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The BenchFlow Project
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Design and implement the first benchmark to 
assess and compare the performance of WfMSs 
that are compliant with Business Process Model 
and Notation 2.0 standard.
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What is a Workflow Management System?

WfMS

Application Server
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Many Vendors of BPMN 2.0 WfMSs

https://en.wikipedia.org/wiki/List_of_BPMN_2.0_engines

Jan 2011

BPMN 2.0

Jan 2014

BPMN 2.0.2
ISO/IEC 19510

Aug 2009

BETA
BPMN 2.0

Year Number Sum
2009 1 1
2010 5 6
2011 4 10
2012 1 11
2013 8 19
2014 2 21
2015 2 23
2016 0 23
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Benchmarking Requirements

• Relevant

• Representative

• Portable

• Scalable

• Simple

• Repeatable

• Vendor-neutral

• Accessible

• Efficient

• Affordable

• K.  Huppler,  The  art  of  building  a  good  benchmark, 2009 
• J. Gray, The  Benchmark  Handbook  for  Database  and  Transaction Systems, 1993 
• S.  E.  Sim,  S.  Easterbrook et  al., Using  benchmarking  to  advance research:  A  

challenge  to  software  engineering, 2003
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Why a new Methodology?

No available methodologies involving vendors 
for both defining a standard benchmark and 

benchmarking production systems
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Why a new Methodology?
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Research
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No available methodologies involving vendors 
for both defining a standard benchmark and 

benchmarking production systems

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work



Vincenzo Ferme

7

Why a Container-Centric Methodology?

• Relevant

• Representative

• Portable

• Scalable

• Simple

• Repeatable

• Vendor-neutral

• Accessible

• Efficient

• Affordable

Emerging Technology
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What about the other Requirements?
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Benchmarking Choreography
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Figure 4: Benchmarking Methodology Choreography

pending on the WfMS’s architecture. The DBMS
Container can refer to an existing publicly available
Container distributions. The containerized WfMS
should be publicly available (e.g., at the Docker Hub
registry8), or the Benchflow team should be granted
access to a private registry used by the vendor. The
same applies to the Containers’ definition file, i.e., the
Dockerfile (Turnbull, 2014, ch. 4). While private reg-
istries are a solution that can work with vendors of
closed-source systems, they impact the reproducibil-
ity of the results. For each WfMS version to be in-
cluded in the benchmark, there must be a default con-
figuration, i.e., the configuration in which the WfMS
Containers start without modifying any configuration
parameters, except the ones required in order to cor-
rectly start the WfMS, e.g., the database connection.
However, if vendors want to benchmark the perfor-
mance of their WfMS with different configurations,
for example, the configuration provided to users as
a “getting started” configuration, or production-grade
configurations for real-life usage, they can also pro-
vide different configurations. To do that, the Con-
tainers must allow to issue the WfMS configurations
through additional environment variables9, and/or by
specifying the volumes to be exposed10 in order to

8
https://hub.docker.com/

9
https://docs.docker.com/reference/run/

#env-environment-variables

10
https://docs.docker.com/

userguide/dockervolumes/

access the configuration files. Exposing the volumes
allows to access the files defined inside the Contain-
ers, on the host operating system. Precisely, the WES
Container has to, at least, enable the configuration of:
1) the used DB, i.e., DB driver, url, username and
password for connection; 2) the WES itself; and 3) the
logging level of the WES, and the application stack
layers on which it may depend on. Alternatively, in-
stead of providing configuration details, the vendors
can provide different Containers for different config-
urations. However, even in that case enabling the DB
configuration is required.

In order to access relevant data, all WfMS Con-
tainers have to specify the volumes to access the
WfMS log files, and to access all the data useful to
setup the system. For instance, if the WfMS defines
examples as part of the deployment, we may want
to remove those examples by overriding the volume
containing them. Moreover, the WES Container (or
the DBMS Container) has to create the WfMS’s DB
and populate it with data required to run the WfMS.
The vendors need to provide authentication configu-
ration details of the WfMS components (e.g., the user
with admin privileges for the DBMS). Alternatively
the vendor may simply provide the files needed to cre-
ate and populate the DB.

#mount-a-host-directory-as-a-data-volume
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Container distributions. The containerized WfMS
should be publicly available (e.g., at the Docker Hub
registry8), or the Benchflow team should be granted
access to a private registry used by the vendor. The
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access the configuration files. Exposing the volumes
allows to access the files defined inside the Contain-
ers, on the host operating system. Precisely, the WES
Container has to, at least, enable the configuration of:
1) the used DB, i.e., DB driver, url, username and
password for connection; 2) the WES itself; and 3) the
logging level of the WES, and the application stack
layers on which it may depend on. Alternatively, in-
stead of providing configuration details, the vendors
can provide different Containers for different config-
urations. However, even in that case enabling the DB
configuration is required.

In order to access relevant data, all WfMS Con-
tainers have to specify the volumes to access the
WfMS log files, and to access all the data useful to
setup the system. For instance, if the WfMS defines
examples as part of the deployment, we may want
to remove those examples by overriding the volume
containing them. Moreover, the WES Container (or
the DBMS Container) has to create the WfMS’s DB
and populate it with data required to run the WfMS.
The vendors need to provide authentication configu-
ration details of the WfMS components (e.g., the user
with admin privileges for the DBMS). Alternatively
the vendor may simply provide the files needed to cre-
ate and populate the DB.
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Benchmarking Methodology
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pending on the WfMS’s architecture. The DBMS
Container can refer to an existing publicly available
Container distributions. The containerized WfMS
should be publicly available (e.g., at the Docker Hub
registry8), or the Benchflow team should be granted
access to a private registry used by the vendor. The
same applies to the Containers’ definition file, i.e., the
Dockerfile (Turnbull, 2014, ch. 4). While private reg-
istries are a solution that can work with vendors of
closed-source systems, they impact the reproducibil-
ity of the results. For each WfMS version to be in-
cluded in the benchmark, there must be a default con-
figuration, i.e., the configuration in which the WfMS
Containers start without modifying any configuration
parameters, except the ones required in order to cor-
rectly start the WfMS, e.g., the database connection.
However, if vendors want to benchmark the perfor-
mance of their WfMS with different configurations,
for example, the configuration provided to users as
a “getting started” configuration, or production-grade
configurations for real-life usage, they can also pro-
vide different configurations. To do that, the Con-
tainers must allow to issue the WfMS configurations
through additional environment variables9, and/or by
specifying the volumes to be exposed10 in order to

8
https://hub.docker.com/

9
https://docs.docker.com/reference/run/

#env-environment-variables

10
https://docs.docker.com/

userguide/dockervolumes/

access the configuration files. Exposing the volumes
allows to access the files defined inside the Contain-
ers, on the host operating system. Precisely, the WES
Container has to, at least, enable the configuration of:
1) the used DB, i.e., DB driver, url, username and
password for connection; 2) the WES itself; and 3) the
logging level of the WES, and the application stack
layers on which it may depend on. Alternatively, in-
stead of providing configuration details, the vendors
can provide different Containers for different config-
urations. However, even in that case enabling the DB
configuration is required.

In order to access relevant data, all WfMS Con-
tainers have to specify the volumes to access the
WfMS log files, and to access all the data useful to
setup the system. For instance, if the WfMS defines
examples as part of the deployment, we may want
to remove those examples by overriding the volume
containing them. Moreover, the WES Container (or
the DBMS Container) has to create the WfMS’s DB
and populate it with data required to run the WfMS.
The vendors need to provide authentication configu-
ration details of the WfMS components (e.g., the user
with admin privileges for the DBMS). Alternatively
the vendor may simply provide the files needed to cre-
ate and populate the DB.

#mount-a-host-directory-as-a-data-volume
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Benchmarking Methodology
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pending on the WfMS’s architecture. The DBMS
Container can refer to an existing publicly available
Container distributions. The containerized WfMS
should be publicly available (e.g., at the Docker Hub
registry8), or the Benchflow team should be granted
access to a private registry used by the vendor. The
same applies to the Containers’ definition file, i.e., the
Dockerfile (Turnbull, 2014, ch. 4). While private reg-
istries are a solution that can work with vendors of
closed-source systems, they impact the reproducibil-
ity of the results. For each WfMS version to be in-
cluded in the benchmark, there must be a default con-
figuration, i.e., the configuration in which the WfMS
Containers start without modifying any configuration
parameters, except the ones required in order to cor-
rectly start the WfMS, e.g., the database connection.
However, if vendors want to benchmark the perfor-
mance of their WfMS with different configurations,
for example, the configuration provided to users as
a “getting started” configuration, or production-grade
configurations for real-life usage, they can also pro-
vide different configurations. To do that, the Con-
tainers must allow to issue the WfMS configurations
through additional environment variables9, and/or by
specifying the volumes to be exposed10 in order to

8
https://hub.docker.com/

9
https://docs.docker.com/reference/run/

#env-environment-variables

10
https://docs.docker.com/

userguide/dockervolumes/

access the configuration files. Exposing the volumes
allows to access the files defined inside the Contain-
ers, on the host operating system. Precisely, the WES
Container has to, at least, enable the configuration of:
1) the used DB, i.e., DB driver, url, username and
password for connection; 2) the WES itself; and 3) the
logging level of the WES, and the application stack
layers on which it may depend on. Alternatively, in-
stead of providing configuration details, the vendors
can provide different Containers for different config-
urations. However, even in that case enabling the DB
configuration is required.

In order to access relevant data, all WfMS Con-
tainers have to specify the volumes to access the
WfMS log files, and to access all the data useful to
setup the system. For instance, if the WfMS defines
examples as part of the deployment, we may want
to remove those examples by overriding the volume
containing them. Moreover, the WES Container (or
the DBMS Container) has to create the WfMS’s DB
and populate it with data required to run the WfMS.
The vendors need to provide authentication configu-
ration details of the WfMS components (e.g., the user
with admin privileges for the DBMS). Alternatively
the vendor may simply provide the files needed to cre-
ate and populate the DB.

#mount-a-host-directory-as-a-data-volume
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Benchmarking Methodology
WfMS

Configurations

requirements from the WfMS
Table 1: Summary of Core and Non-core APIs to be imple-
mented by the WfMS

Functionality Min Response Data

C
or

e
AP

Is

Initialisation
APIs

Deploy a process Deployed process ID
Start a process instance Process instance ID

N
on

-c
or

e
AP

Is

User APIs Create a user User ID
Create a group of users User group ID
Access pending tasks Pending tasks IDs
Claim a task*
Complete a task

Event APIs Access pending events Pending events IDs
Issue events

Web service
APIs

Map tasks to Web
service endpoints

*Optional depending on the WfMS implementation

2.1.2 System Under Test

The SUT refers to the system that is being tested for
performance. In our case a WfMS which, accord-
ing to the WfMC (Hollingsworth, 1995), includes the
Workflow Enactment Service (WES) and any envi-
ronments and systems required for its proper func-
tioning, e.g., application servers, virtual machines
(e.g., Java Virtual Machine) and DBMSs. The WES
is a complex middleware component which, in addi-
tion to handling the execution of the process models,
interacts with users, external applications, and Web
services. This kind of SUT offers a large set of con-
figuration options and deployment alternatives. The
DBMS configuration as well as the WES configura-
tions (e.g., the granularity level of history logging,
the DB connection options, the order of asynchronous
jobs acquisition), may affect its performance. More-
over, WfMSs often offer a wide range of deployment
alternatives (e.g., standalone, in a clustered deploy-
ment, behind a load balancer in an elastic cloud in-
frastructure) and target different versions of applica-
tion server stacks (e.g., Apache Tomcat, JBoss).

To add a WfMS in the benchmark, we require the
availability of certain Core and Non-core APIs. A
summary of the same is presented in Table 1.

The Core APIs are Initialisation APIs necessary
for automatic issuing of the simplest workload to the
SUT in order to test SUT’s performance. They in-
clude: 1) deploy a process and return as a response an
identifier of the deployed process (PdID); and 2) start
a process instance by using the PdID and return as a
response the new instance identifier (PiID).

Depending on the execution language of the
WfMS and the constructs that it supports, other Non-

core APIs might be necessary for testing more com-
plex workloads. For instance, if we are targeting
BPMN 2.0 WfMSs we might also require the follow-

ing APIs:
For applying workloads involving human tasks,

the following User APIs are necessary: 1) create
a user and return the identifier of the created user
(UsID); 2) create a group of users, return the cre-
ated group identifier (UgID), and enable adding users
by using their UsIDs; 3) pending user/manual tasks:
access all the pending user/manual task instances of
a given user/manual task identified by its id (Jordan
and Evdemon, 2011, sec. 8.2.1) as specified in the
model serialization. We want to obtain all the pend-
ing tasks with the given id of all the process instances
(PiIDs) of a given deployed process (PdID). The API
has to respond with data, enabling the creation of a
collection that maps the process instances to the list
of their pending tasks <PiID, UtIDs> and <PiID,
MtIDs>; 4) claim a user/manual task identified by
UtID/MtID, if tasks are not automatically assigned by
the WfMS; and 5) complete a user/manual task iden-
tified by UtID/MtID by submitting the data required
to complete the task.

To issue a workload containing process mod-
els with catching external events, the following
Event APIs are necessary: 1) pending catching
events/receive tasks: access the pending catching
event/receive task instances of a given event/task
identified by its id (Jordan and Evdemon, 2011, sec.
8.2.1) specified in the model serialization. We want
to obtain all the pending catching events/receive tasks
with the given id of all the process instances (Pi-
IDs) of a given deployed process (PdID). The API
has to respond with data enabling the creation of a
collection that maps the process instances to the list
of their pending catching events/receive tasks <PiID,
CeIDs> and <PiID, RtIDs>; and 2) issue an event to
a pending catching event/receive task identified by us-
ing CeID/RtID. We require the APIs to accept the data
necessary to correlate the issued event to the correct
process instance, e.g., a correlation key.

Finally, to be able to issue a workload defining in-
teraction with Web services and/or containing throw-
ing events, the WfMS has to support a binding mech-
anism to map each Web service task/throwing event
to the corresponding Web service/throwing event end-
point. The WfMS should preferably allow to specify
the mapping in the serialized version of the model,
so that the binding can be added before deploying the
process.

Since many WfMSs are offered as a service, it is
safe to assume that many WfMSs expose, what we
call, the Core APIs. In our experience with systems
we have evaluated so far (e.g., Activiti, Bonita BPM,
Camunda, Imixs Workflow, jBPM), they support not
only the core APIs, but also the non-core APIs. The
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pending on the WfMS’s architecture. The DBMS
Container can refer to an existing publicly available
Container distributions. The containerized WfMS
should be publicly available (e.g., at the Docker Hub
registry8), or the Benchflow team should be granted
access to a private registry used by the vendor. The
same applies to the Containers’ definition file, i.e., the
Dockerfile (Turnbull, 2014, ch. 4). While private reg-
istries are a solution that can work with vendors of
closed-source systems, they impact the reproducibil-
ity of the results. For each WfMS version to be in-
cluded in the benchmark, there must be a default con-
figuration, i.e., the configuration in which the WfMS
Containers start without modifying any configuration
parameters, except the ones required in order to cor-
rectly start the WfMS, e.g., the database connection.
However, if vendors want to benchmark the perfor-
mance of their WfMS with different configurations,
for example, the configuration provided to users as
a “getting started” configuration, or production-grade
configurations for real-life usage, they can also pro-
vide different configurations. To do that, the Con-
tainers must allow to issue the WfMS configurations
through additional environment variables9, and/or by
specifying the volumes to be exposed10 in order to

8
https://hub.docker.com/

9
https://docs.docker.com/reference/run/

#env-environment-variables

10
https://docs.docker.com/

userguide/dockervolumes/

access the configuration files. Exposing the volumes
allows to access the files defined inside the Contain-
ers, on the host operating system. Precisely, the WES
Container has to, at least, enable the configuration of:
1) the used DB, i.e., DB driver, url, username and
password for connection; 2) the WES itself; and 3) the
logging level of the WES, and the application stack
layers on which it may depend on. Alternatively, in-
stead of providing configuration details, the vendors
can provide different Containers for different config-
urations. However, even in that case enabling the DB
configuration is required.

In order to access relevant data, all WfMS Con-
tainers have to specify the volumes to access the
WfMS log files, and to access all the data useful to
setup the system. For instance, if the WfMS defines
examples as part of the deployment, we may want
to remove those examples by overriding the volume
containing them. Moreover, the WES Container (or
the DBMS Container) has to create the WfMS’s DB
and populate it with data required to run the WfMS.
The vendors need to provide authentication configu-
ration details of the WfMS components (e.g., the user
with admin privileges for the DBMS). Alternatively
the vendor may simply provide the files needed to cre-
ate and populate the DB.

#mount-a-host-directory-as-a-data-volume

executing the benchmark and providing results
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pending on the WfMS’s architecture. The DBMS
Container can refer to an existing publicly available
Container distributions. The containerized WfMS
should be publicly available (e.g., at the Docker Hub
registry8), or the Benchflow team should be granted
access to a private registry used by the vendor. The
same applies to the Containers’ definition file, i.e., the
Dockerfile (Turnbull, 2014, ch. 4). While private reg-
istries are a solution that can work with vendors of
closed-source systems, they impact the reproducibil-
ity of the results. For each WfMS version to be in-
cluded in the benchmark, there must be a default con-
figuration, i.e., the configuration in which the WfMS
Containers start without modifying any configuration
parameters, except the ones required in order to cor-
rectly start the WfMS, e.g., the database connection.
However, if vendors want to benchmark the perfor-
mance of their WfMS with different configurations,
for example, the configuration provided to users as
a “getting started” configuration, or production-grade
configurations for real-life usage, they can also pro-
vide different configurations. To do that, the Con-
tainers must allow to issue the WfMS configurations
through additional environment variables9, and/or by
specifying the volumes to be exposed10 in order to

8
https://hub.docker.com/

9
https://docs.docker.com/reference/run/

#env-environment-variables

10
https://docs.docker.com/

userguide/dockervolumes/

access the configuration files. Exposing the volumes
allows to access the files defined inside the Contain-
ers, on the host operating system. Precisely, the WES
Container has to, at least, enable the configuration of:
1) the used DB, i.e., DB driver, url, username and
password for connection; 2) the WES itself; and 3) the
logging level of the WES, and the application stack
layers on which it may depend on. Alternatively, in-
stead of providing configuration details, the vendors
can provide different Containers for different config-
urations. However, even in that case enabling the DB
configuration is required.

In order to access relevant data, all WfMS Con-
tainers have to specify the volumes to access the
WfMS log files, and to access all the data useful to
setup the system. For instance, if the WfMS defines
examples as part of the deployment, we may want
to remove those examples by overriding the volume
containing them. Moreover, the WES Container (or
the DBMS Container) has to create the WfMS’s DB
and populate it with data required to run the WfMS.
The vendors need to provide authentication configu-
ration details of the WfMS components (e.g., the user
with admin privileges for the DBMS). Alternatively
the vendor may simply provide the files needed to cre-
ate and populate the DB.

#mount-a-host-directory-as-a-data-volume
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Advantages of using Containers

• Standard APIs to access Environment Metrics

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

• Accomplish some Benchmarking Requirement:

Portability, Repeatability, Accessibility, Efficiency

• Common way to deploy systems provided by 
different vendors

Docker Compose Docker Swarm

Advantages of Containers
Vincenzo Ferme
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Future Work

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

• Continue to Apply and Improve the Methodology

• Involve more Vendors and Researchers as part of 
the Benchmarking Effort

Future Work
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Docker Performance

[IBM ’14]
W. Felter, A. Ferreira, R. Rajamony, and J. Rubio. An updated performance comparison 
of virtual machines and Linux containers. IBM Research Report, 2014.

Although containers themselves have almost no overhead, 
Docker is not without performance gotchas. Docker 
volumes have noticeably better performance than files stored in 
AUFS. Docker’s NAT also introduces overhead for workloads 
with high packet rates. These features represent a tradeoff 
between ease of management and performance and should 
be considered on a case-by-case basis.

”

“Our results show that containers result in equal or better 
performance than VMs in almost all cases.

“
”

BenchFlow Configures Docker for Performance by Default


