
Towards Self-Organizing Service-Oriented Architectures

Walter Binder, Daniele Bonetta, Cesare Pautasso, Achille Peternier
Faculty of Informatics

University of Lugano (USI)
Via G. Buffi 13

Lugano, Switzerland
Email: first.last@usi.ch

Diego Milano, Heiko Schuldt, Nenad Stojnić
University of Basel
Bernoullistrasse 16
Basel, Switzerland

Email: first.last@unibas.ch

Boi Faltings, Immanuel Trummer
Ecole Polytechnique Fédérale de Lausanne (EPFL)

Artificial Intelligence Laboratory
IN Building Station 14
Lausanne, Switzerland

Email: first.last@epfl.ch

Abstract—Service-oriented architectures (SOAs) provide a
successful model for structuring complex distributed software
systems, as they reduce the cost of ownership and ease the
creation of new applications by composing existing services.
However, currently, the development of service-oriented appli-
cations requires many manual tasks and prevailing infrastruc-
ture is often based on centralized components that are central
points of failure and easily become bottlenecks.

In this paper, we promote self-organizing SOA as a new ap-
proach to overcome these limitations. Self-organizing SOA in-
tegrates research results in the areas of autonomic and service-
oriented computing. We consider self-organizing features for
the whole life-cycle of a service-oriented application, from the
creation to the execution, optimization, and monitoring.

Keywords-SOA; Web services; service composition; self-*
systems;

I. INTRODUCTION

Service-oriented architectures (SOAs) offer many com-
pelling opportunities to address pressing problems in large
IT infrastructures and enterprise application integration.
SOAs promote a specific approach for building distributed
applications by composing reusable services thanks to well-
defined interoperation semantics based on standard proto-
cols. This emerging approach to software development based
on reuse and composition promises many benefits, such as
extensibility, ease of maintenance, and reduced development
effort and cost. For these reasons, SOAs have recently
attracted much attention in both academia and industry [23],
[15], [34].

In this paper we describe the vision of self-organizing
SOAs by exploring a novel, self-organizing approach to the
design and life cycle support of next-generation SOAs. The
main objective is to overcome the following limitations of
current SOA [12]. Due to the success of SOA, the problem of
managing large collections of services has become crucial.
Also known as the SOA governance problem, the issue
reflects that little is known about deploying, invoking, moni-
toring, and providing load balancing and fault tolerance over
a highly dynamic and potentially very large collection of ser-
vices each one possibly representing a complex application
running on a heterogeneous cloud-based infrastructure [29].

Composite services still need to be designed by hand, re-
quiring the software designer to manually search repositories
of service advertisements for relevant services and explicitly
define the logic to glue them together. Existing languages
and tools offer little support for the automated evolution,
repair, and tuning of composite services. Most SOA middle-
ware implementations rely on centralized services (e.g., cen-
tralized repositories of service advertisements) that are single
points of failure, easily become performance bottlenecks,
and may limit the scalability of the overall architecture.
In addition, the current standardized service abstraction
does not consider advanced interaction patterns as it is
limited to asynchronous message-based and synchronous
request/response interactions.

In this paper we also present a roadmap to address
the aforementioned limitations and investigate the design



and implementation of self-organizing SOAs. Overall, the
idea is to explore scalable, decentralized solutions to the
problems of current SOAs and investigate automation of
important aspects of the whole lifecycle of a service-oriented
application, including resource and service discovery, bind-
ing and composition, deployment and monitoring, RESTful
and stream-based interaction, as well as fault detection and
repair. The constraint is to avoid heavy-weight centralized
solutions and to provide a decentralized, self-organizing,
and light-weight infrastructure that can simplify most of the
management and reduce the execution overhead of services.

Our proposed roadmap addresses the investigation of
novel algorithms for automatically composing services based
on high-level task specifications that can also be applied
to repair existing compositions. This requires designing and
experimenting with innovative middleware architectures that
exhibit self-configuration, self-healing, and self-tuning capa-
bilities to enable the dynamic evolution and optimization of
composite services. For example, composite services will be
automatically reconfigured such that they always make use
of the best available services at each moment.

Furthermore, we suggest to compare both reactive and
proactive solutions and study under which conditions non-
functional properties associated with services can be guaran-
teed. In order to go beyond the current service abstraction,
this requires an extension to services with the capability
of generating and processing continuous streams of data of
infinite length and by applying the notion of composition to
RESTful services.

Finally, also as part of our roadmap, we put in practice
and perform real experiences by defining application sce-
narios and specifying underlying assumptions. A software
architecture with well-defined component interfaces eases
the integration of components for an end-to-end evaluation
of the resulting system.

The main contribution of this paper is to outline selected
research opportunities in the context of self-organizing
SOAs. These opportunities have been identified based on our
collective experience in industry projects and by surveying
the existing scientific literature. We do not claim complete-
ness of the set of identified research challenges, as the goal
of this paper is to foster discussion on a roadmap for future
research in the area of SOAs and self-organizing, adaptive,
and self-managing software.

This paper is structured as follows: In Section II we
introduce basic concepts and state-of-the-art related to the
topics of self-organizing SOAs. Section III presents a series
of issues, research ideas, and potential contributions in our
roadmap. Section IV exposes the methodology we adopt
to validate our results. Finally, Section V contains our
conclusion.

II. BACKGROUND AND RELATED WORK

In this section we give a brief overview over Service-
Oriented Architectures and Self-Organizing Systems, includ-
ing references to some recently published surveys.

A. Service-Oriented Architectures

The service-oriented architectural style [40] changes the
way we think about building integrated software systems
as it brings forward a new abstraction: the service. In a
SOA, software components with standardized interfaces are
delivered as services on demand [34], [41]. Web services
are the current technology which delivers the interoper-
ability necessary to implement these architectures across
distributed, autonomous, and heterogeneous systems [1],
[42].

SOAs have recently appeared as the force driving the
reduction of the total cost of ownership of enterprise appli-
cations [23]. Applications no longer have to be separately
installed and maintained. Instead, their constituent software
components are delivered as a service to the enterprise [19].
SOAs also intend to reduce the cost of integrating enterprise
applications [9]. Thanks to the recent standardization efforts
ensuring the interoperability of the underlying middleware
tools and protocols [35], it has become much easier to
compose new applications out of novel combinations of
existing services having well-defined interfaces [30], [14].

The implications of this new paradigm, where software
is delivered as a service, are not yet fully understood.
The advantages [43], [26], [44] in terms of cost reduction,
flexibility, reuse, and the possibility of outsourcing part of
the IT infrastructure need to be placed in the context of some
related problems that require further research [36], [37]:

1) New abstractions appear before tools are ready to sup-
port them. Existing tools (i.e., object-oriented programming
languages or component frameworks and containers) are
struggling to be extended to incorporate the technologies
required by the new paradigm. Still, there is a mismatch
between the new paradigm and the capabilities of available
tools [16]. This is a great window of opportunity to try
out innovative approaches for effectively building integrated
systems using the service-oriented computing paradigm.

2) Abstractions can hide but cannot remove the distributed
nature of the interactions in SOAs [17]. One of the chal-
lenges in this context is how to build reliable applications
out of services that are outside the control of their users and
may suffer from temporary unavailability. Reliable message
delivery techniques help in this regard, but change the
familiar programming metaphor based on synchronous calls
into asynchronous event-driven programming [7].

3) A loosely coupled system implemented using a SOA
is meant to be flexible and easier to evolve. Although
this is indeed the case for some kinds of changes (e.g.,
when moving the network location of a service provider),
paradoxically, a loosely coupled system makes it even more



difficult to asses the global impact of other changes (i.e.,
modifications to service interfaces) [37]. We believe that this
concern can only be addressed through a sound foundational
approach that leverages modern advances in the engineering
of self-organizing and autonomic middleware systems.

B. Self-Organizing Systems

Self-organization defines the capability of systems to fea-
ture emergent properties through the collective behavior of
their components acting independently and in a decentralized
fashion [3]. Whereas self-organization is a common property
of living systems, it remains a major challenge to design
artificial systems with an architecture capable of achieving
a similar degree of self-organization.

Autonomic computing is an emerging research field ad-
dressing the challenge of building computing systems capa-
ble of managing themselves in accordance with high-level
goals, policies, and objectives specified by humans [25],
[22]. Given the growing size and scale of distributed in-
formation systems in general and modern service-oriented
architectures in particular, the importance of providing solu-
tions to effectively deal with the complexity of such systems
has now been widely recognized [24]. A recent survey can
be found in [21], while [31] proposes a reference architecture
for self-organizing SOA-based computing.

In the context of autonomic computing, self-organization
has been proposed as a viable design alternative to central-
ized solutions [20] for automatically managing the configu-
ration, the composition, the performance, and handling fail-
ures within such systems [2], [18], [4], [13]. Self-organizing
systems present so-called self-* properties, which in the
context of SOAs can be interpreted as follows [37]:

Self-Configuration: refers to the ability of services to
automatically configure themselves to adapt to different
deployment environments.

Self-Tuning: is the ability of automatically tune the perfor-
mance of services based on online monitoring of workload
conditions and control of resource allocation and utilization.

Self-Healing: services can detect faults, diagnose failures,
and react to disruptions in order to automatically maintain
the overall system in operation.

Self-Protection: assuming that the communication be-
tween services is secure, services proactively detect intru-
sions and can resist denial-of-service attacks.

III. TOWARDS SELF-ORGANIZING SOAS: A RESEARCH
ROADMAP

The intersection of service-oriented computing and auto-
nomic computing is a rich source of problems, which needs
to be studied in order to achieve building of self-organizing
SOAs.

In general, the objective of a self-organizing service-
oriented system is to effectively and automatically deal with
change. Change can happen at all levels (i.e., communication

Discover Compose

Execute
B
in
d

M
onitor

Self-Organizing Service

Services
Request/ReplyOne-Way Streaming RESTful

Figure 1. Self-organizing services.

topology, middleware infrastructure, availability of service
providers, and application environment) and needs to be
properly accounted for within the “service” abstraction we
are proposing in this roadmap.

We broadly classify the research topics in our roadmap
following the most important aspects of the lifecycle of a
service-oriented application, including discovery, composi-
tion, binding, execution, streaming invocation, monitoring,
and management. Figure 1 gives a conceptual view of
a self-organizing service that manages its lifecyle in an
autonomic way. The self-organizing service integrates a
set of services (which themselves can be self-organizing
services, though this is not a requirement) and interacts
with these services either through one-way communication,
request/reply invocation, streaming data transfer, or RESTful
interaction [38]. A self-organizing service is created by
automated composition that relies on discovery to find
relevant services. Before execution, binding selects the op-
timal concrete communication end-points among a set of
alternative service providers. The self-organizing service
monitors its execution and may dynamically change its
structure and service dependencies so as to provide self-
configuration, self-tuning, and self-healing features. This
is illustrated in Figure 1 by the closed loop linking the
various phases of the lifecycle of a self-organizing service. In
some cases, depending on the characteristics of the service,
some phases may be skipped. For example, rebinding to a
newly discovered service provider may not always require
to change the structure of a composition.

The challenge is to explore how to design a distributed
infrastructure with a small system footprint for the different
phases of the self-organizing service lifecycle. This will
allow for a high degree of scalability which, in turn, is



one of the main preconditions for applying the idea of self-
organizing SOA in realistic settings.

In the following text we consider the aforementioned
phases of the self-organizing service lifecycle, discuss how
change impacts each of these phases, and argue how self-
organization helps dealing with change. For each topic, we
highlight the open issues and research challenges targeted
by our roadmap.

A. Discovery

Many current SOAs suffer from a centralized approach
to service discovery. While a centralized service repository
is able to process complex matchmaking queries (e.g.,
[27]) since all the possibly relevant service data is stored
in a single place, it represents a central point of failure
and performance bottleneck, reducing the scalability and
dependability of the overall system.

Distributed service discovery in current peer-to-peer (P2P)
systems can avoid the problems of a centralized service
repository, but often imposes strong restrictions on the type
of queries that are supported, or may suffer from reduced
precision and recall, or can cause high communication
overhead if too many nodes in the P2P system need to be
contacted.

To this end, we believe it is important to explore new
approaches to provide scalable and dependable service dis-
covery. To address this issue, techniques used in centralized
databases, such as multidimensional index structures and
multiversioning need to be combined with distribution and
replication algorithms using P2P middleware. Similarly, par-
allelized query execution, for example by exploiting recent
multicore hardware, needs to be taken into account.

B. Composition

A major topic on the roadmap for self-organizing SOA
concerns the development of new techniques for automated
service composition. In particular, an interesting problem
is how to design and develop techniques that provide the
possibility to gradually trade optimality of the result for
the composition against effort required to compute it, thus
allowing both to address highly dynamic short-term needs
as well as optimization of compositions that will be used in
the longer term.

Another important issue is related to constraints on com-
putation and communication resources without a central
authority. Such constraints are essential in applications such
as sensing and monitoring, where large quantities of data
must be manipulated under strong resource constraints. They
create a web of dependencies between different composition
processes that must be handled in a distributed algorithm.

Automated service composition can be seen as a general-
ization of service discovery: if a single matching service can
not be found, composition tries to integrate a set of services
in order to meet given requirements. Hence, automated

service composition relies on service discovery and requires
particular features of the discovery component, such as the
support for partial matches when processing queries.

C. Execution

As a fundamental design constraint, the middleware for
the execution of composite services comes without any
central component, i.e., it is itself inherently distributed. This
allows for a scale-out at the middleware level and guarantees
a high degree of scalability, both in terms of the number of
basic services that are available and in terms of the number
of composite services to be executed concurrently.

The challenge is to apply self-tuning techniques to au-
tomatically optimize the performance of this decentralized
architecture. Based on an open set of metrics to observe
system performance, reconfiguration policies and actions
will be applied to dynamically allocate resources and migrate
components between nodes taking into account the expected
benefits of the reconfiguration weighted against the cost of
applying changes to the running system.

Reliable execution of composite services by making use
of advanced self-healing mechanisms is also another major
challenge on the way to self-organizing SOA. This task will
be strongly facilitated by making use of the type associated
with individual services (i.e., maintain the state associated
with a service invocation between requests whenever possi-
ble, in order to derive the information necessary for compen-
sation). This also includes alternative execution paths (either
statically or dynamically defined) for exploring forward
failure handling techniques.

D. Binding

Flexibility in the binding of services to compositions is an
essential pre-requisite for self-healing and self-tuning of a
service-oriented application. As a first step, it is important to
enumerate a set of dynamic binding patterns that will bring
the results of service discovery closer to the composition in a
parametric way. This initial work will become the foundation
for the design and evaluation of a spectrum of different
alternatives ranging from advance resource reservation (e.g.,
to reserve all resources needed for a composition at the time
its execution starts) up to advanced runtime load balancing
mechanisms (e.g., in case several instances of the same
service type are available, the one with least expected load,
lowest prize, optimal quality of service guarantees, or, in
general, based on a predefined measure of “proximity” can
be chosen).

E. Streaming Invocation

In addition to message-based synchronous and asyn-
chronous interactions supported by current SOAs, an ex-
tension of the current notion of service to support stream-
based interactions is needed for a variety of applications.
This will not only broaden the domain of application of



self-organizing SOA results, but also allow to apply service-
orientation to pervasive and ubiquitous applications where
the need for self-organization has recently become apparent.

Streaming services extend the existing discrete service
abstraction to bring continuous data streams of software or
hardware sensors into a SOA. This requires to tackle the
challenge of correlating the flow of stream elements among
multiple sources and maintaining the state of a stream-
based interaction in a reliable way. Also, both streaming
and non-streaming services need to be jointly considered
in the same application, for example by using a form of
pipelined processing or by triggering the execution of a (non-
streaming) composite service if certain application-specific
characteristics are detected within a certain stream.

F. Monitoring and Management

An infrastructure to support self-organizing SOA will
allow a user to specify desired quality-of-service (QoS)
characteristics at the level of composite services. These
QoS characteristics will be automatically broken down into
requirements for individual services. By establishing service-
level agreements with the respective service providers, the
infrastructure will support a novel approach based on ad-
vance resource reservation protocols that will support re-
binding and integrate well with the decentralized approach
to service discovery.

IV. METHODOLOGY AND SCENARIO

The path to self-organizing SOAs passes through theo-
retical contributions on fundamental algorithms and designs
for self-organizing services, including their evaluation on a
collection of real-world use cases and application scenarios.
According to our research roadmap, we propose the follow-
ing methodology.

Discovery: scalable discovery algorithms and services will
be developed which are key for automated service compo-
sition and for the automated evolution and self-healing of
composite services. In the design of discovery algorithms,
we therefore consider the requirements and constraints com-
ing from automated service composition and from optimized
service selection at execution time.

Expertise in the design of service matchmakers, as well
as on indexing and concurrency control in service reposi-
tories [10], [11], [5], [6], still needs further leveraging to
explore and develop new approaches for scalable service
discovery.

Composition: we suggest to address the composition
problem using recently developed algorithms for distributed
constraint optimization in a framework that fits with the
planning framework developed above. The results of these
novel automatic composition algorithms will need to be
visualized to be inspected and monitored by users. The
algorithms will therefore be integrated with existing service

composition environments (e.g., JOpera1) that offer a strong
complementary approach to automatic service composition.

Execution: the execution of service compositions is one
of the main topics at the center of our research focus. We
earned a significant expertise in the design of distributed
service execution engines: both the OSIRIS [39], [32] and
JOpera engines feature a scalable approach to workflow
execution with a cluster-based, multicore-based, and a P2P
architecture. Thus, experimentation based on these research
platforms is promising as we already have an underlying
architecture for service composition featuring the necessary
mechanisms that enable self-organization properties.

Binding: we propose the investigation of service re-
binding, where a binding is dynamically changed at runtime
in case of exceptional conditions (e.g., when services are
not available [33] or when advance reservations [28] are in-
validated). This self-healing feature requires the definition of
customizable metrics to characterize individual and compos-
ite service instances and also to derive the characterization
of composite services out of the included basic services and
the structural characteristics of the composition.

Streaming invocation. Applying re-binding to streaming
services is particularly challenge because it requires proper
session management and state transfer for the reliable hand-
off of an ongoing streaming interaction [8]. We propose the
application of the notion of streaming service in the context
of RESTful services, for example, to study how to efficiently
compose Web data feeds. This will require the development
of new techniques to transparently manage pipeline buffers
and data caches.

Monitoring and management. Research in this area will
make intensive use of the provenance features of our mid-
dleware, where execution of composite services will be
thoroughly logged. On the basis of these logs, the autonomic
management policies can be evaluated a posteriori and the
procedure to decide about the self-configuration of service-
level agreements can be properly adapted.

Experimentation and benchmarking. Due to the heteroge-
nous and distributed nature of any SOA-based deployment,
we privilege an experimental approach to research, where
empirical validation of novel algorithms and techniques is
preferred to results obtained by modeling and simulation.
This is an appropriate methodology as it is applied to our
domain, where it is hard to establish realistic modeling
assumptions. Theoretical considerations, such as regarding
the runtime complexity of algorithms, will complement
the empirical assessment. A good experimental scenario
candidate consists of a self-organizing grid of services for
large-scale computations using huge amounts of data, such
as in astronomy or in meteorology. This scenario involves
distributed data sources and data processing services that
need to be composed according to high-level goal specifica-

1http://www.jopera.org



tions. Self-organization will be achieved by a combination
of automated composition integrated with service discovery,
advance resource reservation, dynamic service rebinding or
re-composition in case of service failure or when better
performing services become available, as well as stream
processing for handling large data sets. Additionally, the
self-configuration techniques developed can be evaluated
on real-world benchmarks and developed into open-source
implementations publicly available2.

V. CONCLUSION

The research challenges identified in this paper are not
only of high scientific relevance, but they also address
serious limitations in the way current SOAs are designed
and maintained. Solving these challenges will significantly
advance the state-of-art in SOAs.

Self-organizing SOAs will drastically reduce the costs
of both software reuse and integration and, most impor-
tant, also simplify the maintenance of complex software
systems. More specifically, automated service composition
significantly reduces the effort needed to create service-
oriented applications. The integration of automated com-
position with dynamic service discovery ensures higher
quality of the applications that are composed leveraging
the best available services that can be found over time.
The advanced execution features (self-configuration, self-
optimization, self-tuning, and self-protection) that define an
infrastructure for self-organizing SOA promise to take the
burden of manually updating, correcting, and tuning the
performance of composite services away from the software
producer. When combined with the results on RESTful ser-
vice composition and data streaming, these will also provide
the key capabilities to address a rich set of challenging
application scenarios, in addition to traditional SOA-related
ones, that can be used to demonstrate and benchmark the
developed techniques.

ACKNOWLEDGMENTS

The work presented in this paper has been funded by
the Swiss National Science Foundation (SINERGIA grant
nr. CRSI22 127386) in the context of the SOSOA project.

REFERENCES

[1] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web
services: Concepts, Architectures and Applications. Springer,
November 2003.

[2] O. Babaoglu, M. Jelasity, and A. Montresor. Grassroots
approach to self-management in large-scale distributed sys-
tems. In Proceedings of the EU-NSF Strategic Research
Workshop on Unconventional Programming Paradigms, Mont
Saint-Michel, France, September 2004.

2http://sosoa.inf.usi.ch/Instruments

[3] O. Babaoglu, M. Jelasity, A. Montresor, C. Fetzer,
S. Leonardi, A. van Moorsel, and M. van Steen. Self-star
Properties in Complex Information Systems: Conceptual and
Practical Foundations, volume 30 of LNCS. Springer, 2005.

[4] L. Baresi and L. Pasquale. Live goals for adaptive service
compositions. In Proceedings of the 2010 ICSE Workshop
on Software Engineering for Adaptive and Self-Managing
Systems, SEAMS ’10, pages 114–123, 2010.

[5] W. Binder, I. Constantinescu, and B. Faltings. A flexible di-
rectory query language for the efficient processing of service
composition queries. International Journal of Web Services
Research, 4(1), 2007.

[6] W. Binder, A. Mosincat, S. Spycher, I. Constantinescu, and
B. Faltings. Multiversion concurrency control for the gener-
alized search tree. Concurrency and Computation: Practice
and Experience, 21:1547–1571, 2009. http://dx.doi.org/10.
1002/cpe.1387.

[7] K. Birman. Reliable Distributed Systems: Technologies, Web
Services and Applications. Springer, 2005.

[8] G. Brettlecker and H. Schuldt. Reliable Distributed Data
Stream Management in Mobile Environments. Information
Systems Journal, Nov. 2010.

[9] C. Bussler. B2B Integration. Concepts and Architecture.
Springer, 2002.

[10] I. Constantinescu, W. Binder, and B. Faltings. An extensible
directory enabling efficient semantic web service integration.
In 3rd International Semantic Web Conference (ISWC 2004),
pages 605–619, Hiroshima, Japan, Nov. 2004.

[11] I. Constantinescu, B. Faltings, and W. Binder. Large scale,
type-compatible service composition. In IEEE International
Conference on Web Services (ICWS-2004), pages 506–513,
San Diego, CA, USA, July 2004.

[12] E. Di Nitto, C. Ghezzi, A. Metzger, M. Papazoglou, and
K. Pohl. A journey to highly dynamic, self-adaptive service-
based applications. Automated Software Engineering, 15:313–
341, 2008. 10.1007/s10515-008-0032-x.

[13] S. Dustdar, C. Dorn, F. Li, L. Baresi, G. Cabri, C. Pautasso,
and F. Zambonelli. A roadmap towards sustainable self-aware
service systems. In Proceedings of the 2010 ICSE Workshop
on Software Engineering for Adaptive and Self-Managing
Systems, SEAMS ’10, pages 10–19, 2010.

[14] S. Dustdar and W. Schreiner. A survey on web services
composition. International Journal of Web and Grid Serivces
(IJWGS), 1(1):1–30, 2005.

[15] T. Erl. Service-Oriented Architecture: Concepts, Technology,
and Design. Prentice Hall, 2005.

[16] D. Florescu, A. Grünhagen, and D. Kossmann. Xl: an
xml programming language for web service specification and
composition. Computer Networks, 42(5):641–660, 2003.

[17] C. Ghezzi. The challenges of open-world software. In
Proceedings of the 6th International Workshop on Software
and Performance (WOSP 2007), page 90, Buenos Aires,
Argentina, February 2007.



[18] R. A. Golding and T. M. Wong. Walking toward moving goal-
posts: agile management for evolving systems. In HotAC I,
the First International Workshop on Hot Topics in Autonomic
Computing, May 2006.

[19] K. Gottschalk, S. Graham, H. Kreger, and J. Snell. Intro-
duction to Web services architecture. IBM Systems Journal,
41(2):170–177, 2002.

[20] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury.
Feedback Control of Computing Systems. Wiley-IEEE Press,
August 2004.

[21] M. C. Huebscher and J. A. McCann. A survey of autonomic
computing—degrees, models, and applications. ACM Com-
puting Surveys, 40(3):1–28, 2008.

[22] IBM. Autonomic Computing: Special Issue. IBM Systems
Journal, 42(1), 2003.

[23] N. M. Josuttis. SOA In Practice. O’Reilly, August 2007.

[24] J. O. Kephart. Research challenges of autonomic computing.
In Proc. 27th International Conference on Software Engineer-
ing (ICSE2005), pages 15–22, May 2005.

[25] J. O. Kephart and D. M. Chess. The vision of autonomic
computing. Computer, 36(1):41–50, January 2003.

[26] R. Khalaf, A. Keller, and F. Leymann. Business processes
for web services: Principles and applications. IBM Systems
Journal, 45(2):425–446, 2006.

[27] M. Klusch, B. Fries, and K. Sycara. Owls-mx: A hybrid
semantic web service matchmaker for owl-s services. Web
Semant., 7:121–133, April 2009.

[28] C. Langguth and H. Schuldt. Optimizing Resource Allocation
for Scientific Workflows Using Advance Reservations. In
Proceedings of the 22nd International Conference on Scien-
tific and Statistical Database Management (SSDBM 2010),
volume 6187 of Lecture Notes in Computer Science, pages
434–451. Springer, June-July 2010.

[29] A. Lenk, M. Klems, J. Nimis, S. Tai, and T. Sandholm. What’s
inside the cloud? an architectural map of the cloud landscape.
In Proceedings of the 2009 ICSE Workshop on Software
Engineering Challenges of Cloud Computing, CLOUD ’09,
pages 23–31, Washington, DC, USA, 2009. IEEE Computer
Society.

[30] F. Leymann, D. Roller, and M.-T. Schmidt. Web services
and business process management. IBM Systems Journal,
41(2):198–211, 2002.

[31] L. Liu, S. Thanheiser, and H. Schmeck. A reference ar-
chitecture for self-organizing service-oriented computing. In
U. Brinkschulte, T. Ungerer, C. Hochberger, and R. Spallek,
editors, Architecture of Computing Systems ARCS 2008,
volume 4934 of LNCS, pages 205–219. Springer Berlin /
Heidelberg, 2008.

[32] D. Milano and N. Stojnić. Shepherd: node monitors for fault-
tolerant distributed process execution in osiris. In Proceedings
of the 5th Workshop on Emerging Web Services Technology
(WEWST 2010), pages 26–35, Ayia Napa, Cyprus, Dec. 2010.

[33] T. Möller and H. Schuldt. OSIRIS Next: Flexible Semantic
Failure Handling for Composite Web Service Execution. In
Proceedings of the 4th IEEE International Conference on
Semantic Computing (ICSC 2010), Pittsburgh, PA, USA, Sept.
2010.

[34] E. Newcomer and G. Lomow. Understanding SOA with Web
Services. Addison Wesley, 2005.

[35] H. R. M. Nezhad, B. Benatallah, F. Casati, and F. Toumani.
Web services interoperability specifications. Computer,
39(5):24–32, May 2006.

[36] M. P. Papazoglou and W.-J. Heuvel. Service oriented archi-
tectures: approaches, technologies and research issues. The
VLDB Journal, 16(3):389–415, 2007.

[37] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann.
Service-oriented computing: State of the art and research
challenges. Computer, 40(11):38–45, 2007.

[38] L. Richardson and S. Ruby. RESTful Web Services. O’Reilly,
May 2007.

[39] C. Schuler, H. Schuldt, C. Türker, R. Weber, and H.-J.
Schek. Peer-to-peer execution of (transactional) processes.
International Journal of Cooperative Information Systems,
14(4):377–406, 2005.

[40] M. Shaw and D. Garlan. Software Architecture: Perspectives
on an Emerging Discipline. Prentice Hall, 1996.

[41] C. Szyperski. Component technology - what, where, and
how? In ICSE ’03: Proc. of the 25th International Conference
on Software Engineering, pages 684–693, Portland, Oregon,
2003.

[42] S. Weerawarana, F. Curbera, F. Leymann, T. Storey, and D. F.
Ferguson. Web Services Platform Architecture. Prentice Hall,
2005.

[43] O. Zimmerman, M. Tomlinson, and S. Peuser. Perspectives on
Web Services: Applying SOAP, WSDL, UDDI to Real-World
Projects. Springer, 2003.

[44] O. Zimmermann, M. Milinski, M. Craes, and F. Oellermann.
Second generation web services-oriented architecture in pro-
duction in the finance industry. In OOPSLA Conference
Companion, 2004.


