
WS-* vs. RESTful Services

Cesare Pautasso
Faculty of Informatics, USI Lugano, Switzerland
c.pautasso@ieee.org
http://www.pautasso.info
http://twitter.com/pautasso

30.6.2010

http://www.pautasso.info/�
http://twitter.com/pautasso�

Abstract
Recent technology trends in Web Services indicate that a solution
eliminating the perceived complexity of the WS-* standard technology
stack may be in sight: advocates of REpresentational State Transfer
(REST) have come to believe that their ideas explaining why the World
Wide Web works are just as applicable to solve enterprise application
integration problems and to radically simplify the plumbing required to
build service-oriented architectures. In this tutorial we take a scientific
look at the WS-* vs. REST debate by presenting a technical comparison
based on architectural principles and decisions. We show that the two
approaches differ in the number of architectural decisions that must be
made and in the number of available alternatives. This discrepancy
between freedom-from-choice and freedom-of-choice quantitatively
explains the perceived complexity difference. We also show that there
are significant differences in the consequences of certain decisions in
terms of resulting development and maintenance costs. Our
comparison helps technical decision makers to assess the two
integration technologies more objectively and select the one that best
fits their needs: REST is well suited for basic, ad hoc integration
scenarios à la mashup, WS-* is more mature and addresses advanced
quality of service requirements commonly found in enterprise
computing.

©2009-2010 - Cesare Pautasso - 30.6.2010 2

About Cesare Pautasso
• Assistant Professor at the Faculty of Informatics,

University of Lugano, Switzerland (since Sept 2007)
• Research Projects:

• SOSOA – Self-Organizing Service Oriented Architectures
• CLAVOS – Continuous Lifelong Analysis and Verification

of Open Services
• BPEL for REST

• Researcher at IBM Zurich Research Lab (2007)
• Post-Doc at ETH Zürich

• Software:
JOpera: Process Support for more than Web services
http://www.jopera.org/

• Ph.D. at ETH Zürich, Switzerland (2004)
• Laurea Politecnico di Milano (2000)
• Representations:

http://www.pautasso.info/ (Web)
http://twitter.com/pautasso/ (Twitter Feed)

©2010 Cesare Pautasso - 30.6.2010 3

http://www.inf.unisi.ch/�
http://www.usi.ch/�
http://www.zurich.ibm.com/�
http://www.iks.inf.ethz.ch/�
http://www.jopera.org/�
http://www.jopera.org/�
http://www.ethz.ch/index_EN�
http://www.pautasso.info/�
http://twitter.com/pautasso/o�

©2009-2010 - Cesare Pautasso - 30.6.2010 4

WS-* Standards Stack

©2009-2010 - Cesare Pautasso - 30.6.2010 5

XML

URI HTTP

MIME

JSON

SSL/TLS

RSS Atom

RESTful Services Standards

AtomPub

©2010 - Cesare Pautasso 6

Is REST really used?

©2010 - Cesare Pautasso 7

Is REST really used?

Atom, 2%

Gdata, 1%

JavaScript, 6%

JSON-RPC, 0%

REST,
71%

RSS, 1%

SMS,
0%

SOAP, 17%
XML-RPC, 2%

XMPP, 0%

2042 APIs

ProgrammableWeb.com

30.6.2010

©2009-2010 - Cesare Pautasso - 30.6.2010 8

Web Sites (1992)

HTTP

HTMLWeb
Browser

Web
Server

(HTTP)

SOAP

ServerClient XML
WSDL

WS-* Web Services (2000)

©2009-2010 - Cesare Pautasso - 30.6.2010 9

RESTful Web Services (2007)

Client HTTP

PO
-XM

L

RSS/Atom

JSO
N

Web
Server

WADL

WS-* Web Services (2000)

(HTTP)

SOAP

ServerClient XML
WSDL

©2009-2010 - Cesare Pautasso - 30.6.2010 10

Outline

1.Introduction
to RESTful Web
Services

2. Comparing REST and WS-*

©2010 - Cesare Pautasso 11

 Web Services expose their
data and functionality trough
resources identified by URI

 Uniform Interface Principle:
Clients interact with resources
through a fix set of verbs.
Example HTTP:
GET (read), POST (create), PUT (update), DELETE

 Multiple representations for the same resource
 Hyperlinks model resource relationships and valid

state transitions for dynamic protocol description
and discovery

REST in one slide

R
PUT

DELETE

GET

POST

©2009-2010 - Cesare Pautasso - 30.6.2010 12

URI - Uniform Resource Identifier

 Internet Standard for resource naming and identification
(originally from 1994, revised until 2005)

 Examples:
http://tools.ietf.org/html/rfc3986

https://www.google.ch/search?q=rest&start=10#1

 REST does not advocate the use of “nice” URIs
 In most HTTP stacks URIs cannot have arbitrary length (4Kb)
 #Fragments are not even sent to the server

URI Scheme Authority Path

Query Fragment

©2009-2010 - Cesare Pautasso - 30.6.2010 13

What is a “nice” URI?

http://map.search.ch/lugano

http://maps.google.com/maps?f=q&hl=en&q=lugano,
+switzerland&layer=&ie=UTF8&z=12&om=1&iwloc=addr

http://maps.google.com/lugano

A RESTful service is much more than just a set of nice URIs

©2009-2010 - Cesare Pautasso - 30.6.2010 14

URI Design Guidelines
 Prefer Nouns to Verbs
 Keep your URIs short
 If possible follow a

“positional” parameter-
passing scheme for
algorithmic resource query
strings (instead of the
key=value&p=v encoding)

 Some use URI postfixes to
specify the content type

 Do not change URIs
 Use redirection if you really

need to change them

GET /book?isbn=24&action=delete
DELETE /book/24

 Note: REST URIs are opaque
identifiers that are meant to
be discovered by following
hyperlinks and not
constructed by the client

 This may break the
abstraction

 Warning: URI Templates
introduce coupling between
client and server

©2009-2010 - Cesare Pautasso - 30.6.2010 15

URI Templates
 URI Templates specify how to construct and parse

parametric URIs.
 On the service they are often used to configure “routing rules”
 On the client they are used to instantiate URIs from local parameters

 Do not hardcode URIs in the client!
 Do not hardcode URI templates in the client!
 Reduce coupling by fetching the URI template from the

service dynamically and fill them out on the client

URI Template URI Template

parameters

URI parameters

URI

client service

©2009-2010 - Cesare Pautasso - 30.6.2010 16

URI Template Examples
 From http://bitworking.org/projects/URI-Templates/

 Template:

http://www.myservice.com/order/{oid}/item/{iid}
 Example URI:

http://www.myservice.com/order/XYZ/item/12345

 Template:

http://www.google.com/search?{-join|&|q,num}

 Example URI:

http://www.google.com/search?q=REST&num=10

http://bitworking.org/projects/URI-Templates/�

©2009-2010 - Cesare Pautasso - 30.6.2010 17

Uniform Interface Constraint

HTTP SAFE IDEM
POTENT

POST Create a
sub resource NO NO

GET Retrieve the current
state of the resource YES YES

PUT
Initialize or update

the state of a
resource

at the given URI
NO YES

DELETE
Clear a resource,
after the URI is no

longer valid
NO YES

©2009-2010 - Cesare Pautasso - 30.6.2010 18

POST vs. GET
 GET is a read-only operation.

It can be repeated without
affecting the state of the
resource (idempotent) and
can be cached.

Note: this does not mean that
the same representation will
be returned every time.

 POST is a read-write
operation and may change
the state of the resource and
provoke side effects on the
server.

Web browsers warn
you when refreshing
a page generated
with POST

©2009-2010 - Cesare Pautasso - 30.6.2010 19

POST vs. PUT
What is the right way of creating resources (initialize their state)?
PUT /resource/{id}
201 Created
Problem: How to ensure resource {id} is unique?
(Resources can be created by multiple clients concurrently)
Solution 1: let the client choose a unique id (e.g., GUID)

POST /resource
301 Moved Permanently
Location: /resource/{id}
Solution 2: let the server compute the unique id
Problem: Duplicate instances may be created if requests are
repeated due to unreliable communication

©2009-2010 - Cesare Pautasso - 30.6.2010 20

REST Architectural Elements

User Agent Origin Server

Cache

Proxy

Gateway

Connector (HTTP)

Client/Server Layered CacheStateless Communication

©2009-2010 - Cesare Pautasso - 30.6.2010 21

Basic Setup

User Agent Origin Server

HTTP

Caching
User Agent

Origin Server

HTTP

User Agent Caching
Origin Server

HTTP

Adding Caching

Caching
User Agent

Caching
Origin Server

HTTP

©2009-2010 - Cesare Pautasso - 30.6.2010 22

Proxy or Gateway?

Client Proxy
HTTP Origin Server

HTTP

Client Gateway
HTTP

Origin Server
HTTP

Intermediaries forward (and may translate) requests and responses

A proxy is chosen by the Client (for caching, or access control)

The use of a gateway (or reverse proxy) is imposed by the server

©2009-2010 - Cesare Pautasso - 30.6.2010 23

Design Methodology
1. Identify resources to be exposed as

services (e.g., yearly risk report, book
catalog, purchase order, open bugs,
polls and votes)

2. Model relationships (e.g., containment,
reference, state transitions) between
resources with hyperlinks that can be
followed to get more details (or perform
state transitions)

3. Define “nice” URIs to address the
resources

4. Understand what it means to do a GET,
POST, PUT, DELETE for each resource
(and whether it is allowed or not)

5. Design and document resource
representations

6. Implement and deploy on Web server
7. Test with a Web browser

G
ET

PUT

POST

D
ELETE

/loan

/balance

/client

/book

/order ?

/soap

©2009-2010 - Cesare Pautasso - 30.6.2010 24

Design Space
M Representations (Variable)

©2009-2010 - Cesare Pautasso - 30.6.2010 25

Simple Doodle API Example
1. Resources:

polls and votes
2. Containment Relationship:

G
ET

PUT

POST

D
ELETE

/poll

/poll/{id}

/poll/{id}/vote

/poll/{id}/vote/{id} ?

poll
{id1}

3. URIs embed IDs of “child”
instance resources

4. POST on the container is used to
create child resources

5. PUT/DELETE for updating and
removing child resources

{id2}

{id3}

vote

{id4}

{id5}

©2009-2010 - Cesare Pautasso - 30.6.2010 26

Simple Doodle API Example
1. Creating a poll

(transfer the state of a new poll on the Doodle service)

2. Reading a poll
(transfer the state of the poll from the Doodle service)

POST /poll
<options>A,B,C</options>

201 Created
Location: /poll/090331x

GET /poll/090331x

200 OK
<options>A,B,C</options>
<votes href=“/vote”/>

/poll
/poll/090331x
/poll/090331x/vote

©2009-2010 - Cesare Pautasso - 30.6.2010 27

Simple Doodle API Example
 Participating in a poll by creating a new vote sub-resource

POST /poll/090331x/vote
<name>C. Pautasso</name>
<choice>B</choice>

201 Created
Location:
/poll/090331x/vote/1

GET /poll/090331x

200 OK
<options>A,B,C</options>
<votes><vote id=“1”>
<name>C. Pautasso</name>
<choice>B</choice>
</vote></votes>

/poll
/poll/090331x
/poll/090331x/vote
/poll/090331x/vote/1

©2009-2010 - Cesare Pautasso - 30.6.2010 28

Simple Doodle API Example
 Existing votes can be updated (access control headers not shown)

PUT /poll/090331x/vote/1
<name>C. Pautasso</name>
<choice>C</choice>

200 OK

GET /poll/090331x

200 OK
<options>A,B,C</options>
<votes><vote id=“/1”>
<name>C. Pautasso</name>
<choice>C</choice>
</vote></votes>

/poll
/poll/090331x
/poll/090331x/vote
/poll/090331x/vote/1

©2009-2010 - Cesare Pautasso - 30.6.2010 29

Simple Doodle API Example
 Polls can be deleted once a decision has been made

DELETE /poll/090331x

200 OK

GET /poll/090331x

404 Not Found

/poll
/poll/090331x
/poll/090331x/vote
/poll/090331x/vote/1

©2009-2010 - Cesare Pautasso - 30.6.2010 30

The End to End View

 The resource acts as an communication
medium that allows services to exchange
representations of their state
 This is not equivalent to sending and receiving

messages from a bus

R

A B
C

PUT GET

GET

©2009-2010 - Cesare Pautasso - 30.6.2010 31

Real Doodle Demo
• Info on the real Doodle API:
http://doodle.com/xsd1/RESTfulDoodle.pdf

• Lightweight demo with Poster Firefox Extension:
http://addons.mozilla.org/en-US/firefox/addon/2691

http://doodle.com/xsd1/RESTfulDoodle.pdf�
http://addons.mozilla.org/en-US/firefox/addon/2691�

©2009-2010 - Cesare Pautasso - 30.6.2010 32

1. Create Poll
POST http://doodle-test.com/api1WithoutAccessControl/polls/
Content-Type: application/xml

<?xml version="1.0" encoding="UTF-8"?><poll
xmlns="http://doodle.com/xsd1"><type>TEXT</type><extensions
rowConstraint="1"/><hidden>false</hidden><writeOnce>false</writeOnce
><requireAddress>false</requireAddress><requireEMail>false</requireEM
ail><requirePhone>false</requirePhone><byInvitationOnly>false</byInvitat
ionOnly><levels>2</levels><state>OPEN</state><title>How is the tutorial
going?</title><description></description><initiator><name>Cesare
Pautasso</name><userId></userId><eMailAddress>test@jopera.org</eM
ailAddress></initiator><options><option>too fast</option><option>right
speed</option><option>too
slow</option></options><participants></participants><comments></com
ments></poll>

Content-Location: {id}

GET http://doodle-test.com/api1WithoutAccessControl/polls/{id}

©2009-2010 - Cesare Pautasso - 30.6.2010 33

2. Vote
POST http://doodle-test.com/api1WithoutAccessControl/polls/{id}/participants
Content-Type: application/xml

<?xml version="1.0" encoding="UTF-8"?>
<participant xmlns="http://doodle.com/xsd1"><name>Cesare
Pautasso</name><preferences><option>0</option><option>1</option><
option>0</option></preferences></participant>

©2009-2010 - Cesare Pautasso - 30.6.2010 34

Antipatterns - REST vs. HTTP

REST HTTP

RESTful HTTP

REST

“RPC”

©2009-2010 - Cesare Pautasso - 30.6.2010 35

Richardson Maturity Model
0. HTTP as an RPC Protocol

(Tunnel POST+POX or POST+JSON)
I. Multiple Resource URIs

(Fine-Grained Global Addressability)
II. Uniform HTTP Verbs

(Contract Standardization)
III. Hypermedia

(Protocol Discoverability)

 A REST API needs to include levels I, II, III
 Degrees of RESTfulness?

©2009-2010 - Cesare Pautasso - 30.6.2010 36

HTTP as a tunnel
 Tunnel through one HTTP Method

GET /api?method=addCustomer&name=Wilde
GET /api?method=deleteCustomer&id=42
GET /api?method=getCustomerName&id=42
GET /api?method=findCustomers&name=Wilde*

 Everything through GET
• Advantage: Easy to test from a Browser address bar

(the “action” is represented in the resource URI)
• Problem: GET should only be used for read-only

(= idempotent and safe) requests.
What happens if you bookmark one of those links?

• Limitation: Requests can only send up to approx. 4KB of data
(414 Request-URI Too Long)

©2009-2010 - Cesare Pautasso - 30.6.2010 37

HTTP as a tunnel
 Tunnel through one HTTP Method
 Everything through POST

• Advantage: Can upload/download an arbitrary amount of data
(this is what SOAP or XML-RPC do)

• Problem: POST is not idempotent and is unsafe (cannot cache
and should only be used for “dangerous” requests)

POST /service/endpoint

<soap:Envelope>
<soap:Body>

<findCustomers>
<name>Pautasso*</name>

</findCustomers>
</soap:Body>

</soap:Envelope>

©2009-2010 - Cesare Pautasso - 30.6.2010 38

Outline

1. Introduction
to RESTful Web Services

2. Comparing REST and WS-*

©2009-2010 - Cesare Pautasso - 30.6.2010 39

Can we really compare?

WS-* REST

©2009-2010 - Cesare Pautasso - 30.6.2010 40

WS-*

Middleware
Interoperability

Standards

REST

Architectural
style for
the Web

Can we really compare?

©2009-2010 - Cesare Pautasso - 30.6.2010 41

How to compare?

WS-*

Middleware
Interoperability

Standards

REST

Architectural
style for
the Web

©2009-2010 - Cesare Pautasso - 30.6.2010 42

Architectural Decisions
 Architectural decisions

capture the main design
issues and the rationale
behind a chosen
technical solution

 The choice between
REST vs. WS-* is an
important architectural
decision for
Web service design

 Architectural decisions
affect one another

Architectural Decision:
Programming Language

Architecture Alternatives:
1. Java
2. C#
3. C++
4. C
5. Eiffel
6. Ruby
7. …

Rationale

©2009-2010 - Cesare Pautasso - 30.6.2010 43

Decision Space Overview

©2009-2010 - Cesare Pautasso - 30.6.2010 44

21 Decisions and 64 alternatives
Classified by level of abstraction:
• 3 Architectural Principles
• 9 Conceptual Decisions
• 9 Technology-level Decisions

Decisions help us to measure the
complexity implied by the choice of

REST or WS-*

Decision Space Overview

©2009-2010 - Cesare Pautasso - 30.6.2010 45

Comparison Overview

1. Protocol Layering
• HTTP = Application-level Protocol (REST)
• HTTP = Transport-level Protocol (WS-*)

2. Loose Coupling
3. Dealing with Heterogeneity

4. What about X?
5. (X = Composition)

6. Software Connectors for Integration

©2009-2010 - Cesare Pautasso - 30.6.2010 46

RESTful Web Service Example

HTTP Client

(Web Browser)

Web Server

Application Server Database

GET /book?ISBN=222
SELECT *

FROM books
WHERE isbn=222

POST /order INSERT
INTO orders301 Location: /order/612

PUT /order/612 UPDATE orders
WHERE id=612

©2009-2010 - Cesare Pautasso - 30.6.2010 47

WS-* Service Example
(from REST perspective)

HTTP Client

(Stub Object)

Web Server

Application Server

POST /soap/endpoint

POST /soap/endpoint

POST /soap/endpoint

return getBook(222)

return new Order()

order.setCustomer(x)

Web Service

Implementation

©2009-2010 - Cesare Pautasso - 30.6.2010 48

Protocol Layering
“The Web is the universe of
globally accessible information”
(Tim Berners Lee)
 Applications should publish

their data on the Web
(through URI)

“The Web is the universal
(tunneling) transport for
messages”
 Applications get a chance

to interact but they remain
“outside of the Web”

Application

(Many) Resource URI

HTTP
POST

Application

1 Endpoint URI

HTTP
GET

HTTP
PUT

HTTP
DEL

HTTP
POST

SOAP (WS-*)

MQ…SMTP

AtomPub JSON …POX

©2009-2010 - Cesare Pautasso - 30.6.2010 49

Coupling Facets
Facets

 Discovery
 Identification
 Binding
 Platform
 Interaction
 Model
 State
 Generated Code
 Conversation

REST
 Referral
 Global
 Late
 Independent
 Asynchronous
 Self-Describing
 Stateless
 None/Dynamic
 Reflective

WS-*
 Centralized
 Context-Based
 Late
 Independent
 Asynchronous
 Shared Model
 Stateless
 Static
 Explicit

More Info on http://dret.net/netdret/docs/loosely-coupled-www2009/

http://dret.net/netdret/docs/loosely-coupled-www2009/�

©2009-2010 - Cesare Pautasso - 30.6.2010 50

Coupling Comparison

©2009-2010 - Cesare Pautasso - 30.6.2010 51

Dealing with Heterogeneity

CICS
IMS

P
icture from

 E
ric N

ew
com

er, IO
N

A

 Enterprise Architectures

HTTP

 Web Applications
 Enable Cooperation Enable Integration

http://images.google.com/imgres?imgurl=cgi.omg.org/graphix/corbvert72.gif&imgrefurl=http://cgi.omg.org/members/identity.html&h=209&w=238&prev=/images%3Fq%3DCORBA%2BLogo%26svnum%3D10%26hl%3Den%26lr%3D%26ie%3DUTF-8%26oe%3DUTF-8�
http://images.google.com/imgres?imgurl=cgi.omg.org/graphix/corbvert72.gif&imgrefurl=http://cgi.omg.org/members/identity.html&h=209&w=238&prev=/images%3Fq%3DCORBA%2BLogo%26svnum%3D10%26hl%3Den%26lr%3D%26ie%3DUTF-8%26oe%3DUTF-8�
http://www.bea.com/framework.jsp?CNT=homepage_main.jsp&FP=/content�
http://www.bea.com/framework.jsp?CNT=homepage_main.jsp&FP=/content�

©2009-2010 - Cesare Pautasso - 30.6.2010 52

Heterogeneity

Enterprise
Architectures

Web
Applications

REST WS-*

©2009-2010 - Cesare Pautasso - 30.6.2010 53

Heterogeneity

Web
Applications

REST

Enterprise
Architectures

Claim: REST can also be successfully used
to design integrated enterprise applications

Enterprise
Architectures

©2009-2010 - Cesare Pautasso - 30.6.2010 54

Enterprise “Use Cases”

CRUD Services
Web-friendly APIs

Mobile Services Real-time Services
Transactional Services
Composite Services

©2009-2010 - Cesare Pautasso - 30.6.2010 55

Enterprise “Use Cases”

Enterprise
Architectures

REST
WS-*

Part of the debate is about how many
“enterprise” use cases can be covered with

REST as opposed to WS-*

©2009-2010 - Cesare Pautasso - 30.6.2010 56

What about…
 Service Description
 Security
 Asynch Messaging
 Reliable Messaging
 Stateful Services
 Service Composition
 Transactions
 Semantics
 SLAs
 Governance
 …

©2009-2010 - Cesare Pautasso - 30.6.2010 57

What about service description?
 REST relies on human

readable documentation that
defines requests URIs
templates and responses
(XML, JSON media types)

 Interacting with the service
means hours of testing and
debugging URIs manually
built as parameter
combinations. (Is is it really
that simpler building URIs by
hand?)

 Why do we need strongly
typed SOAP messages if both
sides already agree on the
content?

 WADL proposed Nov. 2006
 XForms enough?

 Client stubs can be built from
WSDL descriptions in most
programming languages

 Strong typing
 Each service publishes its

own interface with different
semantics

 WSDL 1.1 (entire port type
can be bound to HTTP GET or
HTTP POST or SOAP/HTTP
POST or other protocols)

 WSDL 2.0 (more flexible,
each operation can choose
whether to use GET or POST)
provides a new HTTP binding

©2009-2010 - Cesare Pautasso - 30.6.2010 58

What about security?

 REST security is all about
HTTPS (HTTP + SSL/TLS)

 Proven track record
(SSL1.0 from 1994)

 HTTP Basic Authentication
(RFC 2617, 1999
RFC 1945, 1996)

 Note: These are also
applicable with REST when
using XML content

 Secure, point to point
communication
(Authentication, Integrity
and Encryption)

 SOAP security extensions
defined by WS-Security
(from 2004)

 XML Encryption (2002)
 XML Signature (2001)

 Secure, end-to-end
communication – Self-
protecting SOAP messages
(does not require HTTPS)

©2009-2010 - Cesare Pautasso - 30.6.2010 59

What about asynchronous
messaging?

 Although HTTP is a
synchronous protocol,
it can be used to “simulate” a
message queue.

POST /queue

202 Accepted
Location:

/queue/message/1230213

GET /queue/message/1230213

DELETE /queue/message/1230213

 SOAP messages can be
transferred using
asynchronous transport
protocols and APIs
(like JMS, MQ, …)

 WS-Addressing can be used
to define transport-
independent endpoint
references

 WS-ReliableExchange defines
a protocol for reliable
message delivery based on
SOAP headers for message
identification and
acknowledgement

©2009-2010 - Cesare Pautasso - 30.6.2010 60

Blocking or Non-Blocking?
 HTTP is a synchronous interaction protocol.

However, it does not need to be blocking.

POST /slow

GET /slow/x

 A Long running request
may time out.

 The server may answer it
with 202 Accepted
providing a URI from which
the response can be
retrieved later.

 Problem: how often should
the client do the polling?
/slow/x could include an
estimate of the finishing
time if not yet completed

/slow

202 Accepted
Location: x

200 OK

204 No Content

©2009-2010 - Cesare Pautasso - 30.6.2010 61

What about reliable
messaging?

 The HTTP uniform interface
defines clear exception
handling semantics

 If a failure occurs it is enough
to retry idempotent methods
(GET, PUT, DELETE)

 With POST, recovery requires
an additional reconciliation
step (usually done with GET)
before the request can be
retried

 POE (POST-Once-Exactly) has
been proposed to also make
POST reliable

 WS-ReliableMessaging
(or WS-Reliability) define a
protocol for reliable message
delivery based on SOAP
headers for message
identification and
acknowledgement

 WS-* middleware can ensure
guaranteed in-order, exactly
once message delivery
semantics

 Hint: Reliable Messaging
does not imply reliable
applications!

©2009-2010 - Cesare Pautasso - 30.6.2010 62

What about stateful services?
 REST provides explicit state

transitions
 Communication is stateless*
 Resources contain data and

hyperlinks representing valid
state transitions

 Clients maintain application
state correctly by navigating
hyperlinks

 Techniques for adding session to
HTTP:
 Cookies (HTTP Headers)
 URI Re-writing
 Hidden Form Fields

 SOAP services have implicit state
transitions
 Servers may maintain

conversation state across
multiple message exchanges

 Messages contain only data
(but do not include information
about valid state transitions)

 Clients maintain state by guessing
the state machine of the service

 Techniques for adding session to
SOAP:
 Session Headers

(non standard)
 WS-Resource Framework

(HTTP on top of SOAP on top of
HTTP)

(*) Each client request to the server must contain all information needed to understand the request, without referring to any
stored context on the server. Of course the server stores the state of its resources, shared by all clients.

©2009-2010 - Cesare Pautasso - 30.6.2010 63

What about composition?

 The basic REST design
elements do not take
composition into account

 WS-BPEL is the standard
Web service composition
language. Business process
models are used to specify
how a collection of services
is orchestrated into a
composite service

 Can we apply WS-BPEL to
RESTful services?

User Agent Origin Server

HTTP

?

Origin Server

Origin Server

User Agent

HTTP

©2010 - Cesare Pautasso 64

REST Scalability

Origin
ServerClient

Proxy/Gateway

 One example of REST middleware is to help
with the scalability of a server, which may
need to service a very large number of
clients

Cache

Clients

©2010 - Cesare Pautasso 65

REST Scalability

Origin
Server

Clients

Proxy/Gateway

 One example of REST middleware is to help
with the scalability of a server, which may
need to service a very large number of
clients

Cache

©2010 - Cesare Pautasso 66

REST Composition

Origin
Server

Clients

Proxy/Gateway

 Composition shifts the attention to the client
which should consume and aggregate from
many servers

©2010 - Cesare Pautasso 67

Servers

REST Composition

Origin Client

 The “proxy” intermediate element which
aggregates the resources provided by
multiple servers plays the role of a
composite RESTful service
 Can/Should we implement it with BPM?

Composite
RESTful
service

©2010 - Cesare Pautasso 68

Composite Resources

PUT

DELETE

GET

POST

PUT

DELETE

GET

POST

C

R
PUT

DELETE

GET

POST

S

©2010 - Cesare Pautasso 69

Composite Resources

State
R

State
S

C

R S

 The composite resource only aggregates the
state of its component resources

©2010 - Cesare Pautasso 70

Composite Resources

State
R

State
S

State
C

C

R S

 The composite resource augments (or caches)
the state of its component resources

©2010 - Cesare Pautasso 71

PUT

PUT

DELETE

DELETE

GET

GETPOST

POST
C

R
S

LinkR

LinkS

Composite
Representation

Composite Representation

©2010 - Cesare Pautasso 72

Composite Representation

Composite
Representation

Origin
Servers

Client

Origin
Server

 A composite representation is interpreted by
the client that follows its hyperlinks and
aggregates the state of the referenced
component resources

©2010 - Cesare Pautasso 73

Bringing it all together

Composite
Representation

Origin
Servers

Client

Composite
RESTful
service

 A composite representation can be
produced by a composite service too

Origin
Servers

©2010 - Cesare Pautasso 74

Doodle Map Example

Composite
Representation

Origin
Servers

Client

Composite
RESTful
service

 Vote on a meeting place based on its
geographic location

Origin
Servers

©2010 - Cesare Pautasso 75

Composite Resource

PUT

DELETE

GET

POST

PUT

DELETE

GET

POST

C

R
PUT

DELETE

GET

POST

S

©2010 - Cesare Pautasso 76

GET

DELETE

GET

POST

C

R
PUT

DELETE

GET

POST

S

Composite Resource

©2010 - Cesare Pautasso 77

Composite Representation

GET

DELETE

GET

POST

C

R
PUT

DELETE

GET

POST

S

DM
LinkG

LinkC

GET
G

LinkD

©2009-2010 - Cesare Pautasso - 30.6.2010 78

Demo

©2009-2010 - Cesare Pautasso - 30.6.2010 79

Doodle Map Architecture

Web Browser Workflow
Engine

RESTful
Web Services

APIs
GET

POST
GET

RE
ST

fu
l A

PI

Watch it on http://www.jopera.org/docs/videos/doodlemap

http://www.jopera.org/docs/videos/doodlemap�

©2010 - Cesare Pautasso 80

DoodleMap Model

©2010 - Cesare Pautasso 81

Viewpoints

Data
Flow

Control
Flow

Service
Bindings

HTTPXPATH XSLTJAVA HTML …

©2010 - Cesare Pautasso 82

Control
Flow

Control Flow
Dependency

©2010 - Cesare Pautasso 83

Service
Bindings

HTTP

XPATH

XSLT

JAVA

HTML

…

©2010 - Cesare Pautasso 84

Data
Flow

Data Flow
(Copy)

©2010 - Cesare Pautasso 85

Was it just a mashup?

Mashup
REST

Composition

Mashup

(It depends on the definition of Mashup)

©2010 - Cesare Pautasso 86

 Read-only vs. Read/Write

Moving state around

PUT

DELETE

GET

POST

PUT

DELETE

GET

POST

C

R
PUT

DELETE

GET

POST

S

©2010 - Cesare Pautasso 87

 Read-only vs. Read/write

Simply aggregating data

GET

GET
C

R
GET

S

©2010 - Cesare Pautasso 88

 UI vs. API Composition

Is your composition reusable?

Composite
Representation

Origin
Servers

Client

Composite
RESTful
service

Origin
Servers

API

UI Reusable
services vs.
Reusable
Widgets

©2010 - Cesare Pautasso 89

 Can you always do this
from a web browser?

Single-Origin Sandbox

Client

Composite
RESTful
service

Origin
Servers

Origin
Servers

Composite
Representation

©2010 - Cesare Pautasso 90

 Security Policies on the client may not
always allow it to aggregate data from
multiple different sources

 This will change very soon with HTML5

Single-Origin Sandbox

Composite
Representation

Client

Composite
RESTful
service

N Origin
Servers

1 Origin Server

©2010 - Cesare Pautasso 91

Complementary

Mashup REST
Composition

Mashup

Read-Only
Read/Write

APIUI

Situational
Reusable

Service
Sandboxed

©2010 - Cesare Pautasso 92

 REST brings a new perspective and new problems to
service composition

 RESTful services can be composed on the server by
defining composite resources and on the client with
composite representations

 Composing RESTful services helps to put the
integration logic of a mashup into a reusable service
API and keep it separate from its UI made out of
reusable widgets

 Business processes can be published on the Web as
RESTful Services

 RESTful Web service composition is different than
mashups, but both can be built using BPM tools like
JOpera

 GET http://www.jopera.org/

Towards REST Composition

http://www.jopera.org/�

©2010 - Cesare Pautasso 93

Software Connectors

Shared Data

Message Bus
Events

Procedure Call
Remote Procedure Call

File Transfer

©2010 - Cesare Pautasso 94

RPC

Remote Procedure Call

Call

• Procedure/Function Calls are the easiest to program with.
• They take a basic programming language construct and make it

available across the network (Remote Procedure Call) to connect
distributed components

• Remote calls are often used within the client/server architectural
style, but call-backs are also used in event-oriented styles for
notifications

©2010 - Cesare Pautasso 95

Hot Folder

File Transfer
(Hot Folder)

Write
Copy

Watch
Read

• Transferring files does not require
to modify components

• A component writes a file, which is
then copied on a different host,
and fed as input into a different
component

• The transfers can be batched with
a certain frequency

©2010 - Cesare Pautasso 96

Shared Database

Shared Database

Create
Read

Update
Delete

• Sharing a common database does not
require to modify components, if they all
can support the same schema

• Components can communicate by
creating, updating and reading entries in
the database, which can safely handles
the concurrency

4.3.2010
©2010 - Cesare Pautasso 97

Bus

Message Bus

Publish
Subscribe

• A message bus connects a variable number of components, which
are decoupled from one another.

• Components act as message sources by publishing messages into
the bus; Components act as message sinks by subscribing to
message types (or properties based on the actual content)

• The bus can route, queue, buffer, transform and deliver messages to
one or more recipients

• The “enterprise” service bus is used to implement the SOA style

RE
ST

W
S-

*

©2010 - Cesare Pautasso 98

Different software connectors

RPC ESB

WWW

Spring Semester 2010
Software Architecture and Design
© Cesare Pautasso

99

Web (RESTful Web services)

Get Put
Delete
Post

Web
• The Web is the connector used in the REST (Representational State

Transfer) architectural style
• Components may reliably transfer state among themselves using the

GET, PUT, DELETE primitives. POST is used for unsafe interactions.

©2009-2010 - Cesare Pautasso - 30.6.2010 100

Comparison Conclusion
 You should focus on whatever solution gets

the job done and try to avoid being religious
about any specific architectures or
technologies.

 WS-* has strengths and weaknesses and will
be highly suitable to some applications and
positively terrible for others.

 Likewise with REST.
 The decision of which to use depends entirely

on the application requirements and
constraints.

 We hope this comparison will help you make
the right choice.

©2009-2010 - Cesare Pautasso - 30.6.2010 101

References
 Roy Fielding, Architectural Styles and the Design of Network-based

Software Architectures, PhD Thesis, University of California, Irvine,
2000

 Leonard Richardson, Sam Ruby, RESTful Web Services, O’Reilly,
May 2007

 Jim Webber, Savas Parastatidis, Ian Robinson, REST in Practice:
Hypermedia and Systems Architecture, O‘Reilly, 2010

 Subbu Allamaraju, RESTful Web Services Cookbook: Solutions for
Improving Scalability and Simplicity, O’Reilly, 2010

 Stevan Tilkov, HTTP und REST, dpunkt Verlag, 2009,
http://rest-http.info/

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm�
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm�
http://rest-http.info/�

©2009-2010 - Cesare Pautasso - 30.6.2010 102

Web References
 Martin Fowler,

Richardson Maturity Model: steps toward the glory of REST,
http://martinfowler.com/articles/richardsonMaturityModel.html
 My Constantly Updated Feed or REST-related material:
http://delicious.com/cesare.pautasso/rest
 This week in REST
http://thisweekinrest.wordpress.com/

http://martinfowler.com/articles/richardsonMaturityModel.html�
http://delicious.com/cesare.pautasso/rest�
http://thisweekinrest.wordpress.com/�

©2009-2010 - Cesare Pautasso - 30.6.2010 103

Self-References
 Cesare Pautasso, Olaf Zimmermann, Frank Leymann,

RESTful Web Services vs. Big Web Services: Making the Right Architectural
Decision, Proc. of the 17th International World Wide Web Conference
(WWW2008), Bejing, China, April 2008.

 Cesare Pautasso and Erik Wilde. Why is the Web Loosely Coupled? A Multi-
Faceted Metric for Service Design, Proc of the 18th International World
Wide Web Conference (WWW2009), Madrid, Spain, April 2009.

 Cesare Pautasso, BPEL for REST, Proc. of the 6th International Conference
on Business Process Management (BPM 2008), Milan, Italy, September
2008.

 Cesare Pautasso, RESTful Web Service Composition with JOpera, Proc. Of
the International Conference on Software Composition (SC 2009), Zurich,
Switzerland, July 2009.

 Cesare Pautasso, Gustavo Alonso: From Web Service Composition to
Megaprogramming In: Proceedings of the 5th VLDB Workshop on
Technologies for E-Services (TES-04), Toronto, Canada, August 2004

 Thomas Erl, Raj Balasubramanians, Cesare Pautasso, Benjamin Carlyle,
SOA with REST, Prentice Hall, end of 2010

http://www.jopera.org/docs/publications/2008/restws�
http://www.jopera.org/docs/publications/2008/restws�
http://www2008.org/�
http://www.jopera.org/docs/publications/2009/coupling�
http://www.jopera.org/docs/publications/2009/coupling�
http://www2009.org/�
http://www.jopera.org/docs/publications/2008/bpel4rest/�
http://bpm08.polimi.it/�
http://www.jopera.org/docs/publications/2009/doodlemap�

©2009-2010 - Cesare Pautasso - 30.6.2010 104

Leonard Richardson,
Sam Ruby,
RESTful Web Services,
O’Reilly, May 2007

Thomas Erl, Raj Balasubramanians,
Cesare Pautasso, Benjamin Carlyle,
SOA with REST,
Prentice Hall, end of 2010

©2009-2010 - Cesare Pautasso - 30.6.2010 105
Abstract Submission: Friday, July 16, 2010

http://www.cs.ucy.ac.cy/ecows10�
http://twitter.com/ecows2010�

	Slide Number 1
	Abstract
	About Cesare Pautasso
	WS-* Standards Stack
	RESTful Services Standards
	Is REST really used?
	Is REST really used?
	Web Sites (1992)
	RESTful Web Services (2007)
	Outline
	REST in one slide
	URI - Uniform Resource Identifier
	What is a “nice” URI?
	URI Design Guidelines
	URI Templates
	URI Template Examples
	Uniform Interface Constraint
	POST vs. GET
	POST vs. PUT
	REST Architectural Elements
	Basic Setup
	Proxy or Gateway?
	Design Methodology
	Design Space
	Simple Doodle API Example
	Simple Doodle API Example
	Simple Doodle API Example
	Simple Doodle API Example
	Simple Doodle API Example
	The End to End View
	Real Doodle Demo
	1. Create Poll
	2. Vote
	Antipatterns - REST vs. HTTP
	Richardson Maturity Model
	HTTP as a tunnel
	HTTP as a tunnel
	Outline
	Can we really compare?
	Can we really compare?
	How to compare?
	Architectural Decisions
	Decision Space Overview
	Decision Space Overview
	Comparison Overview
	RESTful Web Service Example
	WS-* Service Example �(from REST perspective)
	Protocol Layering
	Coupling Facets
	Coupling Comparison
	Dealing with Heterogeneity
	Heterogeneity
	Heterogeneity
	Enterprise “Use Cases”
	Enterprise “Use Cases”
	What about…
	What about service description?
	What about security?
	What about asynchronous messaging?
	Blocking or Non-Blocking?
	What about reliable�messaging?
	What about stateful services?
	What about composition?
	REST Scalability
	REST Scalability
	REST Composition
	REST Composition
	Composite Resources
	Composite Resources
	Composite Resources
	Slide Number 71
	Composite Representation
	Bringing it all together
	Doodle Map Example
	Composite Resource
	Composite Resource
	Composite Representation
	Demo
	Doodle Map Architecture
	DoodleMap Model
	Viewpoints
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Was it just a mashup?
	Moving state around
	Simply aggregating data
	Is your composition reusable?
	Single-Origin Sandbox
	Single-Origin Sandbox
	Complementary
	Towards REST Composition
	Software Connectors
	RPC
	Hot Folder
	Shared Database
	Bus
	Different software connectors
	Web (RESTful Web services)
	Comparison Conclusion
	References
	Web References
	Self-References
	Slide Number 104
	Slide Number 105

