
SOA with REST

Cesare Pautasso
Faculty of Informatics

University of Lugano, Switzerland

c.pautasso@ieee.org
http://www.pautasso.info

http://www.pautasso.info/�

©2010 - Cesare Pautasso 2

©2010 - Cesare Pautasso 3

Abstract
 Recent technology trends in Web Services indicate that a

solution eliminating the perceived complexity of the WS-*
standard technology stack may be in sight: advocates of
REpresentational State Transfer (REST) have come to
believe that their ideas explaining why the World Wide Web
works are just as applicable to solve enterprise application
integration problems. In this talk we take a close look at the
potential for convergence of service orientation and the
REST architectural style. We highlight the benefits in terms
of simplicity, loose coupling, and performance of a RESTful
approach to SOA and discuss the most important SOA
design patterns that become available once REST is
introduced..

©2010 - Cesare Pautasso 4

Acknowledgements
 The following distinguished individuals have

contributed to the the patterns, ideas and reviewed
some of the material presented in this talk:
 Raj Balasubramanian
 Benjamin Carlyle
 Thomas Erl
 Stefan Tilkov
 Erik Wilde
 Herbjorn Wilhelmsen
 Jim Webber

©2010 - Cesare Pautasso 5

SOA with REST - Outline
• Introduction
• RESTful Service Design
• Simple Doodle Service Example & Demo
• Some REST-inspired SOA Design Patterns

• Entity Endpoint
• Uniform Contract
• Endpoint Redirection
• Content Negotiation

• Discussion

©2010 - Cesare Pautasso 6

HTTP

HTMLWeb
Browser

Web
Server

(HTTP)

SOAP

ServerClient XML
WSDL

WS-* Web Services (2000)

Web Sites (1992)

©2010 - Cesare Pautasso 7

(HTTP)

SOAP

ServerClient XML
WSDL

WS-* Web Services (2000)

RESTful Web Services (2007)

Client HTTP

PO
-XM

L

RSS/Atom

JSO
N

Web
Server

WADL

©2008 Cesare Pautasso 8

Is REST being used?
S

lide from
 P

aul D
ow

ney, B
T

©2010 - Cesare Pautasso 9

RESTful Service Design
1. Identify resources to be exposed as

services (e.g., yearly risk report, book
catalog, purchase order, open bugs,
polls and votes)

2. Model relationships (e.g., containment,
reference, state transitions) between
resources with hyperlinks that can be
followed to get more details (or perform
state transitions)

3. Define “nice” URIs to address the
resources

4. Understand what it means to do a GET,
POST, PUT, DELETE for each resource
(and whether it is allowed or not)

5. Design and document resource
representations

6. Implement and deploy on Web server
7. Test with a Web browser

G
ET

PUT

POST

D
ELETE

/loan

/balance

/client

/book

/order ?

/soap

©2010 - Cesare Pautasso 10

Design Space
M Representations (Variable)

©2010 - Cesare Pautasso 11

A new kind of Service

• GetInvoice
• ReportYearEnd
• UpdateClient

GET /invoices/{id}
GET /reports/{year}
PUT /clients/{id}

 From Service Capabilities to Resources
 From Service Contracts to the Uniform Contract

©2010 - Cesare Pautasso 12

Simple Doodle REST API Example
1. Resources:

polls and votes
2. Containment Relationship:

G
ET

PUT

POST

D
ELETE

/poll

/poll/{id}

/poll/{id}/vote

/poll/{id}/vote/{id} ?

poll
{id1}

3. URIs embed IDs of “child”
instance resources

4. POST on the container is used to
create child resources

5. PUT/DELETE for updating and
removing child resources

{id2}

{id3}

vote

{id4}

{id5}

©2010 - Cesare Pautasso 13

Simple Doodle API Example
1. Creating a poll

(transfer the state of a new poll on the Doodle service)

2. Reading a poll
(transfer the state of the poll from the Doodle service)

POST /poll
<options>A,B,C</options>

201 Created
Location: /poll/090331x

GET /poll/090331x

200 OK
<options>A,B,C</options>
<votes href=“/vote”/>

/poll
/poll/090331x
/poll/090331x/vote

©2010 - Cesare Pautasso 14

Simple Doodle API Example
 Participating in a poll by creating a new vote sub-resource

POST /poll/090331x/vote
<name>C. Pautasso</name>
<choice>B</choice>

201 Created
Location:
/poll/090331x/vote/1

GET /poll/090331x

200 OK
<options>A,B,C</options>
<votes><vote id=“1”>
<name>C. Pautasso</name>
<choice>B</choice>
</vote></votes>

/poll
/poll/090331x
/poll/090331x/vote
/poll/090331x/vote/1

©2010 - Cesare Pautasso 15

Simple Doodle API Example
 Existing votes can be updated (access control headers not shown)

PUT /poll/090331x/vote/1
<name>C. Pautasso</name>
<choice>C</choice>

200 OK

GET /poll/090331x

200 OK
<options>A,B,C</options>
<votes><vote id=“/1”>
<name>C. Pautasso</name>
<choice>C</choice>
</vote></votes>

/poll
/poll/090331x
/poll/090331x/vote
/poll/090331x/vote/1

©2010 - Cesare Pautasso 16

Simple Doodle API Example
 Polls can be deleted once a decision has been made

DELETE /poll/090331x

200 OK

GET /poll/090331x

404 Not Found

/poll
/poll/090331x
/poll/090331x/vote
/poll/090331x/vote/1

©2010 - Cesare Pautasso 17

What is your SOA Connector today?

RPC ESB

WWW

©2010 - Cesare Pautasso 18

Design Patterns
M Representations (Variable)

Entity
Endpoint

Content
Negotiation

Uniform
Contract

Endpoint
Redirect

©2010 - Cesare Pautasso 19

Pattern: Uniform Contract

 How can consumers take advantage of multiple evolving
service endpoints?

 Problem: Accessing similar services requires consumers to
access capabilities expressed in service-specific contracts.
The consumer needs to be kept up to date with respect to
many evolving individual contracts.

Consumer Provider CH

Provider US

calculateRate()

retrieveTaxRate()

Provider IT

figureOutRateForTax()

©2010 - Cesare Pautasso 20

Pattern: Uniform Contract

 Solution: Standardize a uniform contract across alternative
service endpoints that is abstracted from the specific
capabilities of individual services.

 Benefits: Service Abstraction, Loose Coupling, Reusability,
Discoverability, Composability.

Consumer

Provider US

Provider CH

Provider IT

GET www.irs.gov/rate

GET www.admin.ch/tax/rate

GET www.tesoro.it/tasse/iva

©2010 - Cesare Pautasso 21

Example Uniform Contract

CRUD HTTP
CREATE POST Create a

sub resource

READ GET Retrieve the current
state of the resource

UPDATE PUT
Initialize or update the

state of a resource
at the given URI

DELETE DELETE
Clear a resource,
after the URI is no

longer valid

©2010 - Cesare Pautasso 22

POST vs. GET
 GET is a read-only operation.

It can be repeated without
affecting the state of the
resource (idempotent) and
can be cached.

Note: this does not mean that
the same representation will
be returned every time.

 POST is a read-write
operation and may change
the state of the resource and
provoke side effects on the
server.

Web browsers warn
you when refreshing
a page generated
with POST

©2010 - Cesare Pautasso 23

POST vs. PUT
What is the right way of creating resources (initialize their state)?
PUT /resource/{id}
201 Created
Problem: How to ensure resource {id} is unique?
(Resources can be created by multiple clients concurrently)
Solution 1: let the client choose a unique id (e.g., GUID)

POST /resource
301 Moved Permanently
Location: /resource/{id}
Solution 2: let the server compute the unique id
Problem: Duplicate instances may be created if requests are
repeated due to unreliable communication

©2010 - Cesare Pautasso 24

Pattern: Endpoint Redirection

 How can consumers of a service endpoint adapt when service
inventories are restructured?

 Problem: Service inventories may change over time for
business or technical reasons. It may not be possible to
replace all references to old endpoints simultaneously.

 Solution: Automatically refer service consumers that access
the stale endpoint identifier to the current identifier.

Consumer Service Endpoint

Stale Reference

Consumer Old Endpoint New Endpoint

Redirect

©2010 - Cesare Pautasso 25

Endpoint Redirection with HTTP

GET /old

301 Moved Permanently
Location: /new

GET /new

200 OK

 HTTP natively supports
the Endpoint redirection
pattern using a
combination of 3xx
status codes and
standard headers:
 301 Moved Permanently
 307 Temporary Redirect
 Location: /newURI

/new/old

 Tip: Redirection responses can be chained.
 Warning: do not create redirection loops!

©2010 - Cesare Pautasso 26

Pattern: Entity Endpoint

 How can entities be positioned as reusable enterprise resources?
 Problem: A service with a single endpoint is too coarse-grained when its

capabilities need to be invoked on its data entities. A consumer needs to
work with two identifiers: a global one for the service and a local one for
the entity managed by the service. Entity identifiers cannot be reused and
shared among multiple services

Consumer
Provider
Endpoint

X
X Y Z

A B C

Z

Business Entities

©2010 - Cesare Pautasso 27

Pattern: Entity Endpoint

 Solution: expose each entitity as individual lightweight
endpoints of the service they reside in

 Benefits: Global addressability of service entities

Consumer Provider Entity Endpoints

X Z A B CY

©2010 - Cesare Pautasso 28

URI - Uniform Resource Identifier

 Internet Standard for resource naming and identification
(originally from 1994, revised until 2005)

 Examples:
http://tools.ietf.org/html/rfc3986

https://www.google.ch/search?q=rest&start=10#1

 REST does not advocate the use of “nice” URIs
 In most HTTP stacks URIs cannot have arbitrary length (4Kb)

URI Scheme Authority Path

Query Fragment

©2010 - Cesare Pautasso 29

What is a “nice” URI?

http://map.search.ch/lugano

http://maps.google.com/maps?f=q&hl=en&q=lugano,
+switzerland&layer=&ie=UTF8&z=12&om=1&iwloc=addr

http://maps.google.com/lugano

A RESTful service is much more than just a set of nice URIs

©2010 - Cesare Pautasso 30

URI Design Guidelines
 Prefer Nouns to Verbs
 Keep your URIs short
 If possible follow a

“positional” parameter-
passing scheme for
algorithmic resource query
strings (instead of the
key=value&p=v encoding)

 Some use URI postfixes to
specify the content type

 Do not change URIs
 Use redirection if you really

need to change them

GET /book?isbn=24&action=delete
DELETE /book/24

 Note: REST URIs are opaque
identifiers that are meant to
be discovered by following
hyperlinks and not
constructed by the client

 This may break the
abstraction

 Warning: URI Templates
introduce coupling between
client and server

©2010 - Cesare Pautasso 31

Pattern: Content Negotiation

 How can services support different consumers without
changing their contract?

 Problem: Service consumers may change their requirements in
a way that is not backwards compatible. A service may have to
support both old and new consumers without having to
introduce a specific capability for each kind of consumer.

Consumer

Service
New Consumer

?

©2010 - Cesare Pautasso 32

Pattern: Content Negotiation

 Solution: specific content and data representation formats to
be accepted or returned by a service capability is negotiated at
runtime as part of its invocation. The service contract refers to
multiple standardized “media types”.

 Benefits: Loose Coupling, Increased Interoperability, Increased
Organizational Agility

Consumer

Service
New Consumer

©2010 - Cesare Pautasso 33

Content Negotiation in HTTP
Negotiating the message format does not require to send more

messages (the added flexibility comes for free)
GET /resource
Accept: text/html, application/xml,

application/json
1. The client lists the set of understood formats (MIME types)

200 OK
Content-Type: application/json
2. The server chooses the most appropriate one for the reply
(status 406 if none can be found)

©2010 - Cesare Pautasso 34

Advanced Content Negotiation
Quality factors allow the client to indicate the relative

degree of preference for each representation (or
media-range).

Media/Type; q=X
If a media type has a quality value q=0, then content with

this parameter is not acceptable for the client.
Accept: text/html, text/*; q=0.1

The client prefers to receive HTML (but any other text format
will do with lower priority)

Accept: application/xhtml+xml; q=0.9,
text/html; q=0.5, text/plain; q=0.1
The client prefers to receive XHTML, or HTML if this is not
available and will use Plain Text as a fall back

©2010 - Cesare Pautasso 35

Forced Content Negotiation
The generic URI supports content negotiation
GET /resource
Accept: text/html, application/xml,

application/json

The specific URI points to a specific representation format using
the postfix (extension)

GET /resource.html
GET /resource.xml
GET /resource.json

Warning: This is a conventional practice, not a standard.
What happens if the resource cannot be represented in the

requested format?

©2010 - Cesare Pautasso 36

Multi-Dimensional Negotiation
Content Negotiation is very flexible and can be

performed based on different dimensions
(each with a specific pair of HTTP headers).

Request Header Example Values Response Header
Accept: application/xml,

application/json
Content-Type:

Accept-Language: en, fr, de, es Content-Language:

Accept-Charset: iso-8859-5,
unicode-1-1

Charset parameter fo the
Content-Type header

Accept-Encoding: compress,
gzip

Content-Encoding:

©2010 - Cesare Pautasso 37

More SOA with REST Patterns
1. Uniform Contract
2. Entity Endpoint
3. Entity Linking*
4. Content Negotiation
5. Distributed Response Caching*
6. Endpoint Redirection
7. Idempotent Capability*
8. Message-based State Deferral*
9. Message-based Logic Deferral*
10.Consumer-Processed Composition*

*Not Included in this talk

©2010 - Cesare Pautasso 38

Conclusion

• GetInvoice
• ReportYearEnd
• UpdateClient

GET /invoices/{id}
GET /reports/{year}
PUT /clients/{id}

©2010 - Cesare Pautasso 39

 SOA comes from the business IT domain, while REST
comes from the World Wide Web.

 REST is more at home with HTTP and HTML, while SOA is
more at home with SOAP and WSDL.

 Some REST advocates see the Web Services stack both
as begin synonymous with SOA and as an invader in the
architecture of the "real" Web. Some SOA advocates see
REST as an unnecessary diversion from ensuring
connectivity between enterprise service bus technologies
supplied by different vendors.

 Despite their different histories, REST and SOA can learn
a lot from each other.

 SOA with REST aims to forge an effective architectural
model both for enterprise computing and for computing
on the World Wide Web that brings the best of both
worlds together

Conclusion

© 40

 R. Fielding, Architectural Styles and the Design of Network-based
Software Architectures, PhD Thesis,
University of California, Irvine, 2000

 C. Pautasso, O. Zimmermann, F. Leymann, RESTful Web Services vs.
Big Web Services: Making the Right Architectural Decision, Proc. of the
17th International World Wide Web Conference (WWW2008), Bejing,
China, April 2008

 C. Pautasso, BPEL for REST, Proc. of the 7th International Conference
on Business Process Management
(BPM 2008), Milano, Italy, September 2008

 C. Pautasso, Composing RESTful Services with JOpera,
In: Proc. of the International Conference on Software Composition
(SC2009), July 2009, Zurich, Switzerland.

 R. Balasubramanian, B. Carlyle, T. Erl, C. Pautasso, SOA with REST,
Prentice Hall (to appear in 2010)

 Doodle RESTful API, http://doodle.com/xsd1/RESTfulDoodle.pdf

References

http://www.ics.uci.edu/%7Efielding/pubs/dissertation/top.htm�
http://www.ics.uci.edu/%7Efielding/pubs/dissertation/top.htm�
http://www.jopera.org/docs/publications/2008/restws�
http://www.jopera.org/docs/publications/2008/restws�
http://www2008.org/�
http://www.jopera.org/docs/publications/2009/doodlemap�
http://2009.software-composition.org/�
http://doodle.com/xsd1/RESTfulDoodle.pdf�

	Slide Number 1
	Slide Number 2
	Abstract
	Acknowledgements
	SOA with REST - Outline
	Web Sites (1992)
	RESTful Web Services (2007)
	Is REST being used?
	RESTful Service Design
	Design Space
	A new kind of Service
	Simple Doodle REST API Example
	Simple Doodle API Example
	Simple Doodle API Example
	Simple Doodle API Example
	Simple Doodle API Example
	What is your SOA Connector today?
	Design Patterns
	Pattern: Uniform Contract
	Pattern: Uniform Contract
	Example Uniform Contract
	POST vs. GET
	POST vs. PUT
	Pattern: Endpoint Redirection
	Endpoint Redirection with HTTP
	Pattern: Entity Endpoint
	Pattern: Entity Endpoint
	URI - Uniform Resource Identifier
	What is a “nice” URI?
	URI Design Guidelines
	Pattern: Content Negotiation
	Pattern: Content Negotiation
	Content Negotiation in HTTP
	Advanced Content Negotiation
	Forced Content Negotiation
	Multi-Dimensional Negotiation
	More SOA with REST Patterns
	Conclusion
	Conclusion
	References

