
Architectural Decision Modeling with Reuse:
Challenges and Opportunities

Marcin Nowak, Cesare Pautasso
Faculty of Informatics, University of Lugano (USI)

via Buffi 13, 6900 Lugano, Switzerland
http://www.pautasso.info/

marcin.nowak@usi.ch, c.pautasso@ieee.org

Olaf Zimmermann
IBM Zurich Research Laboratory

Säumerstrasse 4, 8803 Rüschlikon, Switzerland
http://www.zurich.ibm.com/
olz@zurich.ibm.com

ABSTRACT
Architectural decision modeling aims at supporting the

software architecture design process by capturing a reusable
body of architectural knowledge. Whereas significant progress
has been made towards this vision, there still remains a num-
ber of open problems. This paper outlines selected research
challenges and opportunities related to knowledge captur-
ing and sharing, model evolution and verification, and the
integration of the architectural design process with existing
software development methodologies. Our goal is to start
a discussion on a roadmap for future research on reusable
modeling of architectural decisions.

General Terms
Design, Documentation, Measurement, Verification

Keywords
Software Architecture, Architectural Decision Modeling,

Visualization

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures;

D.2.2 [Software Engineering]: Design

1 Introduction
Architectural decision modeling is an emerging research

area in software engineering [7]. It puts decisions at the
center of the software design process and uses principal de-
cisions as the main conceptual element to describe a soft-
ware architecture [10, 11, 20, 37]. The process of taking
decisions practically embodies the transformation of the ra-
tionale and requirements into the architecture of a system.
Software architects need to be supported in their decision

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SHARK ’10, May 2-8 2010, Cape Town, South Africa
Copyright 2010 ACM 978-1-60558-967-1 ...$10.00.

making by architectural design tools which provide the fol-
lowing features: 1) Capture a body of architectural knowl-
edge [20, 29] for future reuse [26]; 2) Support the design
process and the decision making of the software architect [8,
40]; 3) Improve architectural knowledge propagation within
and among project teams [6, 19]; 4) Monitor the evolution
of a project decision space over time [32].

For each of these features, we identify a set of open re-
search challenges and requirements for the design of future
architectural decision modeling tools and environments. For
example, we propose to enrich the captured architectural
knowledge with metadata and tags to open up new ways of
traversing, analyzing, and measuring the design space. We
suggest a new, fuzzy approach for making architectural de-
cisions and identify the need for verifying the consistency of
a design as the underlying architectural knowledge evolves.
Since architectural decisions need to be shared among a
potentially distributed design and development team, we
discuss the opportunities related to collaborative decision
making and the need for role-based access control to the
architectural knowledge. In this context, it is also impor-
tant to understand the relationship between the architec-
tural decision making process and the chosen software de-
velopment methodology as this will affect the integration of
architectural decision modeling tools with existing architec-
tural specification and modeling tools [13].

The main contribution of this paper is to outline selected
research opportunities. These opportunities have been iden-
tified based on our collective experience in industry projects
and by surveying the existing scientific literature. We do not
lay claim to the completeness of the set of identified research
challenges, as our goal is to start a discussion on a possible
roadmap for future research in the area of architectural de-
cision modeling for reuse.

This paper is structured as follows: in Section 2 we in-
troduce and define terms and concepts used throughout the
paper. Section 3 contains a case study which is going to
serve as a running example. Sections 4 to 7 present a collec-
tion of research ideas, outlining their potential benefits with
several examples in the context of the case study. Section 8
contains references to related work. In Section 9 we present
our conclusions.

2 Background
In order to store efficiently the architectural knowledge,

it is important to define an expressive conceptual model. In
this section we do not aim at proposing yet another architec-

Topic GroupIssue

Alternative
is solved by

belongs to

requires

child of

Decision

Solution
belongs to

Project
belongs to

child of

selects Design Space

Project Space

Figure 1: Relations between the design and project
space artifacts

tural knowledge metamodel, but rather to distill a common
set of core concepts agreed upon in the literature [3, 8, 15,
16, 17, 23, 25, 40]. Our purpose is to introduce the termi-
nology that will be elaborated upon throughout the paper.

For the purpose of clarity we have decided to divide the
entities of the architectural knowledge into design space and
project space (Fig. 1). The design space collects reusable
design entities intended for sharing, such as issues and alter-
natives together with a number of relations defined between
them. The project space consists of the entities specific for
the particular application, such as decisions and solutions.

Within the design space, issues represent a design con-
cern and alternatives render a potential choice to address
the corresponding design concerns. An is solved by relation
binding an issue with an alternative indicates that a partic-
ular alternative is suitable to address a given issue. Further
relations such as refined by, decomposes into, conflicts with,
enables, subsumes, overrides or forces were proposed in the
literature [8, 39]. Two alternatives can bound by the re-
quires relation indicating that when one is selected, also the
other should be chosen within the corresponding decision.
The purpose of topic group is to logically group issues. In
order to hierarchically structure a large set of topic groups,
these can be related to another topic group with the child
of/parent relation.

In the project space, the central role is played by the de-
cision entity. A decision is made to select the alternative
most suitable to address a certain issue. Decisions can be
grouped into a solution. As a next aggregation step, multi-
ple solutions can be grouped in a project. Finally projects
can be hierarchically structured.

3 Case Study
We illustrate the ideas collected in this paper with a case

study related to SOA. In particular we focus on the choice
between RESTful and SOAP/WS-* Web services [33].

The artifacts presented in Fig. 2 are depicted with rectan-
gles to represent various technological and conceptual issues.
Ellipses represent architecture alternatives. The is solved by
relation between issues and alternatives is illustrated with
solid arrows. Alternatives bound by the requires relation are

connected with dashed lines.

Overall, this design space is concentrated around the two
main alternatives (REST vs. SOAP/WS*) of the issue Web
Service Paradigm. Most of the alternatives are related to a
single, specific issue (for example Design Contract, or Web
Service Paradigm). However, there exists also an alternative
(HTTPS) which is related to multiple issues (Security and
Transport Protocol). More details about the case study will
be provided as we introduce each of the challenges in the
rest of the paper.

4 Knowledge Capturing
Knowledge is of essential value for every modern organi-

zation. If not captured in the right moment it evaporates
easily [35]. From the perspective of the software design pro-
cess the following three methods of knowledge acquisition
were proposed:

1. research and development of greenfield projects [20],

2. decisions recovery of existing projects either undergo-
ing refactoring or documentation [21, 22],

3. harvesting pattern repositories [30].

In order to organize the broad variety of the knowledge
artifacts, we introduce the concept of of knowledge domain.
A knowledge domain consists of the architectural knowledge
and metadata describing the content of a related set of de-
sign issues.

4.1 Tags
Capturing a large amount of knowledge is not enough, un-

less the knowledge is properly organized. In order to make
the design space knowledge accessible and reusable, a clas-
sification and categorization strategy is needed.

Our idea is to organize architectural knowledge with tags.
Considering the complexity of the captured architectural
knowledge, providing a multi-dimensional perspective over
the design space could help to improve the classification and
the navigation over the artifacts and their relations. Tags
appear to be a perfect candidate for this purpose [34]. It is
reasonable to use typed tags because of the potential they
provide for systematic analysis, however we are also consid-
ering to offer free-form tags for giving users the ability to
quickly introduce custom classifications. By introducing a
rich set of tags we expect to provide architects with a flexible
way to browse through architectural knowledge by following
the hierarchical structure of nested topic groups [40] or the
cross-cutting perspective provided by other tags.

A good example are tags describing the Phase (e.g., Micro
design, Macro design, Solution Outline) in which a decision
should be made [39]. Also, the Role within the development
team can be represented using tags (e.g., Architect, Mod-
eler, Integrator) associated with the issues that fall under
the responsibility of the corresponding role. Another inter-
esting tagging application are user satisfaction and rating
tags. This Web 2.0 concept should promote the accumula-
tion of content with good quality by encouraging its contin-
uous improvement and revision.

Figure 2: Case study design space on the REST vs. WS-* topic group

4.2 Metrics
We propose to apply a set of quantitative metrics to ana-

lyze the knowledge stored in an architectural design space.
For example we want to measure completeness, complexity,
descriptiveness and entanglement level. The benefit of ex-
pressing these attributes quantitatively is a clear indication
of the effort needed to address particular issues of the design
space.

In order to measure completeness we introduce the notion
of the Unknown architecture alternative. This alternative
acts as placeholder for an unspecified set of alternatives,
which have not yet been captured. By counting the number
of references to the Unknown alternative we could estimate
the expected uncertainty of a decision. Indeed, this makes it
possible to pin point only the unknown that we are aware of.
We nevertheless believe that making unknown issues and al-
ternatives explicit in the model can contribute to increasing
the accuracy of uncertainty estimation and risk management
activities.

Taking an example from the case study, a decision over
the Contract Design issue, which does not reference the Un-
known alternative, is different than deciding over the Trans-
port Protocol which indeed references Unknown. Another
example would be Resource Identification and Payload For-
mat. In the first case Unknown is one of two alternatives, in
the other it is only one of seven.

With the goal of encouraging a uniform content distri-
bution over the design space, we suggest to measure the
descriptiveness of the artifacts by counting the number of
attributes and tags attached to them.

As suggested in [33], a possible complexity metric could
be obtained by simply counting the issues and their related
alternatives found in a specific scope of the design space.

In order to measure the level of entanglement of the arti-
facts, some form of distance between issues and alternatives
linked by a given relation could be introduced. For example,
the Web Service Paradigm issue is the most entangled as it
is related (through its two alternatives) to all other issues in
the case study design space.

All of metrics that can be applied to the architectural
knowledge are supposed to be calculated within a given
scope. The scope of applicability of a metric may range
from global (where the entire domain is assessed), through
a subset of the artifacts filtered by a given tag, topic group,
or project, all the way down to individual artifacts.

By providing quantitative measures over the design space
we expect to discover patterns emerging in specific areas.
We plan to codify recognition of disharmonies [38] with use
of an approach similar to detection strategies [31]. This
way, we will locate elements of the design space which may
have fallen into stagnation or are expected to be unclear
and volatile. Likewise, complexity and descriptiveness met-
rics can give an indication on which artifacts may require
refinement because their representation is not sufficiently
developed or require simplification, decomposition and clar-
ification because they are too complex.

4.3 Visualization
Storage, analysis and processing of the knowledge accumu-

lated in the design and project spaces is very important, but

Application Integration Style Message Bus

Remote Procedure Call

File Transfer

Shared Database

Unknown

+

+

-

-

-

Transport Protocol

HTTPS

HTTP

MQ

TCP

FTP BEEP

-

+
+

-

-
-

Figure 3: Fuzzy decision modeling with Acceptable (+) and Unacceptable (-) decisions.

needs to be complemented with an efficient way of communi-
cating it to the architects so that its reuse can be promoted.
Taking the very small example of the case study, which only
contains 8 issues and 24 alternatives, it is already noticeable
the difficulty of visualizing the design space artifacts and
relations in a readable way [26].

The content of the design and project spaces could be
visualized in two or three dimensions. Traversal through
the design space nodes should be enabled by following tags
and relations between artifacts. Metrics computed over the
artifacts should be overlaid to enhance the visualization to
ease intuitive localization of the design hot-spots and the
visual assessment of selected artifacts properties. We expect
interactive exploration of the project space to be a powerful
tool in order to assist with collaborative design, to facilitate
brainstorming workshops and to support learning about the
knowledge captured in the design space.

5 Design Process
The software design process is a process of making deci-

sions [18]. The more consciously and precisely decisions are
taken, the higher quality of the design is. In the ideal situ-
ation, each software architect would have unlimited knowl-
edge about the problem and a complete set of architecture
alternatives to choose from. In practice, architects possess
limited knowledge about the possible solutions and even
more limited knowledge about the requirements. We in-
troduce the concept of fuzzy decisions in order to support
conscious decision making in conditions of limited certainty.
We observe the need for verification in order to automati-
cally check that decisions made within a limited view of the
overall architecture do not introduce inconsistencies. Fi-
nally we present a sketch of our ideas on how to best sup-
port the process of software design and development within
a decision-centric environment.

5.1 Fuzzy Decision Modeling
Making a design decision requires to pick a single archi-

tecture alternative. However, in some cases it may not be
immediately possible to do so. A fuzzy approach to deci-
sion making provides the architect with support for pruning

unwanted alternatives from the design space without imme-
diately having to converge on a single choice.

For every issue, alternatives being considered can be sep-
arated from the ones likely not to be chosen. Allowing the
existence of multiple acceptable alternatives opens a path
leading from architectural synthesis to architectural evalu-
ation [8], when multiple solutions are compared in order to
optimize selected quality attributes.

By analyzing fuzzy decisions over a group of issues we
plan to supply architects with information on the progress
of the decision making process. This can be used to esti-
mate the effort required to complete the design. Also, a
range of possible solutions offering specific qualities can be
compared [24].

In the scenario of the case study, the architect deciding
over the Application Integration Style may choose both Mes-
sage Bus and Remote Procedure Call as acceptable choices
and discard the other two alternatives (Fig. 3). The final
decision needs to be done considering additional constraints
(for example the requirement implied by Message Bus to
use the MQ transport protocol within the SOAP-WS-* Web
services paradigm). By pre-selecting the acceptable alterna-
tives the decision making effort can be reduced as the set of
alternatives to choose from is smaller. As shown in the ex-
ample of Fig. 3, rejected alternatives can be pruned, leaving
only the acceptable alternatives marked with double ellipses
to choose from.

5.2 Verification
Good software quality does not come for free, because

achieving quality requires quality control. The principal
quality of the architectural decisions is their consistency.
Our plan is to achieve consistency by means of both internal
and external verification.

First we want to check if decisions are consistent locally,
that is within the scope of a single issue. For example con-
sidering the issue of Contract Design, it would be illogical
to decide for Contract-First and Contract-Last at the same
time. At a wider scope, we also want to make sure that
decisions made over one alternative in different contexts are
not contradicting each other. For example choosing Message
Bus for the Application Integration Style and not deciding

Domain A

Public
Repository

Private
Repository

Design SpaceProject Space

Reference
Project 1

Application 1

Peer A

Peer B

Repository
Changeset

Changeset

Changeset

Domain B

Domain C

Domain D

Figure 4: Relations between project and design
spaces divided between private and public reposi-
tories.

for the MQ Transport Protocol is not consistent because the
Message Bus alternative requires MQ.

Second, we want to verify the external consistency of a
solution by following relations between artifacts (i.e., issues
and alternatives) that belong to domains overlapping with
the local domain of the project (Fig. 4).

Verification can be especially beneficial when the design
space naturally evolves independently of the project space
and the external consistency of the decisions needs to be re-
checked. More in detail, accumulated knowledge in the de-
sign space grows over time. During the lifetime of a project
it often happens that the state of the art evolves as new tech-
nologies emerge and new design patterns and paradigms are
discovered. Verification can help to find out if some decisions
made in the project are no longer suitable and consistent
with updates in the design space.

By automating verification and by that reducing the effort
required to verify the consistency of solutions, we expect to
improve the quality of the design in the same way as best
development practices such as continuous integration and
testing improve the quality of an implementation.

5.3 Design Process Support
Navigating a new and large design space can be a daunting

task for beginners and experts alike, if the specific body of
architectural knowledge is unknown and needs to be learned
from scratch. Where to start? When to stop? A tool should
be able not only to visualize the relationships and implica-
tions between decisions in order to help architects build a
mental map over the design space, but also to suggest im-
portant starting points (which decision should be considered
first? which decision next?) to bootstrap the design process.
As the architect makes progress going over the design space
for a certain project, a tool should also be able to estimate
how soon the design effort will be nearing completion.

We plan to investigate multiple methods of assisting the
browsing over the design space. We think that depending on
the nature of the project, specific top-down, cross-cutting,
bottom-up approaches might be applicable. A basic top-
down approach is to be implemented on the basis of topic
group tree browsing. Second, cross-cutting methods can be
applied by filtering the artifacts associated with chosen tags
in order to quickly select issues of specific characteristics
(e.g., all issues related to security). Third, random access
assisted by full-text search can be very helpful to support a
bottom-up, free hand approach to design.

For example, the case-study could be approached using a
top-down design process. The architect should be advised
to first decide over the higher-level Conceptual issues (such
as Application Integration Style) and later with lower-level
Technological issues (such as Payload Format or Transport
Protocol). Still if there are Technological constraints which
are specific for the application, they should be included into
the project space first, so no conflicting decisions are made.
For example, if the constraint of selecting YAML as a Pay-
load Format exists, the architect should be advised that the
single alternative of Web Service Paradigm that conforms
with this constraint is REST.

5.4 Development Process
The architecture is at the center of the software develop-

ment process [37]. Where should the architectural decision
making process be placed? We think that design is an essen-
tial part of software development process. The challenge is
to find a process-agnostic method of coupling development
and architectural decision making.

Waterfall and iterative processes benefit from stable (but
slow) growth of the domain knowledge. Agile processes [9]
profit from the rapid adjustment of the project to a contin-
uously changing environment. We see a great potential in
combining the best of both, that is making decisions right
and making decisions fast.

To do so, we aim to provide architects with an immedi-
ate interpretation and feedback of decisions as soon as they
are made. This helps to grasp their implications in the de-
sign space [36]. We believe that this functionality will let
architects state many ”what-if” questions and verify the ap-
plicability of many solutions. This will positively affect the
quality of decisions taken. For example, an architect decid-
ing the Application Integration Style to follow in a project
should be advised that, for example, the decision to use a
Message Bus is connected to other conceptual decisions such
as the choice of SOAP-WS* as Web Service Paradigm and
that only the Contract-First or the Contract-Last alterna-
tives will remain acceptable for the Contract Design issue.
Likewise, the issue on Resource Identification will not need
to be considered any longer.

An additional opportunity to improve the quality of design
decisions is to make the most of the experience gathered over
the course of a project. By analyzing the experience gath-
ered by the various actors of the development process we
want to provide a multidimensional view over past history of
a decision. For example, architects pondering over the Con-
tract Design issue may find the negative experience record
associated by developers with the Contract-First method, a
good reason to chose Contract-Last instead.

6 Knowledge Sharing

Gathering, transforming and analyzing knowledge is im-
portant, but how far one can go with one’s own wisdom?
We see big potential in delivering the knowledge to those
who really need it [35] by means of appropriate support for
sharing and dissemination of knowledge across large devel-
opment organizations [19].

6.1 Collaboration
The issue of collaborative work over the project and design

spaces offers two kinds of challenges. One is the exchange
and sharing of the general knowledge of the design space, the
other concers how to best support the collaborative decision
making process.

The idea is to introduce the concept of knowledge ex-
change between the architectural knowledge repositories. Non-
linear repository management [1] could contribute the most
appropriate technique to handle the unstructured and un-
coordinated build-up of the content. The challenge is to
find an efficient, semi-automatic mechanism to propagate
changes and updates to the knowledge.

In industrial scenarios, the concept of intellectual prop-
erty and ownership of the knowledge shared in a reposi-
tory becomes important. We believe this could require to
distinguish two types of such repositories, namely private
and public. A clear separation of public and private knowl-
edge will make it possible for architects to benefit from the
public knowledge without disclosing proprietary information
(Fig. 4).

Collaboration also requires tool interoperability so that
the design space can be accessed from different tools and ex-
changed between multiple repositories. Architectural Knowl-
edge thus requires a flexible data interchange format that
will carry not only data, but also the metadata describing it.
Following [4] we think that using the Resource Description
Framework (RDF) [2] might offer interesting opportunities
to explore how to serialize a design space for exchanging
its architectural knowledge. RDF is not only a well known
standard, but it also provides the mechanisms to include the
data together with the corresponding metadata.

6.2 Knowledge Access Control
Building upon the concept of distinguishing between pub-

lic and private content of a design space, we identify the chal-
lenge of providing fine-grained access control to individual
artifacts. Applying role-based access control allows project
managers to adjust the access rights to specific scopes of the
design space according to the needs of the specific develop-
ment team. This is a requirement of commercial develop-
ment projects where design, management, and implementa-
tion often are done by independent entities and separation
of competencies is desired.

For example, in a structured software development pro-
cess architects designing an architecture should use, analyze,
and produce an explicit description of the rationale to justify
their decisions [12]. This detailed information (which could
contain explicit references to business drivers and manage-
ment constraints) may only be useful to other architects.
It could be safely hidden from the rest of the development
team to reduce their information overload, or should be re-
moved from the final set of design decisions delivered to an
outsourced development group.

6.3 Tool Integration
It still remains a challenge how to best integrate soft-

ware development environments (such as Visual Studio or
Eclipse) together with architectural knowledge repositories.
Not only more work on the linkage between the architectural
decisions and the architecture design models is needed [13],

Transport Protocol

HTTPS

HTTP

MQ

A

-

-
+

TCP

FTP

-
+

BEEP

-
-

+

Figure 5: Anti-Decision on Acceptable (+) alterna-
tives (HTTP and HTTPS) and new Unacceptable (-)
decision (HTTP).

but also the propagation of architectural decisions down to
the level of the code is an open problem.

On the one hand, the goal of decision enforcement [39]
requires an easy and intuitive access to the content of the
project space with minimal effort required to switch context
between development activities and the architectural level.
The right kind of tool integration will thus provide engineers
performing fine grained design and coding with amount of
architectural knowledge (and possibly reference to rationale)
that will improve their awareness of the nature of code that
is to be implemented.

On the other hand, feedback and experience accumulated
in the development process should flow back and enrich the
design space knowledge base in order to improve the qual-
ity of future decisions. For example, the complexity of the
code, the cost of the middleware infrastructure, and the ef-
forts in terms of manpower required to implement support
for the various Transport Protocol, Security or Payload For-
mat alternatives could be tracked and stored in appropriate
attributes of the design space.

7 Evolution
Decision making is hardly a linear process. Within a

project, architects do not usually traverse the design space
systematically and may need to go back and change pre-
viously made decisions. Also, the architectural knowledge
captured in the design space may evolve over time indepen-
dently of the projects depending upon it. At a fine-grained
scale, we identify the requirement for tracking the history of
individual decisions. At a coarse-grained scale, being able
to compare different design solutions to detect and analyze
changes will be an important feature of future architectural
modeling tools [14].

7.1 Tracking Decision History
As decisions are made, the rationale for them should be

referenced so that the arguments for taking a given decision
is captured. However, decisions may need to be changed.
For example, in response to changing requirements, or sim-
ply because the project follows agile methodologies and a
refactoring is being applied, or because the design space has
evolved with additional knowledge.

Architectural modeling tools should not just allow to change
already made decisions, but also keep track of the history of

the decisions within every issue considered during a project’s
lifetime. This could be done with different approaches. For
example, version control helps to track changes and compare
different snapshots of the project space. Or, as we would like
to pursue, introducing so-called anti-decisions, which would
capture the rationale associated with the undoing of the de-
cision. This would enable architects to distinguish between
alternatives that were never explicitly considered from the
ones that at some point during the project history were ac-
tually decided and later revoked (Fig. 5). When used in
conjunction with metrics, this approach would allow to de-
tect “wavering” architects, who cannot make up their mind
and keep going back and forth between alternatives.

7.2 Comparing Solutions
Tracking decision changes is only one aspect of the project

evolution. It has to be completed with mechanisms allowing
architects to find out if the project is progressing with the
expected speed in the desired direction.

We propose a versatile, comparative approach to tracking
the evolution of design solutions. The challenge is to quanti-
tatively measure the dynamics of the solution design process
by comparing the properties of multiple snapshots taken at
different times. Likewise, useful insight could be provided
with a differential view over parallel branches originating
from a common root. Comparing solutions across unrelated
projects would also help to estimate the effort required for
their integration and merge [5, 27].

We believe that a quantitative description of decision model
dynamics will be very useful for project controlling and even-
tually will improve quality of the decisions taken. For ex-
ample, considering the issue of Transport Protocol selection,
which includes the Unknown alternative, by drawing atten-
tion to the fact that many new alternatives are currently
emerging (such as BEEP, WAKA, or SPDY), we can in-
form the architect that more design and development work
is expected around this issue. Conversely, observing that
no change has recently occurred to set of known Application
Integration Styles, we could characterize the issue as stable,
and thus less likely to be reconsidered in the future.

8 Related Work
Within the architectural knowledge management commu-

nity a number of contributions that identify and discuss open
problems and outline possible research directions have been
made. The seminal paper by [10] advocated a new perspec-
tive to the study of software architecture, in which archi-
tectural decision modeling plays a central role and software
architecture is seen as composition of architectural design
decisions. In [26], the authors put forward a research agenda
for architectural knowledge modeling centered around visu-
alization and providing task-specific support. In [28], the
authors discuss the problem of building a knowledge com-
munity in the field of software architecture and stress the
importance of cooperation between industry and academia.
More recently, a survey of decision-centric design methods
and techniques has been presented in [11]. The authors also
identify a number of gaps related to the capturing of ar-
chitecturally significant requirements, the reuse of decision
rationale with the goal of improving the software design rea-
soning processes.

9 Conclusion
This paper collects a number of research challenges and

opportunities related to architectural decision modeling for
reuse and illustrates them with a concrete case-study sce-
nario. Regarding the representation of complex architec-
tural knowledge, we suggest to use tags for improved con-
tent classification. Also, both metrics and visualization can
give a quantitative and qualitative overview over large archi-
tectural knowledge repositories. As architectural decisions
play a central role in the software design process, we point
out how fuzzy decision modeling and rapid verification could
improve decision quality. We have also identified the need
of collaborative decision modeling, access control, tool in-
teroperability and integration in order to improve the prop-
agation and sharing of architectural knowledge throughout
distributed software development teams. Finally we have
proposed new means of monitoring evolution of a design by
detailed change tracking combined with a differential view
over the history of a project.

Acknowledgements
This work is partially supported by the Swiss National

Science Foundation with the CLAVOS project (Grant Nr.
125337).

10 References

[1] http://eagain.net/articles/

git-for-computer-scientists/.

[2] http://www.w3.org/RDF/.

[3] T. Al-Naeem, I. Gorton, M. A. Babar, F. Rabhi, and
B. Benatallah. A quality-driven systematic approach
for architecting distributed software applications. In
Proceedings of the 27th International Conference on
Software Engineering, pages 244–253, 2005.

[4] Aman-ul-haq and M. Ali-Babar. Tool support for
automating architectural knowledge extraction. In
Proceedings of the Workshop on Sharing and Reusing
Architectural Knowledge, SHARK ’09, pages 49–56,
2009.

[5] M. Aoyama. Metrics and analysis of software
architecture evolution with discontinuity. In
Proceedings of the International Workshop on
Principles of Software Evolution, IWPSE ’02, pages
103–107, 2002.

[6] M. A. Babar. The application of knowledge-sharing
workspace paradigm for software architecture
processes. In Proceedings of the 3rd Workshop on
Sharing and Reusing Architectural Knowledge SHARK
’08, pages 45–48, 2008.

[7] M. A. Babar, T. Dingsøyr, P. Lago, and H. Vliet.
Software Architecture Knowledge Management -
Theory and Practice. Springer, 2009.

[8] M. A. Babar and I. Gorton. A tool for managing
software architecture knowledge. In Proceedings of the
Second Workshop on SHAring and Reusing
architectural Knowledge Architecture, Rationale, and
Design Intent, SHARK-ADI ’07, page 11, 2007.

[9] K. Beck. Extreme Programming Explained: Embrace
Change (2nd edition). Addison-Wesley Professional,
2004.

http://eagain.net/articles/git-for-computer-scientists/
http://eagain.net/articles/git-for-computer-scientists/
http://www.w3.org/RDF/

[10] J. Bosch. Software architecture: The next step. In
EWSA, volume 3047 of LNCS, pages 194–199.
Springer, 2004.

[11] W. Bu, A. Tang, and J. Han. An analysis of
decision-centric architectural design approaches. In
Proceedings of the Workshop on Sharing and Reusing
Architectural Knowledge SHARK ’09, pages 33–40,
2009.

[12] J. E. Burge, J. M. Carroll, R. McCall, and I. Mistr̀ık.
Rationale-Based Software Engineering. Springer, 2008.

[13] R. Capilla. Embedded design rationale in software
architecture. In Proc. of the Joint Working
IEEE/IFIP Conference on Software Architecture and
the European Conference on Software Architecture
(WICSA/ECSA 2009).

[14] R. Capilla, F. Nava, and J. C. Duenas. Modeling and
documenting the evolution of architectural design
decisions. In Proceedings of the Second Workshop on
SHAring and Reusing architectural Knowledge
Architecture, Rationale, and Design Intent
SHARK-ADI ’07, 2007.

[15] R. Capilla, F. Nava, S. Pérez, and J. C. Duenas. A
web-based tool for managing architectural design
decisions. In Proceedings of the First Workshop on
SHAring and Reusing architectural Knowledge
SHARK ’06, 2006.

[16] H. Choi, Y. Choi, and K. Yeom. An integrated
approach to quality achievement with architectural
design decisions. Journal of Software, 1(3):40–49, 2009.

[17] X. Cui, Y. Sun, and H. Mei. Towards automated
solution synthesis and rationale capture in
decision-centric architecture design. In Proceedings of
the Seventh Working IEEE/IFIP Conference on
Software Architecture WICSA ’08, pages 221–230,
2008.

[18] P. Eeles and P. Cripps. The Process of Software
Architecting. Pearson, 2009.

[19] R. Farenhorst and H. van Vliet. Understanding how to
support architects in sharing knowledge. In
Proceedings of the Workshop on Sharing and Reusing
Architectural Knowledge, SHARK ’09, pages 17–24,
2009.

[20] N. Harrison, P. Avgeriou, and U. Zdun. Using
patterns to capture architectural decisions. IEEE
Software, 24(4):38–45, July-Aug. 2007.

[21] A. Jansen and J. Bosch. Software architecture as a set
of architectural design decisions. In Proceedings of the
5th Working IEEE/IFIP Conference on Software
Architecture WICSA ’05, pages 109–120, 2005.

[22] A. Jansen, J. Bosch, and P. Avgeriou. Documenting
after the fact: Recovering architectural design
decisions. Journal of Systems and Software,
81(4):536–557, April 2008.

[23] A. Jansen, J. van der Ven, P. Avgeriou, and D. K.
Hammer. Tool support for architectural decisions. In
Working IEEE/IFIP Conference on Software
Architecture, WICSA ’07, page 4, 2007.

[24] R. Kazman, M. Klein, and P. Clements. Atam:
Method for architecture evaluation. Technical Report
CMU/SEI-2000-TR-004, August 2000.

[25] P. Kruchten. A taxonomy of architectural design
decisions. In 2nd Groningen Workshop on Software

Variability Management, 2004.

[26] P. Kruchten, P. Lago, and H. van Vliet. Building up
and reasoning about architectural knowledge. In
Conference on Quality of Software Architectures,
volume 4214 of Lecture Notes in Computer Science,
pages 43–58, 2006.

[27] J. M. Küster, C. Gerth, and G. Engels. Dependent
and conflicting change operations of process models.
In Proceedings of the 5th European Conference on
Model Driven Architecture - Foundations and
Applications, ECMDA-FA ’09, pages 158–173, 2009.

[28] P. Lago, P. Avgeriou, R. Capilla, and P. Kruchten.
Wishes and boundaries for a software architecture
knowledge community. In Proceedings of the Seventh
Working IEEE/IFIP Conference on Software
Architecture WICSA 2008, pages 271–274, 2008.

[29] L. Lee and P. Kruchten. Customizing the capture of
software architectural design decisions. Canadian
Conference on Electrical and Computer Engineering,
pages 693–698, May 2008.

[30] M. Mahemoff. Ajax Design Patterns. O’Reilly Media,
2006.

[31] R. Marinescu. Detection strategies: metrics-based
rules for detecting design flaws. In Proceedings of the
20th IEEE International Conference on Software
Maintenance, pages 350–359, 2004.

[32] I. Ostacchini and M. Wermelinger. Managing
assumptions during agile development. In Proceedings
of the Workshop on Sharing and Reusing Architectural
Knowledge SHARK ’09, pages 9–16, 2009.

[33] C. Pautasso, O. Zimmermann, and F. Leymann.
Restful web services vs. big web services: Making the
right architectural decision. In 17th International
World Wide Web Conference WWW2008, pages
805–814, Beijing, China, April 2008.

[34] G. Robertson. From hierarchies to polyarchies:
visualizing multiple relationships. In Proc. of the
working conference on Advanced Visual Interfaces
AVI’00, page 13, 2000.

[35] I. Rus and M. Lindvall. Guest editors’ introduction:
Knowledge management in software engineering. IEEE
Software, 19:26–38, 2002.

[36] A. Tang, Y. Jin, J. Han, and A. Nicholson. Predicting
change impact in architecture design with bayesian
belief networks. In Proceedings of the 5th Working
IEEE/IFIP Conference on Software Architecture,
pages 67–76, 2005.

[37] R. N. Taylor, N. Medvidovic, and E. M. Dashofy.
Software Architecture - Foundations, Theory and
Practice. Wiley, 2010.

[38] R. Wettel and M. Lanza. Visually localizing design
problems with disharmony maps. In Proceedings of the
4th ACM Symposium on Software Visualization
SoftVis ’08, pages 155–164, 2008.

[39] O. Zimmermann. An Architectural Decision Modeling
Framework for Service-Oriented Architecture Design.
PhD thesis, Universität Stuttgart, 2009.

[40] O. Zimmermann, J. Koehler, F. Leymann, R. Polley,
and N. Schuster. Managing architectural decision
models with dependency relations, integrity
constraints, and production rules. Journal of Systems
and Software, 82(8):1249 – 1267, 2009.

	Introduction
	Background
	Case Study
	Knowledge Capturing
	Tags
	Metrics
	Visualization

	Design Process
	Fuzzy Decision Modeling
	Verification
	Design Process Support
	Development Process

	Knowledge Sharing
	Collaboration
	Knowledge Access Control
	Tool Integration

	Evolution
	Tracking Decision History
	Comparing Solutions

	Related Work
	Conclusion
	References

