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WS-* Standards Stack
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We believe there is huge potential to 
marrying REST with workflow and BPM.

[…]
Combined with the architecture of the Web, 
a workflow service can provide both a truly 
simple, portable, and flexible way to build 
workflow driven integrations and 
applications.

From REST-* (JBoss)
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Workflow Management Engine
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WS-BPEL Primitives

Web
Service<invoke>

Web
Service

<invoke>

<receive>
<reply>

<receive>

 The modeling language natively supports 
the RPC or message-based connectors
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What is your SOA connector today?

RPC ESB

REST/HTTP
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REST as a new connector

RPC ESB

REST/HTTP

Call

Publish/Subscribe

Get/Put/Post/Delete
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Is REST really used?

Atom, 2%

Gdata, 1%

JavaScript, 6%

JSON-RPC, 0%

REST, 
71%

RSS, 1%

SMS, 
0%

SOAP, 17%
XML-RPC, 2%

XMPP, 0%

2042 APIs

ProgrammableWeb.com

30.6.2010
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 Web Services expose their 
data and functionality trough 
resources identified by URI

 Uniform Interface Principle: 
Clients interact with resources 
through a fix set of verbs. 
Example HTTP:
GET (read), PUT (update), DELETE, POST (catch all), 

 Multiple representations for the same resource
 Hyperlinks model resource relationships and valid 

state transitions for dynamic protocol description 
and discovery

REST in one slide
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RESTful Workflow Management Engine

This talk will 
focus here

BPM with REST

R
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Some Challenges for BPM engines
 Can you drive the execution of tasks with 

PUT/POST/DELETE requests?
 Can you monitor your processes with an 

RSS/ATOM feed?
 Can you bookmark a process instance?
 Can you send an email to your colleague with a 

link to a task from your worklist?
 Can you ask a process to give you links to its 

tasks left to be done?
 Can you publish your process as a resource?
 Can you publish resources from your process?
 Can you call RESTful APIs directly?
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BPM REST
 Resources/URIs
 Uniform 

Interface
 Representations
Hypermedia

 Processes
 Tasks
 Control Flow
Data Flow
…
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Everything is a resource

Process Process
Instance

Task Task
Instance

/process/X

/task/Y
/task/Y/1

/process/X/1
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Hypermedia

Process Process
Instance

Task Task
Instance

/process

/process/name

/process/name/instance

Follow links to discover the processes
deployed as resources

/process/name/instance/taskname

GET

GET

GET
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Representations

/process/nameGET

ContentType:

text/html
ContentType:

application/xml

ContentType:

text/plain
ContentType:

application/json
ContentType:

image/svg+xml

Web page
with form to start

a new process
instance

Basic textual
description

of the process

Process 
metadata
in JSON

List of process
input parameters
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Uniform Interface and Hypermedia

/process

/process/name

GET

GET

GET

/process/namePOST

/process/name/instance

DELETE /process/name/instance

List the 
deployed 
processes

Get a form 
describing how 

to start the 
process

Start a new 
process 
instance Check what 

is the state 
of the 

instance

Clean up
(once it is done)
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Starting or Running a new process?

POST /process

 Should the client be kept 
waiting for the process to run 
until completion?

 Clients may want to block until 
the whole process has 
completed its execution
(or it decides to reply to them)

/process

200 OK
(Process 
Finished

Reply)
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Starting or Running a new process?

POST /process

GET /process/x

 The client starting a long 
running process is redirected to 
a location x representing the 
newly started process instance

 The process and the client run 
asynchronously

 The client may retrieve the 
current state of the process 
instance at any time

/process

202 Accepted
Location: x

200 OK
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Uniform Interface and Hypermedia

/task

/task/name/instance

GET

GET

GET

/task/name/instancePOST

/task/name/instance

List the 
active tasks Get a form 

describing how 
to perform the 

task

Finish 
the task

Get the final
representation 

of the completed 
task…
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POST or PUT?

/task

/task/name/instance

GET

GET

GET

/task/name/instancePOST

/task/name/instance

…

Note:
PUT could also be 

used here
to set the state 

(Finished, Failed)
of the task
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Example: RESTBucks

Jim Webber, Savas Parastatidis, Ian Robinson http://restinpractice.com/

http://restinpractice.com/�
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Simple RESTBucks Example

/rest/restbucks/order/1.0/{id}

/tasks/restbucks/order/1.0/{id}/payment

/receipt/{uuid}

/rest/restbucks/order/1.0/ POST

POST

GET

GET



Resources

Private Tasks
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Simple RESTBucks Example
Hypermedia-centric service design (and implementation)
done with a business process model 
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Instantiating a process
GET /rest/restbucks/order/1.0/

Retrieve a form which describes how to instantiate a new process
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Instantiating a process
POST /rest/restbucks/order/1.0/

Start = non blocking 
(redirect to URI of 
the new instance)

Run = blocking 
(client waits until 
the process replies)
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Interacting with a task

GET 
/task/restbucks/order/1.0/0/payment
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Interacting with a task

POST /rest/restbucks/order/1.0/0/payment
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Interacting with a resource

GET /receipt/2fc7f6e2-8b43-4672-a7c4…
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Interacting with a resource

DELETE /rest/restbucks/order/1.0/0
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Deleting a process resource

DELETE /rest/restbucks/order/1.0/0



©2010 - Cesare Pautasso 37

Viewpoints

Data
Flow

Control
Flow

Service
Bindings

SQLREST.URI RESTREST.TASK WS-* …
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Control
Flow

Control Flow
Dependency
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Service
Bindings

SQL

REST.URI

REST

REST.TASK

WS-*
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REST.TASK

Specify the final state 
of the Payment task
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REST.URI

Specify the state
associated with the URI
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Data
Flow

Data Flow
(Copy)
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 Myth: RESTful Web services cannot be 
composed (with BPEL) because they do 
not give a static contract description
 Reality: RESTful Web services can 

dynamically negotiate the most 
suitable representation format with 
their clients
 Challenge: How to support dynamic 

typing and content type negotiation in a 
BPM composition language?

Static vs. Dynamic Typing
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 Myth: Processes cannot be mapped to 
resources because they can change 
their state (independently of their 
clients)
 Reality: REST Resources do not have to 

be passive “CRUD” services but can be 
active and have a life of their own.
 Challenge: How to best let clients 

control an active resource backed up 
by a process instance through the 
uniform interface?

Active Resources
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 Myth: Processes run for a long time 
and need to interact asynchronously 
with their clients. This cannot be done 
with HTTP.
 Reality: HTTP supports non blocking 

interactions. Each process instance is 
mapped to a resource URI, which can 
be used by clients throughout its 
lifetime.
 Challenge: How to let processes send 

notifications back to their clients?

Synchronous vs. Asychronous
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 REST resources are a good abstraction 
to publish processes on the Web
 RESTful HTTP is good enough to 

interact without any extension with 
process execution engines and drive 
the execution of process and task 
instances
 If done right, BPM can be a great 

modeling tool for Hypermedia-centric 
service design
(and implementation!)

Conclusions
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More Information

Cesare Pautasso
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JOpera
RESTful Process Engine
http://www.jopera.org/
@jopera_org
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 Applying the SOA composition principle to 
REST gives interesting results
 Thanks to hyperlinks, REST brings a new 

(more dynamic and loosely coupled) 
twist to SOA composition
 Composing RESTful services helps to build 

mashups, but is different
 A RESTful API is the perfect abstraction for 

publishing the state of a workflow

Conclusion

Raj Balasubramanian, 
Benjamin Carlyle, 
Thomas Erl, 
Cesare Pautasso, 
SOA with REST, 
Prentice Hall, 
to appear in 2011
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