Universita Faculty

della of Informatics
Svizzera

italiana

AJAX

1/37

Prof. Cesare Pautasso
http://www.pautasso.info
cesare.pautasso@usi.ch

@pautasso

5/37

Web application Architecture

!

Backend

Client Server

Request

Web Browser| Web Server
Response

Application Application

File System

©2013 Cesare Pautasso

Very Thin Client

Request
Input/ <ol | roolicat
Output Display | | Application
Response
Client/Server
Request
Display Application
Response

Rich Client

Display

Application

General Architecture

Display

Client
Application

Request

Response

Request

o

>

Response

Server
Application

6/37

7137

8/37

9/37

Rich vs. Thin Client

Rich Client
= Applications runs on the client (may use the server for storage)

= Platform Examples:
= Windows, MacOS/X
» Eclipse RCP/Java

» Software needs to be deployed on the client
= Zero latency

= Complete control, native access to the platform
Thin Client
= Application runs on the server, client only perform Ul tasks

Examples:

= Dumb Terminals
= Web 1.0 Applications

Zero deployment/upgrade costs
Cannot (yet) work offline: sensitive to network failures
Limited control of the platform

12737

What about security?

Request

Web Browser Web Server
Response

Web servers should not ever run
any code sent by a Web browser

= \Web browsers use a sandbox (secure virtual
machine) to run code downloaded from a Web server

13737

Interconnect
How to connect the client with the server?

= Send user commands and input data as HTTP
requests from the client to the server

How to connect the server with the client?

» Pull: Fetch and refresh output data
= Push: Notify client about state changes

Web Browser Web Server

—

PULL
J

PUSH

15/37

Web 1.0 Architecture

Web Browser

Click on link LR SR

Application

Page 2

<form action=

A new page must be loaded
for every interaction

16/37

Web 1.0 Architecture - Problems

= Ul not Responsive
o The entire Ul must be refreshed for every interaction, even if
only parts of it need to be updated
o The browser is blocked until the new page is downloaded from
the server
= Server unnecessarily busy rendering Web pages in HTML

when it could be just sending JSON and offload the
rendering to the browser

Web 2.0 Architecture

Web Browser

Page 1 Click
<onclick>

<onsubmit> ¢
<onkeypress>
<onmouse*>

KeyPress

17137

Web Server

Application

User interactions are decoupled
from client/server interactions

Advantages

18737

» When the user interacts with the application we send a JSON/XML
request to the server and receive a JSON/XML response back.

= The HTML rendering is done on the client

= JSON is faster, smaller, cheaper to encode, send and decode

compared with XML/HTML

= Clients do not have to download the entire data but can fetch the

data they need when they need it

Problems

» Since the whole application runs in the same
page:

o Back button broken
o Cannot bookmark current "state" of the application (could use
URI #fragments)

= HTTP connections are expensive:

o Do not poll the server too often
o Browsers limit the number of parallel connections to the same
server

AJAX
AJAX combines different technologies:

= HTML5 and CSS in the display

» Dynamic display and interaction with DOM

= Data interchange and manipulation using
XML/XSLT

» Asynchronous data retrieval with
XMLHttpRequest

» Javascript binding everything together

21737

Synchronous Interaction

Web Browser Web Server

The user waits for the server to process each
request

221/37

Asynchronous Interaction

Web Browser Web Server

Ul AJAX

The Ul thread is never blocked since server
interactions run in the background

XMLHttpRequest (GET, Synch)

function GET(url) {
var xhr = new XMLHttpRequest();
xhr.open("GET", url, false); false = synchronous
xhr.send(null);
//this will continue after the response has arrived
if (xhr.status == 200)

responseText contains
return xhr.responseText; P

the JSON string to be

else parsed

//handle error

XMLHttpRequest (GET, Asynch)

function GET(url, callback) {
var xhr = new XMLHttpRequest();

xhr.open("GET", url, true); true = asynchronous
xhr.onreadystatechange = function() {
if (xhr.readyState == 4) {
if (xhr.status == 200) readyState
0 uninitialized
callback (xhr.responseText) ;
1 opened
else 2 sent
//handle error 3 receiving
} 4 complete

}

xhr.send(null);

//this will continue immediately

XMLHttpRequest (POST, Asynch)

function POST(url, params, callback) {

var xhr = new XMLHttpRequest();
xhr.open("POST", url, true);
xhr.onreadystatechange = function() {
if (xhr.readyState == 4) {
if (xhr.status == 200)

callback(xhr.responseText);

}
xhr.setRequestHeader ("Content-Type",

"application/x-www-form-urlencoded");
xhr.send(params) ;
//this will continue immediately

Event Notification

» XMLHttpRequest helps to read data from the server when
the browser needs to refresh parts of a Web page

= How can the server decide when to make the

browser update its Web page?
o Long Polling
o Server push
o WebSockets

Long Polling
Web Browser Web Server
Request) "| Data Available
Request i
g Wait...
Data Available
Request
qu Wait...
Timeout
Resend

The client polls the server for updates which
are sent only when they become available

Server Push

Web Browser Web Server
Request | Event
Event
j Event
Event

Neverending

HTTP Reponse :

The server misuses HTTP by keeping the
response open forever

29/37

HTML5 WebSockets

= Bi-directional, full-duplex communication channel

= Web browsers connect to Web servers and exchange
messages

» Optimized with low overhead for message payloads
(2 bytes)

= Just a socket for the browser, nothing to do with the
Web

30/37

Web Browser HTTP Server|| WS Server
HTTP GET Upgrade
send
onmessage [<
send 5
onmessage

The original HTTP connection is upgraded to
use the WebSocket protocol

31/37

WebSocket (Client)

var location = "ws://www.nyse.com/GOOG";
//open a WebSocket connection with the server
var socket = new WebSocket(location);
socket.onopen = function(event) {
//connection established
//send a message to the server
socket.send("Hello, WebSocket");

}
socket.onmessage = function(message) {
//message received from the server

console.log(message.data);
}
socket.onclose = function(event) {
//connection closed by the server
console.log("closed");
}
socket.onerror = function(event) {
//communication error

console.log("error!"+event);

WebSocket (Server)

var WebSocketServer = require('websocket').server;

var http = require('http');

var server = http.createServer(
function(request, response) {

console.log('HTTP Request: + request.url);
response.writeHead (404);
response.end();

})i

server.listen(8888);

// Create a WebSocket Server wrapping the HTTP Server
wsServer = new WebSocketServer ({

httpServer: server

})i

//Check if the request origin is allowed to connect

function originIsAllowed(origin) { return true; }

wsServer.on('request', function(request) {

if (l!originIsAllowed(request.origin)) {
request.reject(); return;

}

// Connection Accepted

var connection = request.accept(null, request.origin)

var echo = function(message) {
if (message.type === 'utf8') {

console.log('Received: + message.utf8Data);

connection.sendUTF (message.utf8Data);
}
else if (message.type === 'binary') {

console.log('Received binary data');

connection.sendBytes (message.binaryData);

-e

}

connection.on('message’', echo);
connection.on('close’,

function(reasonCode, description) {...});

'});

References

Gottfried Vossen, Stephan Hagemann, Unleashing Web 2.0 - From Concepts to
Creativity, Morgan Kaufmann, 2007

Paul Graham, The Other Road Ahead (On the advantages of Web applications)
(http://www.paulgraham.com/road.html) , September 2001.

Adam Bosworth, Why AJAX Failed (Then Succeeded) (http://www.eweek.com/c/a/IT-

Infrastructure/Googles-Bosworth-Why-AJAX-Failed-Then-Succeeded/) , Jan 2007
Jesse James Garrett, Ajax: A New Approach to Web Applications
(http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications) , Feb 2005

Chris Anderson, The Long Tail: Why the Future of Business is Selling Less of More

(http://www.thelongtail.com) , July 2006,

Tim O'Reilly, What Is Web 2.0 - Design Patterns and Business Models for the Next
Generation of Software (http://oreilly.com/web2/archive/what-is-web-20.html) , Sept 2005

36/37

