
Business Process Management 
with REST

Cesare Pautasso
Faculty of Informatics

University of Lugano, Switzerland

c.pautasso@ieee.org
http://www.pautasso.info

@pautasso

http://www.pautasso.info/�


©2010 - Cesare Pautasso 2

BPM REST



©2010 - Cesare Pautasso 3

Business
Process

Management

RESTful
Web Services



©2009-2010 - Cesare Pautasso - 30.6.2010 4

WS-* Standards Stack



©2009-2010 - Cesare Pautasso - 30.6.2010 5

WS-* Standards Stack

Interoperability

M
etadata

Reliability

Security

Transactions

State

Messaging

ManagementBPM



©2010 - Cesare Pautasso 6

Interoperability

M
etadata

Reliability

Security

Transactions

State

Messaging

ManagementBPM

Can you do it 
with REST?



©2010 - Cesare Pautasso 7

We believe there is huge potential to 
marrying REST with workflow and BPM.

[…]
Combined with the architecture of the Web, 
a workflow service can provide both a truly 
simple, portable, and flexible way to build 
workflow driven integrations and 
applications.

From REST-* (JBoss)

ht
tp

:/
/w

w
w.

jb
os

s.
or

g/
re

st
st

ar
/s

pe
ci

fic
at

io
ns

/w
or

kf
lo

w.
ht

m
l“

”



©2010 - Cesare Pautasso 8

Workflow Management Engine

Act 1

Act 2

Act 3

Act 7

Act 6

Act 5

Act 4

Web
Services

Process Model

Applications

Adapters

Workflow 
Users/Clients

Workflow 
Modelers

Workflow 
Participants

Business Process Management

Databases

BPMN/WS-BPEL

Bus



©2010 - Cesare Pautasso 9

WS-BPEL Primitives

Web
Service<invoke>

Web
Service

<invoke>

<receive>
<reply>

<receive>

 The modeling language natively supports 
the RPC or message-based connectors



©2010 - Cesare Pautasso 10

What is your SOA connector today?

RPC ESB

REST/HTTP



©2010 - Cesare Pautasso 11

REST as a new connector

RPC ESB

REST/HTTP

Call

Publish/Subscribe

Get/Put/Post/Delete



©2010 - Cesare Pautasso 12

Is REST really used?

Atom, 2%

Gdata, 1%

JavaScript, 6%

JSON-RPC, 0%

REST, 
71%

RSS, 1%

SMS, 
0%

SOAP, 17%
XML-RPC, 2%

XMPP, 0%

2042 APIs

ProgrammableWeb.com

30.6.2010



©2010 - Cesare Pautasso 13

 Web Services expose their 
data and functionality trough 
resources identified by URI

 Uniform Interface Principle: 
Clients interact with resources 
through a fix set of verbs. 
Example HTTP:
GET (read), PUT (update), DELETE, POST (catch all), 

 Multiple representations for the same resource
 Hyperlinks model resource relationships and valid 

state transitions for dynamic protocol description 
and discovery

REST in one slide

R
PUT

DELETE

GET

POST



©2010 - Cesare Pautasso 14

RESTful Workflow Management Engine

Act 1

Act 2

Act 3

Act 7

Act 6

Act 5

Act 4

Web
Services

Process Model

Applications

Adapters

Workflow 
Users/Clients

Workflow 
Participants

Business Process Management

Databases

BusR
PUT

DELETE

GET

POST



©2010 - Cesare Pautasso 15

RESTful Workflow Management Engine

Act 1

Act 2

Act 3

Act 7

Act 6

Act 5

Act 4

Process Model

BPM with REST

R

R

RESTful
Service
CompositionRR

Publishing
Processes
as Resources



©2010 - Cesare Pautasso 16

RESTful Workflow Management Engine

This talk will 
focus here

BPM with REST

R

R

RESTful
Service
CompositionRR

Publishing
Processes
as Resources



©2010 - Cesare Pautasso 17

Some Challenges for BPM engines
 Can you drive the execution of tasks with 

PUT/POST/DELETE requests?
 Can you monitor your processes with an 

RSS/ATOM feed?
 Can you bookmark a process instance?
 Can you send an email to your colleague with a 

link to a task from your worklist?
 Can you ask a process to give you links to its 

tasks left to be done?
 Can you publish your process as a resource?
 Can you publish resources from your process?
 Can you call RESTful APIs directly?



©2010 - Cesare Pautasso 18

BPM REST
 Resources/URIs
 Uniform 

Interface
 Representations
Hypermedia

 Processes
 Tasks
 Control Flow
Data Flow
…



©2010 - Cesare Pautasso 19

Everything is a resource

Process Process
Instance

Task Task
Instance

/process/X

/task/Y
/task/Y/1

/process/X/1



©2010 - Cesare Pautasso 20

Hypermedia

Process Process
Instance

Task Task
Instance

/process

/process/name

/process/name/instance

Follow links to discover the processes
deployed as resources

/process/name/instance/taskname

GET

GET

GET



©2010 - Cesare Pautasso 21

Representations

/process/nameGET

ContentType:

text/html
ContentType:

application/xml

ContentType:

text/plain
ContentType:

application/json
ContentType:

image/svg+xml

Web page
with form to start

a new process
instance

Basic textual
description

of the process

Process 
metadata
in JSON

List of process
input parameters



©2010 - Cesare Pautasso 22

Uniform Interface and Hypermedia

/process

/process/name

GET

GET

GET

/process/namePOST

/process/name/instance

DELETE /process/name/instance

List the 
deployed 
processes

Get a form 
describing how 

to start the 
process

Start a new 
process 
instance Check what 

is the state 
of the 

instance

Clean up
(once it is done)



©2010 - Cesare Pautasso 23

Starting or Running a new process?

POST /process

 Should the client be kept 
waiting for the process to run 
until completion?

 Clients may want to block until 
the whole process has 
completed its execution
(or it decides to reply to them)

/process

200 OK
(Process 
Finished

Reply)



©2010 - Cesare Pautasso 24

Starting or Running a new process?

POST /process

GET /process/x

 The client starting a long 
running process is redirected to 
a location x representing the 
newly started process instance

 The process and the client run 
asynchronously

 The client may retrieve the 
current state of the process 
instance at any time

/process

202 Accepted
Location: x

200 OK



©2010 - Cesare Pautasso 25

Uniform Interface and Hypermedia

/task

/task/name/instance

GET

GET

GET

/task/name/instancePOST

/task/name/instance

List the 
active tasks Get a form 

describing how 
to perform the 

task

Finish 
the task

Get the final
representation 

of the completed 
task…



©2010 - Cesare Pautasso 26

POST or PUT?

/task

/task/name/instance

GET

GET

GET

/task/name/instancePOST

/task/name/instance

…

Note:
PUT could also be 

used here
to set the state 

(Finished, Failed)
of the task



27

Example: RESTBucks

Jim Webber, Savas Parastatidis, Ian Robinson http://restinpractice.com/

http://restinpractice.com/�


©2010 - Cesare Pautasso 28

Simple RESTBucks Example

/rest/restbucks/order/1.0/{id}

/tasks/restbucks/order/1.0/{id}/payment

/receipt/{uuid}

/rest/restbucks/order/1.0/ POST

POST

GET

GET



Resources

Private Tasks

©2010 - Cesare Pautasso 29

Simple RESTBucks Example
Hypermedia-centric service design (and implementation)
done with a business process model 



©2010 - Cesare Pautasso 30

Instantiating a process
GET /rest/restbucks/order/1.0/

Retrieve a form which describes how to instantiate a new process



©2010 - Cesare Pautasso 31

Instantiating a process
POST /rest/restbucks/order/1.0/

Start = non blocking 
(redirect to URI of 
the new instance)

Run = blocking 
(client waits until 
the process replies)



©2010 - Cesare Pautasso 32

Interacting with a task

GET 
/task/restbucks/order/1.0/0/payment



©2010 - Cesare Pautasso 33

Interacting with a task

POST /rest/restbucks/order/1.0/0/payment



©2010 - Cesare Pautasso 34

Interacting with a resource

GET /receipt/2fc7f6e2-8b43-4672-a7c4…



©2010 - Cesare Pautasso 35

Interacting with a resource

DELETE /rest/restbucks/order/1.0/0



©2010 - Cesare Pautasso 36

Deleting a process resource

DELETE /rest/restbucks/order/1.0/0



©2010 - Cesare Pautasso 37

Viewpoints

Data
Flow

Control
Flow

Service
Bindings

SQLREST.URI RESTREST.TASK WS-* …



©2010 - Cesare Pautasso 38

Control
Flow

Control Flow
Dependency



©2010 - Cesare Pautasso 39

Service
Bindings

SQL

REST.URI

REST

REST.TASK

WS-*



©2010 - Cesare Pautasso 40

REST.TASK

Specify the final state 
of the Payment task



©2010 - Cesare Pautasso 41

REST.URI

Specify the state
associated with the URI



©2010 - Cesare Pautasso 42

Data
Flow

Data Flow
(Copy)



©2010 - Cesare Pautasso 43



©2010 - Cesare Pautasso 44

 Myth: RESTful Web services cannot be 
composed (with BPEL) because they do 
not give a static contract description
 Reality: RESTful Web services can 

dynamically negotiate the most 
suitable representation format with 
their clients
 Challenge: How to support dynamic 

typing and content type negotiation in a 
BPM composition language?

Static vs. Dynamic Typing



©2010 - Cesare Pautasso 45

 Myth: Processes cannot be mapped to 
resources because they can change 
their state (independently of their 
clients)
 Reality: REST Resources do not have to 

be passive “CRUD” services but can be 
active and have a life of their own.
 Challenge: How to best let clients 

control an active resource backed up 
by a process instance through the 
uniform interface?

Active Resources



©2010 - Cesare Pautasso 46

 Myth: Processes run for a long time 
and need to interact asynchronously 
with their clients. This cannot be done 
with HTTP.
 Reality: HTTP supports non blocking 

interactions. Each process instance is 
mapped to a resource URI, which can 
be used by clients throughout its 
lifetime.
 Challenge: How to let processes send 

notifications back to their clients?

Synchronous vs. Asychronous



©2010 - Cesare Pautasso 47

 REST resources are a good abstraction 
to publish processes on the Web
 RESTful HTTP is good enough to 

interact without any extension with 
process execution engines and drive 
the execution of process and task 
instances
 If done right, BPM can be a great 

modeling tool for Hypermedia-centric 
service design
(and implementation!)

Conclusions



©2010 - Cesare Pautasso 48

More Information

Cesare Pautasso
Faculty of Informatics, USI Lugano
http://www.pautasso.info/
@pautasso

JOpera
RESTful Process Engine
http://www.jopera.org/
@jopera_org

http://www.pautasso.info/�
http://www.jopera.org/�


© 49

 R. Fielding, Architectural Styles and the Design of Network-
based Software Architectures, PhD Thesis, 
University of California, Irvine, 2000

 C. Pautasso, O. Zimmermann, F. Leymann, RESTful Web 
Services vs. Big Web Services: Making the Right Architectural 
Decision, Proc. of the 17th International World Wide Web 
Conference (WWW2008), Bejing, China, April 2008

 C. Pautasso, BPEL for REST, Proc. of the 7th International 
Conference on Business Process Management 
(BPM 2008), Milano, Italy, September 2008

 C. Pautasso, Composing RESTful Services with JOpera,
In: Proc. of the International Conference on Software 
Composition (SC2009), July 2009, Zurich, Switzerland. 

References

http://www.ics.uci.edu/%7Efielding/pubs/dissertation/top.htm�
http://www.ics.uci.edu/%7Efielding/pubs/dissertation/top.htm�
http://www.jopera.org/docs/publications/2008/restws�
http://www.jopera.org/docs/publications/2008/restws�
http://www.jopera.org/docs/publications/2008/restws�
http://www2008.org/�
http://www.jopera.org/docs/publications/2009/doodlemap�
http://2009.software-composition.org/�


©2010 - Cesare Pautasso 50

 Applying the SOA composition principle to 
REST gives interesting results
 Thanks to hyperlinks, REST brings a new 

(more dynamic and loosely coupled) 
twist to SOA composition
 Composing RESTful services helps to build 

mashups, but is different
 A RESTful API is the perfect abstraction for 

publishing the state of a workflow

Conclusion

Raj Balasubramanian, 
Benjamin Carlyle, 
Thomas Erl, 
Cesare Pautasso, 
SOA with REST, 
Prentice Hall, 
to appear in 2011


	Slide Number 1
	Slide Number 2
	Slide Number 3
	WS-* Standards Stack
	WS-* Standards Stack
	Slide Number 6
	From REST-* (JBoss)
	Business Process Management
	WS-BPEL Primitives
	What is your SOA connector today?
	REST as a new connector
	Is REST really used?
	REST in one slide
	Business Process Management
	BPM with REST
	BPM with REST
	Some Challenges for BPM engines
	Slide Number 18
	Everything is a resource
	Hypermedia
	Representations
	Uniform Interface and Hypermedia
	Starting or Running a new process?
	Starting or Running a new process?
	Uniform Interface and Hypermedia
	POST or PUT?
	Example: RESTBucks
	Simple RESTBucks Example
	Simple RESTBucks Example
	Instantiating a process
	Instantiating a process
	Interacting with a task
	Interacting with a task
	Interacting with a resource
	Interacting with a resource
	Deleting a process resource
	Viewpoints
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Static vs. Dynamic Typing
	Active Resources
	Synchronous vs. Asychronous
	Conclusions
	More Information
	References
	Conclusion
	Slide Number 51
	WS-BPEL Primitives
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Runtime challenges
	Slide Number 59
	REST Scalability
	REST Scalability
	REST Composition
	REST Composition
	Composite Resources
	Composite Resources
	Composite Resources
	Enter HATEOAS
	Composite Representations
	Two composition patterns
	Composite Representation
	Bringing it all together
	Doodle Map Example
	1. Composite Resource
	1. Composite Resource
	2. Composite Representation
	Demo
	DoodleMap Workflow
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Resource Addressing with URI
	Uniform Interface �(GET, POST, PUT, DELETE)�
	Multiple Resource �Representations
	Hyperlinks
	Some Challenges of Composing �RESTful Web Services
	Active, Composite Resources
	Mapping Processes to Resources
	Mapping Tasks to Resources
	BPM for Mashups?
	Moving state around
	Simply aggregating data (feeds)
	Is your composition reusable?
	Single-Origin Sandbox
	Single-Origin Sandbox
	Complementary
	Slide Number 96
	Slide Number 97
	RESTful BPM Challenges
	Modeling challenges
	Slide Number 100
	WS-BPEL Primitives
	BPEL/WSDL 2.0
	RESTful APIs…
	WS-BPEL Primitives
	From REST-*
	Outline
	Solution Space
	Examples
	Abstract Workflow
	Concrete Workflow
	Concrete Workflow
	RESTful Workflows
	Uniform Interface Semantics
	Richardson Maturity Model
	Outline
	Slide Number 116
	Conclusion
	Problems
	A different opinion
	BPM/BPEL (2009)
	BPM 1998
	Web Service Composition Today
	BPEL Primitives
	RESTful Primitives
	Why Composition?
	REST and Reuse
	REST and Reuse
	Towards RESTful BPM
	REST Architectural Elements
	Basic Setup
	Proxy or Gateway?
	RESTful BPM
	Conclusion
	REST Middleware for Composition
	DoodleMap as workflow
	Doodle Map Example
	Doodle Map Example
	Two composition patterns
	REST and Composition
	Access Control and Middleware
	REST design elements
	REST Composition Techniques
	The Goal
	The Goal
	Agenda
	Composite Resources
	Doodle Map �Composite Resources
	Doodle Map Architecture
	Composition and REST: �Some Challenges
	Challenges for BPEL
	Workflows as Resources – URI 
	Reading the state of the workflow resources
	Creating new workflow resources
	Updating the workflow resource
	Deleting workflow resources
	Agenda
	Doodle Map Mashup Architecture
	Slide Number 158
	Discussion
	Conclusion
	REST Patterns - Outline
	REST Architectural Elements
	Basic Setup
	Proxy or Gateway?
	Design Methodology for REST
	Design Space
	Simple Doodle API Example Design
	Simple Doodle API Example
	Simple Doodle API Example
	Simple Doodle API Example
	Simple Doodle API Example
	Real Doodle Demo
	Design Patterns
	Pattern: Uniform Contract
	Pattern: Uniform Contract
	Example Uniform Contract
	POST vs. GET
	POST vs. PUT
	Pattern: Endpoint Redirection
	Endpoint Redirection with HTTP
	Pattern: Entity Endpoint
	Pattern: Entity Endpoint
	URI - Uniform Resource Identifier
	What is a “nice” URI?
	URI Design Guidelines
	Pattern: Content Negotiation
	Pattern: Content Negotiation
	Content Negotiation in HTTP
	Advanced Content Negotiation
	Forced Content Negotiation
	Multi-Dimensional Negotiation
	Exception Handling
	Pattern: Idempotent Capability
	Pattern: Idempotent Capability
	Idempotent vs. Unsafe
	Dealing with Concurrency
	Dealing with Concurrency
	REST Patterns - Outline
	REST Design Patterns
	Antipatterns - REST vs. HTTP
	Antipatterns – HTTP as a tunnel
	Antipatterns – HTTP as a tunnel
	Antipatterns – Cookies
	Stateless or Stateful?
	Stateless or Stateful?
	Pattern: Message-based Logic Deferral
	Pattern: Consumer-processed Composition
	Pattern: Entity Linking
	Pattern: Entity Linking
	Antipatterns - REST vs. HTTP
	Stateless or Stateful?
	Pattern: Distributed Response Caching
	Pattern: Message-based State Deferral
	Blocking or Non-Blocking?
	Slide Number 215
	About Cesare Pautasso
	Slide Number 217
	Slide Number 218

