IIIIIIIIIIIII

Is it possible to consistently
recover a microservice
architecture?

Cesare Pautasso
Software Institute, USI, Lugano, Switzerland

http://www.pautasso.info/talks/2019/lamsade

@pautasso@scholar.social

eeeeeeeee

http://www.pautasso.info/talks/2019/lamsade
https://scholar.social/@pautasso
http://asq.inf.usi.ch/

"'.,‘

e Opened July 2017

e 6 Professors

Software Engineering Research
(Analytics, Architecture, Education, Evolution, Testing,
Verlﬁcat|on)

http://www.si.usi.ch/
http://asq.inf.usi.ch/

] UVERR)

Systems Engineering

e RESTalk - API Conversation Modeling

. L|qU|d Software Architecture

S TS

Bench Flow a bench mark for workﬂow engmes

LI"A T

Y *_'. "‘-"-! ..#vt*- -.-h. LY __% 1‘—-— :#ﬂ"m - "'h-ll' ‘:-.",‘!r'. _' .' ',J'.‘-r .

ASQ Interactlve Web Lectu res Clssrm Altlcs

T -

_F..\--'!r _- - v\

SA Collebo ratlv Ahltect =

_ _r' i 2 ;‘ﬂ"#_i-ff':h;'”"" ; L '-H.) - A n:.__ -

NaturalMash "‘API Composmon W|th I_\Ia't'

_:.;-' s, - =
- - ‘.'.r: e b @ ixd& b < - g 1* -:-‘\-:r *“‘-

http: //de5|gn inf.usi. ch 3

lllll

http://design.inf.usi.ch/
http://asq.inf.usi.ch/

http://asq.inf.usi.ch/

DDDDDDDD

UNIVERSITE PARIS

Independent DevOps Lifecycle

Monolith microservices

eeeeeeeee

http://asq.inf.usi.ch/

IIIIIIIIIIIIIII

eeeeeeeee

http://asq.inf.usi.ch/

IIIIIIIIIIIIIII

Autonomous Microservices

Rapid Evolution: If you have to hold a release until some other
team Is ready you do not have two separate microservices

. A failed microservice should not bring
down the whole system

eeeeeeeee

http://asq.inf.usi.ch/

EEEEEEEEEEEEEEE

Customer Order

=

Monolith

eeeeeeeee

http://asq.inf.usi.ch/

DDDDDDDD

UNIVERSITE PARIS

Customer Order

Monolith Microservices

eeeeeeeee

http://asq.inf.usi.ch/

DDDDDDDD

UNIVERSITE PARIS

Customer Order

Monolith Microservices

eeeeeeeee

http://asq.inf.usi.ch/

EEEEEEEEEEEEE

Isolated Microservices

For us service orientation means
encapsulating the data with the
business logic that operates on
the data, with the only access
through a published service
Interface. No direct database
access Is allowed from outside
the service, and there’s no data

sharing among the services. Microservices

Werner Vogels, Interviews Web Services:
Learning from the Amazon technology
platform, ACM Queue, 4(4), June 30, 2006

C g

>3
S
®

https://queue.acm.org/detail.cfm?id=1142065
http://asq.inf.usi.ch/

EEEEEEEEEEEEE

Stateful Microservices

Microservices prefer letting each service manage its own
database, either different instances of the same database
technology, or entirely different database systems - an approach
called Polyglot Persistence.

M. Fowler, J. Lewis https://www.martinfowler.com/articles/microservices.html

>3
S
®

https://www.martinfowler.com/articles/microservices.html
http://asq.inf.usi.ch/

EEEEEEEEEEEEE

Stateful Microservices

Microservices prefer letting each service manage its own
database, either different instances of the same database
technology, or entirely different database systems - an approach
called Polyglot Persistence.

M. Fowler, J. Lewis https://www.martinfowler.com/articles/microservices.html

>3
S
®

https://www.martinfowler.com/articles/microservices.html
http://asq.inf.usi.ch/

i £

1 P Q . P ’ v ‘l { & r/ P @
v\ © vV |} lll ; \ l ‘ | - ’ W D
4 _ . N BN p e N

d abase dlfferent Instances of ﬁﬁ@ same date
iechnology, ore nt| r ° / different database svystems - ai
called Polyglot Persustence

SCIUGESITefer letting 2rvice manage its own

M. Fowler,). LEWIS [ﬁ]’fuo [[www.martinfon

= . { e~ —~ -~
l_\f@m Inconsistency

Microservice architectures.are doomed to become inconsistent
after disaster strikes

IIIIIIIIIIIIIII

Devops meets Disaster

eeeeeeeee

http://asq.inf.usi.ch/

IIIIIIIIIIIIIII

Devops meets Disaster

eeeeeeeee

http://asq.inf.usi.ch/

DDDDDDDD

UNIVERSITE PARIS

How do you back up a
monolith?

Y

)

N
Database

http://asq.inf.usi.ch/

]]]]]]]]]]]]]]]

How do you back up a
monolith?

Y

>

Database Backup

eeeeeeeee

http://asq.inf.usi.ch/

DDDDDDDD

UNIVERSITE PARIS

How do you back up one
microservice?

MICro
service

i

)

N
Database

http://asq.inf.usi.ch/

]]]]]]]]]]]]]]]

How do you back up one
microservice?

mICro
service

i

>

Database Backup

eeeeeeeee

http://asq.inf.usi.ch/

DDDDDDD

UNIVERSITE PARIS

How do you back up
an entire microservice architecture?

http://asq.inf.usi.ch/

DDDDDDD

UNIVERSITE PARIS

How do you back up
an entire microservice architecture?

http://asq.inf.usi.ch/

EEEEEEEEEEEEEEE

How do you back up
an entire microservice architecture?

AE
2 ED =

eeeeeeeee

http://asq.inf.usi.ch/

EEEEEEEEEEEEEEE

How do you back up
an entire microservice architecture?

HE
S]

o ED >a

Are you sure?

eeeeeeeee

http://asq.inf.usi.ch/

UNIVERSITE PARIS

Example
Customer Order
B B
) tes
Product Shipment
B B

http://asq.inf.usi.ch/

IIIIIIIIIIIIIII

Example

Customer Order
B B

Product Shipment
_ B

Data relationships across microservices = Hypermedia

http://asq.inf.usi.ch/

EEEEEEEEEEEEEEE

Independent Backup

Customer Order

8 O\ ®

1 1 new C/1 1 new O/1 1
Z 2 C/1/name 2[0/1~> C/1 2
3 3] new C/2 3] new O/2 3
4 4 C/2/name 4 0/2 > C/2 4
5 5 5 5
6 6 6 6

eeeeeeeee

http://asq.inf.usi.ch/

EEEEEEEEEEEEEEE

Independent Backup

Customer| Order

=

=

1 new C/1 T new C/1 1T new O/1 1
2l C/1/name 2l C/1/name 2l O/1-~> C/1 2
3] new C/2 3] new C/2 3] newO/2 3
4 C/2/name 4 C/2/name 4 0/2->C/2 4
5 5 5 5
6 6 6 6

eeeeeeeee

http://asq.inf.usi.ch/

EEEEEEEEEEEEE

Independent Backup

Customer| Order

@€ -

| new C/1 T new C/1 1 new O/1 1
2l C/1/name 2l C/1/name 2l O/1-~> C/1 2
3] new C/2 3] new C/2 3] newQ/2 3
4 C/2/name 4 C/2/name 4 0/2->C/2 4
e °| new C/3 3] new 0/3 5
6 6| C/3/name 6| 0/3 > C/3 6

>3
=
@

http://asq.inf.usi.ch/

EEEEEEEEEEEEE

SO U1 B W N A

Independent Backup

=

new C/1

C/1/name

new C/2

C/2/name

S U1 &~ W N

Customer|! Order

new C/1

C/1/name

new C/2

C/2/name

new C/3

C/3/name

SO U1 & W N A

new O/1

0/1-> C/1

new O/2

0/2->C/2

new O/3

0/3->(C/3

S U1 &~ W N

>

new O/1

0/1-> C/1

new O/2

0/2->C/2

new O/3

0/3 > (C/3

>3
=
@

http://asq.inf.usi.ch/

EEEEEEEEEEEEE

SO U1 B W N A

Independent Backup

=

new C/1

C/1/name

new C/2

C/2/name

S U1 &~ W N

Customer|! Order

new C/1

C/1/name

new C/2

C/2/name

new C/3

C/3/name

SO U1 & W N A

>8

new O/1

0/1-> C/1

new O/2

0/2->C/2

new O/3

0/3->(C/3

S U1 &~ W N

new O/1

0/1-> C/1

new O/2

0/2->C/2

new O/3

0/3 > (C/3

Backups taken independently at different times

>3
=
@

http://asq.inf.usi.ch/

EerEEs T&"‘S‘-}% =

oy
= .

A

http://asq.inf.usi.ch/

DAUPHINE

]]]]]]]]]]]]]]]

1 new C/1 L 1 new O/1 1 new O/1
2 C/1/name 2 2l O/1-> C/1 2l O/1~> C/1
3] new C/2 3 3 newQ/2 3 newQ/2
“ C/2/name 4 4 02> C/2 4 0/2-> C/2
5 5 5/ new 0/3 5| new O/3
6 6 6| 0/3 > C/3 6l 0/3 > (/3

eeeeeeeee

http://asq.inf.usi.ch/

EEEEEEEEEEEEE

1 new C/1 L 1 new O/1 1
2 C/1/name 2 2l O/1-> C/1 2
3| new C/2 3 3] newO/2 3
“ C/2/name 4 4 02> C/2 4 0/2-> C/2
£ > 5] new 0/3 5
6 6 6| O/3 > (C/3 6

One microservice Is lost

>3
=
@

http://asq.inf.usi.ch/

]]]]]]]]]]]]]]]

1 new C/1 L 1 new O/1 1 new O/1
2l C/1/name 2 2l O/1> C/1 2l O/1~> C/1
3] new C/2 3 3 newQ/2 3 newQ/2
4 C/2/name 4 4 02> C/2 4 0/2->C/2
5 5 5/ new 0/3 5| new O/3
6 6 6| 0/3 > C/3 6l 0/3 > C/3

eeeeeeeee

http://asq.inf.usi.ch/

DP(J‘F?H\INE

IIIIIIIIIIIIIII

SO U1 B W N A

new C/1

C/1/name

new C/2

C/2/name

S U1 &~ W N

new C/1

C/1/name

new C/2

C/2/name

SO U1 & W N A

eeeeeeeee

http://asq.inf.usi.ch/

D/AUPHINE

IIIIIIIIIIIIIII

1 new C/1 1 new C/1 1 new 0/1 1

2l C/1/name 2l C/1/name 2l O/1-~> C/1 2

3] new C/2 3] new C/2 3] newQ/2 3

4 C/2/name 4 C/2/name 4 0/2->C/2 4 0/2->C/2
2 5 5| new O/3 5] new 0/3
° 6 6| 0/3>C/3 | 6 0/3 > (/3

Broken link after recovery

>3
=
@

http://asq.inf.usi.ch/

IIIIIIIIIIIIIII

1 new C/1 1 new C/1 1 new 0/1 1

2l C/1/name 2l C/1/name 2l O/1-~> C/1 2

3] new C/2 3] new C/2 3] newQ/2 3

4 C/2/name 4 C/2/name 4 0/2->C/2 4 0/2->C/2
2 5 5| new O/3 5] new 0/3
° 6 6| 0/3>C/3 | 6 0/3 > (/3

Broken link after recovery

Eventual Inconsistency

http://asq.inf.usi.ch/

]]]]]]]]]]]]]]]

1
2
3
A
5
6

Synchronized Backups

=

new C/1

C/1/name

new C/2

C/2/name

S U1 &~ W N

new C/1

C/1/name

new C/2

C/2/name

Customer Order
Ne
(—

SO U1 & W N A

>8

new O/1

0/1-> C/1

new O/2

0/2->C/2

S U1 &~ W N

new O/1

0/1-> C/1

new O/2

0/2->C/2

eeeeeeeee

http://asq.inf.usi.ch/

EEEEEEEEEEEEE

5 \&

=

1 new C/1 1 new C/1 1 new O/1 1 new O/1

2l c/1/name 2[C/1/name 2l 0/1-> C/1 2l 0/1~> C/1

3] new C/2 3] new C/2 3] new0/2 3[new 0/2

: C/2/name 4 C/2/name 4 0/2->C/2 4 0/2>C/2
5 5 5

6 6 6 6

Backups of all microservices taken at the same time.

>3
=
@

http://asq.inf.usi.ch/

]]]]]]]]]]]]]]]

5 \&

N new C/1 1

C/1/name 2 C/1/name 2

new C/2 3] new C/2 3

C/2/name 4 C/2/name 4 0/2 > C/2
5 5
6 6

new C/1

SO U1 B W N A

Backups of all microservices taken at the same time.

Limited Autonomy

http://asq.inf.usi.ch/

EEEEEEEEEEEEEEE

The BAC theorem

eeeeeeeee

http://asq.inf.usi.ch/

EEEEEEEEEEEEEEE

The BAC theorem

When Backing up a microservice architecture,
It 1S not possible to have both
Consistency and Autonomy

eeeeeeeee

http://asq.inf.usi.ch/

The BAC theorem

When Backing up a microservice architecture,
It IS not possible to have both
Consistency and Autonomy

Consistency

EEEEEEEEEEEEE

Consistency

During normal operations, each microservice will eventually
reach a consistent state

Referential integrity: links across microservice boundaries are
guaranteed eventually not to be broken

>3
=
@

http://asq.inf.usi.ch/

EEEEEEEEEEEEE

Autonomy

Each microservices has an independent DevOps lifecycle

Backup autonomy: snapshots taken at different times without
any coordination across multiple microservices

>3
=
@

http://asq.inf.usi.ch/

Backup

While backing up the system, Is it possible to take a consistent
snapshot of all microservices without affecting their autonomy?

http://asq.inf.usi.ch/

Backup

While backing up the system, Is it possible to take a consistent
snapshot of all microservices without affecting their autonomy?

NoO.

http://asq.inf.usi.ch/

Backup + Autonomy

Backing up each microservice independently will eventually lead
to inconsistency after recovering from backups taken at different
times

http://asq.inf.usi.ch/

Backup + Consistency

Taking a consistent backup requires to:

e agree among all microservices on when to perform the backup
(limited autonomy)

http://asq.inf.usi.ch/

Backup + Consistency

Taking a consistent backup requires to:

e agree among all microservices on when to perform the backup
(limited autonomy)

e disallow updates anywhere during the backup
(limited availability)

http://asq.inf.usi.ch/

Backup + Consistency

Taking a consistent backup requires to:

e agree among all microservices on when to perform the backup
(limited autonomy)

e disallow updates anywhere during the backup
(limited availability)

e walit for the slowest microservice to complete the backup
(limited performance)

http://asq.inf.usi.ch/

DDDDDDDD

UNIVERSITE PARIS

Shared Database

Customer Order

- >

I

Product Shipment

A centralized, shared database would require only one backup

eeeeeeeee

http://asq.inf.usi.ch/

EEEEEEEEEEEEE

Shared Database

Customer Order Is this still a microservice architecture?

O Yes
O No

- >

5 &

Product Shipment

A centralized, shared database would require only one backup

>3
S
®

http://asq.inf.usi.ch/

UNIVERSITE PARIS

Shared Database, Split Schema

Customer

i

C

¥

Product

Order

"

o

S

A

Shipment

A centralized, shared
database would require
only one backup

Each microservice must
use a logically separate
schema

http://asq.inf.usi.ch/

IIIIIIIIIIIIIII

Shared Database, Split Schema

Customer Order

i

"

C /’g/
WE ;r
Product Shipment

A centralized, shared
database would require
only one backup

Each microservice must
use a logically separate
schema

What happened to polyglot persistence?

http://asq.inf.usi.ch/

IIIIIIIIIIIIIII

Links can break

Customer Order

~y,
N \
\
\N
/
/

!
|
|
l
l
I
I

/

/. .
Product / Shipment

/
- /
/
/
/
’

No guarantees for references crossing microservice boundaries

http://asq.inf.usi.ch/

EEEEEEEEEEEEEEE

© /)

Links can break

Customer Order

~y,
N \
\
\N
/
/

!
|
|
l
l
I
I

/

/. .
Product / Shipment

/
- /
/
/
/
’

No guarantees for references crossing microservice boundaries

Microservices Inherit a fundamental property of the Web

http://asq.inf.usi.ch/

EEEEEEEEEEEEE

SO U1 B W N A

Orphan State

=i EI%' E = &

new C/1

C/1/name

new C/2

C/2/name

new C/3

C/3/name

S U1 &~ W N

new C/1

C/1/name

new C/2

C/2/name

new C/3

C/3/name

SO U1 & W N A

new O/1

0/1-> C/1

new O/2

0/2->C/2

new O/3

0/3->C/3

S U1 &~ W N

new O/1

0/1-> C/1

new O/2

0/2->C/2

>3
=
@

http://asq.inf.usi.ch/

EEEEEEEEEEEEE

SO U1 B W N A

Orphan State

= EI%' E > &

new C/1

C/1/name

new C/2

C/2/name

new C/3

C/3/name

S U1 &~ W N

new C/1

C/1/name

new C/2

C/2/name

new C/3

C/3/name

SO U1 & W N A

new O/1

0/1-> C/1

new O/2

0/2->C/2

new O/3

0/3->C/3

S U1 &~ W N

new O/1

0/1-> C/1

new O/2

0/2->C/2

>3
=
@

http://asq.inf.usi.ch/

EEEEEEEEEEEEE

SO U1 B W N A

Orphan State

= EI%' E = &

new C/1

C/1/name

new C/2

C/2/name

new C/3

C/3/name

S U1 &~ W N

new C/1

C/1/name

new C/2

C/2/name

new C/3

C/3/name

SO U1 & W N A

new O/1

0/1-> C/1

new O/2

0/2->C/2

S U1 &~ W N

new O/1

0/1-> C/1

new O/2

0/2->C/2

>3
=
@

http://asq.inf.usi.ch/

EEEEEEEEEEEEE

SO U1 B W N A

Orphan State

= EI%' E = &

new C/1

C/1/name

new C/2

C/2/name

new C/3

C/3/name

S U1 &~ W N

new C/1

C/1/name

new C/2

C/2/name

new C/3

C/3/name

SO U1 & W N A

new O/1

0/1-> C/1

new O/2

0/2->C/2

S U1 &~ W N

new O/1

0/1-> C/1

new O/2

0/2->C/2

>3
=
@

http://asq.inf.usi.ch/

EEEEEEEEEEEEE

Orphan State

= D%' E = &

1 new C/1 T new C/1 1 new O/1 1 new O/1
2 C/1/name 2[C/1/name 2l 0/1-> (/1 2[0/1-> (/1
3] new C/2 3] new C/2 3] newQ/2 3[new Q/2
4 C/2/name 4 C/2/name 4 0/2->C/2 4 0/2->C/2
5| new C/3 5| new C/3 5 =

6| C/3/name 6] C/3/name 6 6

Orphan state Is no longer referenced after recovery

>3
=
@

http://asq.inf.usi.ch/

DDDDDDDD

UNIVERSITE PARIS

An expensive, replicated database with high-availability for every
microservice

eeeeeeeee

http://asq.inf.usi.ch/

I-r‘lqi.-‘.

LI R

http://asq.inf.usi.ch/

B

Unstopp Ebl

... 1LI:.I

g

:
,f,-.*- -
T

'll-

2 L —_} . l. 1 d
L - T Lt : - | - -

- y B - F X i

%‘f‘-";ﬁ:—""' R gl 4 LA

a2 i 2

"'l'...l_ i i -

“‘:'II. i = = =
1

http://asq.inf.usi.ch/

D/AUPHINE

IIIIIIIIIIIIIII

Disaster Strikes

J
I N —
Eventual Consistency Recovery Eventual
Consistency Inconsistency

powered by
AlS|Q

http://asq.inf.usi.ch/

D/AUPHINE

IIIIIIIIIIIIIII

Baikup Disaster Strikes

J
I N —
Eventual Consistency Recovery Eventual
Consistency Inconsistency

powered by
AlS|Q

http://asq.inf.usi.ch/

EEEEEEEEEEEEE

Eventual Consistency

Retries are enough to deal with temporary failures of read
operations, eventually the missing data will be found

Backup Disaster Strikes
J J
I N —
Eventual Consistency Recovery Eventual
Consistency Inconsistency

http://asq.inf.usi.ch/

EEEEEEEEEEEEEEE

Eventual Consistency

Retries are enough to deal with temporary failures of read
operations, eventually the missing data will be found

Backup Disaster Strikes
J J
I N —
Eventual Consistency Recovery Eventual
Consistency Inconsistency

Eventual Inconsistency

Retries are useless to deal with permanent failures of read
operations, which used to work just fine before disaster recovery

eeeeeeeee

http://asq.inf.usi.ch/

EEEEEEEEEEEEEEE

Eventual Consistency

Retries are enough to deal with temporary failures of read
operations, eventually the missing data will be found

Backup Disaster Strikes
J J
Y
Eventual Consistency Recovery

Consistency

Eventual Inconsistency

Retries are useless to deal with permanent failures of read
operations, which used to work just fine before disaster recovery

eeeeeeeee

http://asq.inf.usi.ch/

EEEEEEEEEEEEEEE

new C/1
C/1/name

SO U1 B W N

SO U1 B W N A
S U1 &~ W N

eeeeeeeee

http://asq.inf.usi.ch/

EEEEEEEEEEEEEEE

new C/1 1

C/1/name 2

new C/2 3

C/2/name g 0/2 > C/2
6

S U1 &~ W N

SO U1 B W N A
S U1 &~ W N

eeeeeeeee

http://asq.inf.usi.ch/

]]]]]]]]]]]]]]]

new C/1 1 1

C/1/name 2 2

new C/2 3] newC/2 3

C/2/name ; C/2/name g 0/2->C/2
6 6

new C/1
C/1/name

S U1 &~ W N

1
2
3
A
5
6

eeeeeeeee

http://asq.inf.usi.ch/

]]]]]]]]]]]]]]]

1
2
3
A
5
6

Distributed Transactions

=

new C/1

C/1/name

new C/2

C/2/name

S U1 &~ W N

new C/1

C/1/name

new C/2

C/2/name

Customer Order
Ne
(—

SO U1 & W N A

>8

new O/1

0/1-> C/1

new 0/2

0/2->CJ/2

S U1 &~ W N

new O/1

0/1-> C/1

new O/2

0/2->C/2

eeeeeeeee

http://asq.inf.usi.ch/

]]]]]]]]]]]]]]]

5 \&

N new C/1 1

C/1/name 2 C/1/name 2

new C/2 3] newC/2 3

C/2/name g C/2/name g 0/2-> C/2
6 6

new C/1

SO U1 B W N A

Take snapshots only when all microservices are consistent

eeeeeeeee

http://asq.inf.usi.ch/

EEEEEEEEEEEEE

Customer Order

B
W

1 new C/1 1 new C/1 1 new O/1 1 new O/1
2l c/1/name 2[C/1/name 2l 0/1-> C/1 2l 0/1~> C/1
3] new C/2 3] new C/2 3] new 0/2 3] newO/2
g C/2/name 4 C/2/name 4 02> C/2 4 0/2 > C/2

5 5 5
6 6 6 6

Take snapshots only when all microservices are consistent

Backups taken as part of the distributed transaction

>3
=
@

http://asq.inf.usi.ch/

EEEEEEEEEEEEE

Customer Order

B
W

1 new C/1 1 new C/1 1 new O/1 1 new O/1
2l c/1/name 2[C/1/name 2l 0/1-> C/1 2l 0/1~> C/1
3] new C/2 3] new C/2 3] new 0/2 3] newO/2
g C/2/name 4 C/2/name 4 02> C/2 4 0/2 > C/2

5 5 5
6 6 6 6

Take snapshots only when all microservices are consistent
Backups taken as part of the distributed transaction

e Avoid eventual consistency

>3
=
@

http://asq.inf.usi.ch/

EEEEEEEEEEEEE

Microservices

Distributed transactions are notoriously difficult to implement
and as a consequence microservice architectures emphasize
transactionless coordination between services, with explicit

recognition that consistency may only be eventual consistency

and problems are dealt with by compensating operations.

M. Fowler, J. Lewis https://www.martinfowler.com/articles/microservices.html

>3
=
@

https://www.martinfowler.com/articles/microservices.html
http://asq.inf.usi.ch/

EEEEEEEEEEEEE

Microservices

Distributed transactions are notoriously difficult to implement
and as a consequence microservice architectures emphasize
transactionless coordination between services, with explicit

recognition that consistency may only be eventual consistency

and problems are dealt with by compensating operations.

M. Fowler, J. Lewis https://www.martinfowler.com/articles/microservices.html

>3
S
®

EEEEEEEEEEEEE

Microservices

Distributed transactions are notoriously difficult to implement
and as a consequence microservice architectures emphasize
transactionless coordination between services, with explicit

recognition that consistency may only be eventual consistency

and problems are dealt with by compensating operations.

M. Fowler, J. Lewis https://www.martinfowler.com/articles/microservices.html

>3
S
®

EEEEEEEEEEEEEEE

Shipment

il N s
| | &=

Keep data together for microservices that cannot tolerate
e eventual Inconsistency

eeeeeeeee

EEEEEEEEEEEEE Does it apply to you?

More than one stateful microservice

Polyglot persistence

Eventual Consistency

(Cross-microservice references)

Disaster recovery based on backup/restore

>3
S
®

EEEEEEEEEEEEE Does it apply to you?

More than one stateful microservice

Polyglot persistence

Eventual Consistency

(Cross-microservice references)

Disaster recovery based on backup/restore

Independent backups

= Eventual inconsistency (after disaster recovery)

eeeeeeeee

EEEEEEEEEEEEE Does it apply to you?

More than one stateful microservice

Polyglot persistence

Eventual Consistency

(Cross-microservice references)

Disaster recovery based on backup/restore

Synchronized backups (limited autonomy)

= Consistent Disaster Recovery

eeeeeeeee

DAUPHINE

The BAC Theorem

Not
Autonomous

Not
Autonomous

D '.\UPHH.\'{E_'

The BAC Theorem

Not
Autonomous

Not
Autonomous

D/AUPHINE

IIIIIIIIIIIIIII

1 new C/1 L 1 new O/1 1 new O/1
2l C/1/name 2 2l O/1> C/1 2l O/1~> C/1
3] new C/2 3 3 newQ/2 3 newQ/2
4 C/2/name 4 4 02> C/2 4 0/2->C/2
5 5 5/ new 0/3 5| new O/3
6 6 6| 0/3 > (C/3 6l 0/3 > C/3

>3
=
@

D/AUPHINE

IIIIIIIIIIIIIII

1 new C/1 1 new C/1 1 new O/1 1 new 0/1
2[C/1/name 2[C/1/name 2[0/1 > C/1 2[0/1 > C/1
3 new C/2 3 newC/2 3(newO/2 3(new 0/2
“ C/2/name 4 C/2/name 4 02> C/2 4 02> C/2
$ 5 5] new 0O/3 5| new 0/3
6 6 6| 0/3 > (C/3 6l 0O/3 > (C/3

>3
=
@

D/AUPHINE

IIIIIIIIIIIIIII

1 new C/1 1 new C/1 1 new O/1 1 new 0/1
2l C/1/name 2l C/1/name 2l O/1~> C/1 2l O/1-> C/1
3] new C/2 3] new C/2 3] new0/2 3[new 0/2
4 C/2/name 4 C/2/name 4 0/2->C/2 4 0/2->C/2
2 5 5| new O/3 5] new 0/3
° 6 6| 0/3>C/3 | ¢ 0/3~>C(C/3

>3
=
@

D/AUPHINE

IIIIIIIIIIIIIII

1 new C/1 1 new C/1 1 new O/1 1 new O/1
2l C/1/name 2l C/1/name 2l 0/1-> C/1 2l O/1-> C/1
3] new (C/2 3| new (C/2 3 new O/2 3] new 0/2
4 C/2/name 4 C/2/name 4 0/2->C/2 4 0/2 > C/2
> 5 5 5/ new 0/3
0 6 6 6| 0/3 > C/3

>3
=
@

D/AUPHINE

IIIIIIIIIIIIIII

1 new C/1 1 new C/1 1 new O/1 1 new O/1
2l C/1/name 2l C/1/name 2l 0/1-> C/1 2l O/1-> C/1
3] new (C/2 3| new (C/2 3 new O/2 3] new 0/2
4 C/2/name 4 C/2/name 4 0/2->C/2 4 0/2 > C/2
> 5 5 5/ new 0/3
0 6 6 6| 0/3 > C/3

Trim to the oldest backup

>3
=
@

D/AUPHINE

IIIIIIIIIIIIIII

1 new C/1 1 new C/1 1 new O/1 1 new O/1
2l C/1/name 2l C/1/name 2l 0/1-> C/1 2l O/1-> C/1
3] new (C/2 3| new (C/2 3 new O/2 3] new 0/2
4 C/2/name 4 C/2/name 4 0/2->C/2 4 0/2 > C/2
> 5 5 5/ new 0/3
0 6 6 6| 0/3 > C/3

Trim to the oldest backup

Loose even more data!

EEEEEEEEEEEEEEE

The BAC Theorem

When Backing up a whole microservice architecture, i1t is not
possible to have both Consistency and Availability

eeeeeeeee

EEEEEEEEEEEEE

The BAC Theorem

When Backing up a whole microservice architecture, i1t is not
possible to have both Consistency and Availability

Corollaries

1. Microservice architectures eventually become inconsistent
after disaster strikes when recovering from independent
backups

eeeeeeeee

EEEEEEEEEEEEE

The BAC Theorem

When Backing up a whole microservice architecture, i1t is not
possible to have both Consistency and Availability

Corollaries

1. Microservice architectures eventually become inconsistent
after disaster strikes when recovering from independent

backups

2. Achieving consistent backups can be attempted by limiting the
full availability/autonomy of the microservices and

synchronizing their backups

eeeeeeeee

EEEEEEEEEEEEEEE

Dealing with the
Consequences of BAC

1. Eventual Consistency breeds Eventual Inconsistency

2. Trade off: Cost of Recovery vs. Prevention

3. Cluster microservices to be backed up together

AOPHINE

UNIVERSITE PARIS

Guy Pardon, Cesare Pautasso,
Olaf ZIimmermann, Consistent
Disaster Recovery for
Microservices: the BAC Theorem, Rocovery for
IEEE Cloud Computing, 5(1):49- M o
icroservices:

59, January/February 2018 the BAC Theorem

THEME ARTICLE: Fortifying the Cloud

Consistent Disaster

http://design.inf.usi.ch/bac

Guy Pardon How do you back up a microservice? You dump its

Atomik
omikos database. But how do you back up an entire

Cesare Pautasso

Universiia delly Svimara application decomposed into microservices? In this

Italiana, Lugano, Switzerland article, we discuss the tradeoff between the

Olaf Zimmermann availability and consistency of a microservice-based
Hochschule fiir Technik . . PR
Rapperswil (HSR FHO), architecture when a backup of the entire application is
Switzerland being performed. We demonstrate that service

designers have to select two out of three qualities:
backup, availability, and/or consistency (BAC). Service designers must also consider

how to deal with consequences such as broken links, orphan state, and missing state.

Microservices are about the design of fine-grained services, which can be developed and oper-
ated by independent teams, ensuring that an architecture can organically grow and rapidly
evolve.! By definition, each microservice is independently deployable and scalable; each stateful
one relies on its own polyglot persistent storage mechanism. Integration at the database layer is
not recommended, because it introduces coupling between the data representation internally used
by multiple microservices. Instead, microservices should interact only through well-defined
APIs, which—following the REST architectural style>—provide a clear mechanism for manag-
ing the state of the resources exposed by each microservice. Relationships between related enti-
ties are implemented using hypermedia,’ so that representations retrieved from one microservice
API can include links to other entities found on other microservice APIs. While there is no guar-
antee that a link retrieved from one microservice will point to a valid URL served by another, a
basic notion of consistency can be introduced for the microservice-based application, requiring
that such references can always be resolved, thus avoiding broken links. As the scale of the sys-
tem grows, such a guarantee can be gradually weakened, as is currently the case for the World
Wide Web.

IEEE Cloud Computing Copublished by the IEEE CS and IEEE C red b
January/February 2018 49 2325-6095/18/$33.00 ©2 y

Q

D/AUPHINE

IIIIIIIIIIIIIII

&

References

e Guy Pardon, Cesare Pautasso, Olaf Zimmermann, Consistent Disaster
Recovery for Microservices: the BAC Theorem, IEEE Cloud Computing,
5(1):49-59, January/February 2018

e Cesare Pautasso, Olaf Zimmermann, The Web as a Software Connector:
Integration Resting on Linked Resources, IEEE Software, 35(1):93-98,
January/February 2018

e Guy Pardon and Cesare Pautasso, Atomic Distributed Transactions: a
RESTful Design, 5th International Workshop on Web APIs and RESTful
Design (WS-REST), Seoul, Korea, ACM, April, 2014.

e Thomas Erl, Benjamin Carlyle, Cesare Pautasso, Raj Balasubramanian,
SOA with REST: Principles, Patterns & Constraints for Building
Enterprise Solutions with REST, Prentice Hall, 2012

