Schema for The Component Model
	Formal Description of ingredients in Natural Language

	Ontology-based Data Integration Framework
	Schema Specification and User-defined Data Formats
	Integration Process

	NaturalMash Composition Environment
	Usage Scenario

	The Architecture of NaturalMash
	Design Challenges for Live Mashup Tools
	A liveness-friendly Architecture
	User Interface
	Incremental Change Detector of Mashup Models
	Compilation and Deployment
	Client-server Communication
	Mashup Runtime

	Evaluating NaturalMash In-The-Lab
	First Iteration
	Second Iteration
	Participants
	Tasks and Methods
	Results
	Lessons Learned

	Third Iteration
	Participants
	Tasks and Methods
	Results

	Summative Evaluation of NaturalMash
	Evaluation Questions and Hypotheses
	Evaluation Methods Overview
	Data Collection Methods
	Task-based Metrics
	End-of-session Metrics

	Technology
	Participant Recruitment and Sample Collection

	Evaluation Procedure
	Starter Questions
	Tasks
	Post-Task Questions
	Post-Session Questions
	Wrap-up

	Results
	Task Performance Data
	Self-reported Data
	Logs

	Conclusion and Lessons learned

	Comparative Evaluation of Mashup Tools
	A Benchmarking Framework for Mashup Tools
	Benchmarking Strategy

	Benchmarking the State-of-the-art Mashup Tools
	Methods
	Results and Discussion

	Conclusion
	Limitations
	Comparative Usability Evaluation
	Summative Usability Evaluation
	Comparative Expressive Power Evaluation

	Future Directions

	Usability Evaluation Forms
	Background Assessment Questionnaire
	Exit Questionnaire: First Iteration Formative Evaluation
	Exit Questionnaire: Second Iteration Formative Evaluation
	Exit Questionnaire: Summative Evaluation
	Post-task Class 1 Questionnaire: Summative Evaluation
	Post-task Class 2 Questionnaire: Summative Evaluation
	Post-task Class 3 Questionnaire: Summative Evaluation
	Post-task Class 4 Questionnaire: Summative Evaluation

	Bibliography

