IIIIIIIIIIIII

Is it possible to consistently
recover a microservice
architecture?

Cesare Pautasso
Software Institute, USI, Lugano, Switzerland

http://www.pautasso.info/talks/2019/lamsade

@pautasso@scholar.social
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Independent DevOps Lifecycle

Monolith microservices
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Autonomous Microservices

Rapid Evolution: If you have to hold a release until some other
team Is ready you do not have two separate microservices

. A failed microservice should not bring
down the whole system
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Customer Order

=

Monolith
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Customer Order

Monolith Microservices

eeeeeeeee



http://asq.inf.usi.ch/

DDDDDDDD

UNIVERSITE PARIS

Customer Order

Monolith Microservices
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Isolated Microservices

For us service orientation means
encapsulating the data with the
business logic that operates on
the data, with the only access
through a published service
Interface. No direct database
access Is allowed from outside
the service, and there’s no data

sharing among the services. Microservices

Werner Vogels, Interviews Web Services:
Learning from the Amazon technology
platform, ACM Queue, 4(4), June 30, 2006
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Stateful Microservices

Microservices prefer letting each service manage its own
database, either different instances of the same database
technology, or entirely different database systems - an approach
called Polyglot Persistence.

M. Fowler, J. Lewis https://www.martinfowler.com/articles/microservices.html
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Stateful Microservices

Microservices prefer letting each service manage its own
database, either different instances of the same database
technology, or entirely different database systems - an approach
called Polyglot Persistence.

M. Fowler, J. Lewis https://www.martinfowler.com/articles/microservices.html
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l_\f@m Inconsistency

Microservice architectures.are doomed to become inconsistent
after disaster strikes
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Devops meets Disaster
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Devops meets Disaster
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How do you back up a
monolith?
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How do you back up a
monolith?

Y

>

Database Backup
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How do you back up one
microservice?

MICro
service
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How do you back up one
microservice?

mICro
service
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Database Backup

eeeeeeeee



http://asq.inf.usi.ch/

DDDDDDD

UNIVERSITE PARIS

How do you back up
an entire microservice architecture?
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How do you back up
an entire microservice architecture?
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How do you back up
an entire microservice architecture?
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How do you back up
an entire microservice architecture?
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Are you sure?
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Example

Customer Order
B B

Product Shipment
_ B

Data relationships across microservices = Hypermedia
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Independent Backup

Customer Order

8 O\ ®

1 1 new C/1 1 new O/1 1
Z 2 C/1/name 2[ 0/1~> C/1 2
3 3] new C/2 3] new O/2 3
4 4 C/2/name 4 0/2 > C/2 4
5 5 5 5
6 6 6 6
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Independent Backup

Customer| Order

=

=

1 new C/1 T new C/1 1T new O/1 1
2l C/1/name 2l C/1/name 2l O/1-~> C/1 2
3] new C/2 3] new C/2 3] newO/2 3
4 C/2/name 4 C/2/name 4 0/2->C/2 4
5 5 5 5
6 6 6 6
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Independent Backup

Customer| Order

@€ -

| new C/1 T new C/1 1 new O/1 1
2l C/1/name 2l C/1/name 2l O/1-~> C/1 2
3] new C/2 3] new C/2 3] newQ/2 3
4 C/2/name 4 C/2/name 4 0/2->C/2 4
e °| new C/3 3] new 0/3 5
6 6| C/3/name 6| 0/3 > C/3 6
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Independent Backup

=

new C/1

C/1/name

new C/2

C/2/name

S U1 &~ W N

Customer|! Order

new C/1

C/1/name

new C/2

C/2/name

new C/3

C/3/name

SO U1 & W N A

new O/1

0/1-> C/1

new O/2

0/2->C/2

new O/3

0/3->(C/3

S U1 &~ W N

>

new O/1

0/1-> C/1

new O/2

0/2->C/2

new O/3

0/3 > (C/3
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Independent Backup

=

new C/1

C/1/name

new C/2

C/2/name

S U1 &~ W N

Customer|! Order

new C/1

C/1/name

new C/2

C/2/name

new C/3

C/3/name

SO U1 & W N A

>8

new O/1

0/1-> C/1

new O/2

0/2->C/2

new O/3

0/3->(C/3

S U1 &~ W N

new O/1

0/1-> C/1

new O/2

0/2->C/2

new O/3

0/3 > (C/3

Backups taken independently at different times
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1 new C/1 L 1 new O/1 1 new O/1
2 C/1/name 2 2l O/1-> C/1 2l O/1~> C/1
3] new C/2 3 3 newQ/2 3 newQ/2
“ C/2/name 4 4 02> C/2 4 0/2-> C/2
5 5 5/ new 0/3 5| new O/3
6 6 6| 0/3 > C/3 6l 0/3 > (/3
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1 new C/1 L 1 new O/1 1
2 C/1/name 2 2l O/1-> C/1 2
3| new C/2 3 3] newO/2 3
“ C/2/name 4 4 02> C/2 4 0/2-> C/2
£ > 5] new 0/3 5
6 6 6| O/3 > (C/3 6

One microservice Is lost
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1 new C/1 L 1 new O/1 1 new O/1
2l C/1/name 2 2l O/1> C/1 2l O/1~> C/1
3] new C/2 3 3 newQ/2 3 newQ/2
4 C/2/name 4 4 02> C/2 4 0/2->C/2
5 5 5/ new 0/3 5| new O/3
6 6 6| 0/3 > C/3 6l 0/3 > C/3
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new C/1

C/1/name

new C/2

C/2/name

S U1 &~ W N

new C/1

C/1/name

new C/2

C/2/name

SO U1 & W N A
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1 new C/1 1 new C/1 1 new 0/1 1

2l C/1/name 2l C/1/name 2l O/1-~> C/1 2

3] new C/2 3] new C/2 3] newQ/2 3

4 C/2/name 4 C/2/name 4 0/2->C/2 4 0/2->C/2
2 5 5| new O/3 5] new 0/3
° 6 6| 0/3>C/3 | 6 0/3 > (/3

Broken link after recovery
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1 new C/1 1 new C/1 1 new 0/1 1

2l C/1/name 2l C/1/name 2l O/1-~> C/1 2

3] new C/2 3] new C/2 3] newQ/2 3

4 C/2/name 4 C/2/name 4 0/2->C/2 4 0/2->C/2
2 5 5| new O/3 5] new 0/3
° 6 6| 0/3>C/3 | 6 0/3 > (/3

Broken link after recovery

Eventual Inconsistency
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Synchronized Backups

=

new C/1

C/1/name

new C/2

C/2/name

S U1 &~ W N

new C/1

C/1/name

new C/2

C/2/name

Customer Order
Ne
(—

SO U1 & W N A

>8

new O/1

0/1-> C/1

new O/2

0/2->C/2

S U1 &~ W N

new O/1

0/1-> C/1

new O/2

0/2->C/2
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5 \&

=

1 new C/1 1 new C/1 1 new O/1 1 new O/1

2l c/1/name 2[ C/1/name 2l 0/1-> C/1 2l 0/1~> C/1

3] new C/2 3] new C/2 3] new0/2 3[ new 0/2

: C/2/name 4 C/2/name 4 0/2->C/2 4 0/2>C/2
5 5 5

6 6 6 6

Backups of all microservices taken at the same time.
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N new C/1 1

C/1/name 2 C/1/name 2

new C/2 3] new C/2 3

C/2/name 4 C/2/name 4 0/2 > C/2
5 5
6 6

new C/1

SO U1 B W N A

Backups of all microservices taken at the same time.

Limited Autonomy
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The BAC theorem
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The BAC theorem

When Backing up a microservice architecture,
It 1S not possible to have both
Consistency and Autonomy
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The BAC theorem

When Backing up a microservice architecture,
It IS not possible to have both
Consistency and Autonomy

Consistency
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Consistency

During normal operations, each microservice will eventually
reach a consistent state

Referential integrity: links across microservice boundaries are
guaranteed eventually not to be broken
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Autonomy

Each microservices has an independent DevOps lifecycle

Backup autonomy: snapshots taken at different times without
any coordination across multiple microservices
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Backup

While backing up the system, Is it possible to take a consistent
snapshot of all microservices without affecting their autonomy?
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Backup

While backing up the system, Is it possible to take a consistent
snapshot of all microservices without affecting their autonomy?

NoO.
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Backup + Autonomy

Backing up each microservice independently will eventually lead
to inconsistency after recovering from backups taken at different
times
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Backup + Consistency

Taking a consistent backup requires to:

e agree among all microservices on when to perform the backup
(limited autonomy)
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Taking a consistent backup requires to:

e agree among all microservices on when to perform the backup
(limited autonomy)

e disallow updates anywhere during the backup
(limited availability)
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Backup + Consistency

Taking a consistent backup requires to:

e agree among all microservices on when to perform the backup
(limited autonomy)

e disallow updates anywhere during the backup
(limited availability)

e walit for the slowest microservice to complete the backup
(limited performance)


http://asq.inf.usi.ch/

DDDDDDDD

UNIVERSITE PARIS

Shared Database

Customer Order
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Product Shipment

A centralized, shared database would require only one backup
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Shared Database

Customer Order Is this still a microservice architecture?

O Yes
O No

- >

5 &

Product Shipment

A centralized, shared database would require only one backup
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Shared Database, Split Schema

Customer

i

C
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Product

Order

"

o

S

A

Shipment

A centralized, shared
database would require
only one backup

Each microservice must
use a logically separate
schema
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Shared Database, Split Schema

Customer Order

i

"

C /’g/
WE ;r
Product Shipment

A centralized, shared
database would require
only one backup

Each microservice must
use a logically separate
schema

What happened to polyglot persistence?
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Links can break

Customer Order
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No guarantees for references crossing microservice boundaries
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Links can break

Customer Order

~y,
N \
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/
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/. .
Product / Shipment
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No guarantees for references crossing microservice boundaries

Microservices Inherit a fundamental property of the Web
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Orphan State
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new C/1

C/1/name

new C/2

C/2/name

new C/3

C/3/name

S U1 &~ W N

new C/1

C/1/name

new C/2

C/2/name

new C/3

C/3/name

SO U1 & W N A

new O/1

0/1-> C/1

new O/2

0/2->C/2

new O/3

0/3->C/3

S U1 &~ W N

new O/1

0/1-> C/1

new O/2

0/2->C/2
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Orphan State

= EI%' E > &

new C/1

C/1/name

new C/2

C/2/name

new C/3

C/3/name

S U1 &~ W N

new C/1

C/1/name

new C/2

C/2/name

new C/3

C/3/name

SO U1 & W N A

new O/1

0/1-> C/1

new O/2

0/2->C/2

new O/3

0/3->C/3

S U1 &~ W N

new O/1

0/1-> C/1

new O/2

0/2->C/2
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Orphan State

= EI%' E = &

new C/1

C/1/name

new C/2

C/2/name

new C/3

C/3/name

S U1 &~ W N

new C/1

C/1/name

new C/2

C/2/name

new C/3

C/3/name

SO U1 & W N A

new O/1

0/1-> C/1

new O/2

0/2->C/2

S U1 &~ W N

new O/1

0/1-> C/1

new O/2

0/2->C/2
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Orphan State
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new C/1

C/1/name

new C/2

C/2/name

new C/3

C/3/name

S U1 &~ W N

new C/1

C/1/name

new C/2

C/2/name

new C/3

C/3/name

SO U1 & W N A

new O/1

0/1-> C/1

new O/2

0/2->C/2

S U1 &~ W N

new O/1

0/1-> C/1

new O/2

0/2->C/2
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Orphan State

= D%' E = &

1 new C/1 T new C/1 1 new O/1 1 new O/1
2 C/1/name 2[ C/1/name 2l 0/1-> (/1 2[ 0/1-> (/1
3] new C/2 3] new C/2 3] newQ/2 3[ new Q/2
4 C/2/name 4 C/2/name 4 0/2->C/2 4 0/2->C/2
5| new C/3 5| new C/3 5 =

6| C/3/name 6] C/3/name 6 6

Orphan state Is no longer referenced after recovery
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An expensive, replicated database with high-availability for every
microservice
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Disaster Strikes

J
I N —
Eventual Consistency Recovery Eventual
Consistency Inconsistency
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AlS|Q



http://asq.inf.usi.ch/

D/AUPHINE

IIIIIIIIIIIIIII

Baikup Disaster Strikes

J
I N —
Eventual Consistency Recovery Eventual
Consistency Inconsistency

powered by
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Eventual Consistency

Retries are enough to deal with temporary failures of read
operations, eventually the missing data will be found

Backup Disaster Strikes
J J
I N —
Eventual Consistency Recovery Eventual
Consistency Inconsistency
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Eventual Consistency

Retries are enough to deal with temporary failures of read
operations, eventually the missing data will be found

Backup Disaster Strikes
J J
I N —
Eventual Consistency Recovery Eventual
Consistency Inconsistency

Eventual Inconsistency

Retries are useless to deal with permanent failures of read
operations, which used to work just fine before disaster recovery

eeeeeeeee
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Eventual Consistency

Retries are enough to deal with temporary failures of read
operations, eventually the missing data will be found

Backup Disaster Strikes
J J
Y
Eventual Consistency Recovery

Consistency

Eventual Inconsistency

Retries are useless to deal with permanent failures of read
operations, which used to work just fine before disaster recovery

eeeeeeeee
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new C/1
C/1/name

SO U1 B W N

SO U1 B W N A
S U1 &~ W N
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new C/1 1

C/1/name 2

new C/2 3

C/2/name g 0/2 > C/2
6

S U1 &~ W N

SO U1 B W N A
S U1 &~ W N
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new C/1 1 1

C/1/name 2 2

new C/2 3] newC/2 3

C/2/name ; C/2/name g 0/2->C/2
6 6

new C/1
C/1/name

S U1 &~ W N

1
2
3
A
5
6
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Distributed Transactions

=

new C/1

C/1/name

new C/2

C/2/name

S U1 &~ W N

new C/1

C/1/name

new C/2

C/2/name

Customer Order
Ne
(—

SO U1 & W N A
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new O/1

0/1-> C/1

new 0/2

0/2->CJ/2

S U1 &~ W N

new O/1

0/1-> C/1

new O/2

0/2->C/2

eeeeeeeee
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N new C/1 1

C/1/name 2 C/1/name 2

new C/2 3] newC/2 3

C/2/name g C/2/name g 0/2-> C/2
6 6

new C/1

SO U1 B W N A

Take snapshots only when all microservices are consistent

eeeeeeeee
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Customer Order

B
W

1 new C/1 1 new C/1 1 new O/1 1 new O/1
2l c/1/name 2[ C/1/name 2l 0/1-> C/1 2l 0/1~> C/1
3] new C/2 3] new C/2 3] new 0/2 3] newO/2
g C/2/name 4 C/2/name 4 02> C/2 4 0/2 > C/2

5 5 5
6 6 6 6

Take snapshots only when all microservices are consistent

Backups taken as part of the distributed transaction
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Customer Order

B
W

1 new C/1 1 new C/1 1 new O/1 1 new O/1
2l c/1/name 2[ C/1/name 2l 0/1-> C/1 2l 0/1~> C/1
3] new C/2 3] new C/2 3] new 0/2 3] newO/2
g C/2/name 4 C/2/name 4 02> C/2 4 0/2 > C/2

5 5 5
6 6 6 6

Take snapshots only when all microservices are consistent
Backups taken as part of the distributed transaction

e Avoid eventual consistency
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Microservices

Distributed transactions are notoriously difficult to implement
and as a consequence microservice architectures emphasize
transactionless coordination between services, with explicit

recognition that consistency may only be eventual consistency

and problems are dealt with by compensating operations.

M. Fowler, J. Lewis https://www.martinfowler.com/articles/microservices.html
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Distributed transactions are notoriously difficult to implement
and as a consequence microservice architectures emphasize
transactionless coordination between services, with explicit

recognition that consistency may only be eventual consistency

and problems are dealt with by compensating operations.

M. Fowler, J. Lewis https://www.martinfowler.com/articles/microservices.html
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Keep data together for microservices that cannot tolerate
e eventual Inconsistency
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EEEEEEEEEEEEE Does it apply to you?

More than one stateful microservice

Polyglot persistence

Eventual Consistency

(Cross-microservice references)

Disaster recovery based on backup/restore
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EEEEEEEEEEEEE Does it apply to you?

More than one stateful microservice

Polyglot persistence

Eventual Consistency

(Cross-microservice references)

Disaster recovery based on backup/restore

Independent backups

= Eventual inconsistency (after disaster recovery)
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EEEEEEEEEEEEE Does it apply to you?

More than one stateful microservice

Polyglot persistence

Eventual Consistency

(Cross-microservice references)

Disaster recovery based on backup/restore

Synchronized backups (limited autonomy)

= Consistent Disaster Recovery
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1 new C/1 L 1 new O/1 1 new O/1
2l C/1/name 2 2l O/1> C/1 2l O/1~> C/1
3] new C/2 3 3 newQ/2 3 newQ/2
4 C/2/name 4 4 02> C/2 4 0/2->C/2
5 5 5/ new 0/3 5| new O/3
6 6 6| 0/3 > (C/3 6l 0/3 > C/3
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1 new C/1 1 new C/1 1 new O/1 1 new 0/1
2l C/1/name 2l C/1/name 2l O/1~> C/1 2l O/1-> C/1
3] new C/2 3] new C/2 3] new0/2 3[ new 0/2
4 C/2/name 4 C/2/name 4 0/2->C/2 4 0/2->C/2
2 5 5| new O/3 5] new 0/3
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1 new C/1 1 new C/1 1 new O/1 1 new O/1
2l C/1/name 2l C/1/name 2l 0/1-> C/1 2l O/1-> C/1
3] new (C/2 3| new (C/2 3 new O/2 3] new 0/2
4 C/2/name 4 C/2/name 4 0/2->C/2 4 0/2 > C/2
> 5 5 5/ new 0/3
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1 new C/1 1 new C/1 1 new O/1 1 new O/1
2l C/1/name 2l C/1/name 2l 0/1-> C/1 2l O/1-> C/1
3] new (C/2 3| new (C/2 3 new O/2 3] new 0/2
4 C/2/name 4 C/2/name 4 0/2->C/2 4 0/2 > C/2
> 5 5 5/ new 0/3
0 6 6 6| 0/3 > C/3

Trim to the oldest backup
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1 new C/1 1 new C/1 1 new O/1 1 new O/1
2l C/1/name 2l C/1/name 2l 0/1-> C/1 2l O/1-> C/1
3] new (C/2 3| new (C/2 3 new O/2 3] new 0/2
4 C/2/name 4 C/2/name 4 0/2->C/2 4 0/2 > C/2
> 5 5 5/ new 0/3
0 6 6 6| 0/3 > C/3

Trim to the oldest backup

Loose even more data!
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The BAC Theorem

When Backing up a whole microservice architecture, i1t is not
possible to have both Consistency and Availability

eeeeeeeee




EEEEEEEEEEEEE

The BAC Theorem

When Backing up a whole microservice architecture, i1t is not
possible to have both Consistency and Availability

Corollaries

1. Microservice architectures eventually become inconsistent
after disaster strikes when recovering from independent
backups
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The BAC Theorem

When Backing up a whole microservice architecture, i1t is not
possible to have both Consistency and Availability

Corollaries

1. Microservice architectures eventually become inconsistent
after disaster strikes when recovering from independent

backups

2. Achieving consistent backups can be attempted by limiting the
full availability/autonomy of the microservices and

synchronizing their backups
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Dealing with the
Consequences of BAC

1. Eventual Consistency breeds Eventual Inconsistency

2. Trade off: Cost of Recovery vs. Prevention

3. Cluster microservices to be backed up together
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Guy Pardon How do you back up a microservice? You dump its

Atomik
omikos database. But how do you back up an entire

Cesare Pautasso

Universiia delly Svimara application decomposed into microservices? In this

Italiana, Lugano, Switzerland article, we discuss the tradeoff between the

Olaf Zimmermann availability and consistency of a microservice-based
Hochschule fiir Technik . . PR
Rapperswil (HSR FHO), architecture when a backup of the entire application is
Switzerland being performed. We demonstrate that service

designers have to select two out of three qualities:
backup, availability, and/or consistency (BAC). Service designers must also consider

how to deal with consequences such as broken links, orphan state, and missing state.

Microservices are about the design of fine-grained services, which can be developed and oper-
ated by independent teams, ensuring that an architecture can organically grow and rapidly
evolve.! By definition, each microservice is independently deployable and scalable; each stateful
one relies on its own polyglot persistent storage mechanism. Integration at the database layer is
not recommended, because it introduces coupling between the data representation internally used
by multiple microservices. Instead, microservices should interact only through well-defined
APIs, which—following the REST architectural style>—provide a clear mechanism for manag-
ing the state of the resources exposed by each microservice. Relationships between related enti-
ties are implemented using hypermedia,’ so that representations retrieved from one microservice
API can include links to other entities found on other microservice APIs. While there is no guar-
antee that a link retrieved from one microservice will point to a valid URL served by another, a
basic notion of consistency can be introduced for the microservice-based application, requiring
that such references can always be resolved, thus avoiding broken links. As the scale of the sys-
tem grows, such a guarantee can be gradually weakened, as is currently the case for the World
Wide Web.
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