
Vincenzo	Ferme,		Ana	Ivanchikj,		
Prof.	Cesare	Pautasso	
Faculty	of	Informatics	

University	of	Lugano	(USI),	Switzerland

A CONTAINER-CENTRIC
METHODOLOGY FOR

BENCHMARKING WORKFLOW
MANAGEMENT SYSTEMS

Marigianna	Skouradaki,		
Prof.	Frank	Leymann	

Institute	of	Architecture	of	Application	Systems		
University	of	Stuttgart,	Germany

Cloud Computing Patterns
Fundamentals to Design, Build, and Manage Cloud Applications

Christoph Fehling
Institute of Architecture of Application Systems

University of Stuttgart
Universitätsstr. 38
70569 Stuttgart
Germany

Phone +49-711-685-88 486
Fax +49-711-685-88 472
e-mail Fehling
 @iaas.uni-stuttgart.de

©Fehling

Vincenzo Ferme

2

The BenchFlow Project

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

Design and implement the first benchmark to
assess and compare the performance of WfMSs
that are compliant with Business Process Model
and Notation 2.0 standard.

”

“

Vincenzo Ferme

3

What is a Workflow Management System?

WfMS

Application Server

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

Vincenzo Ferme

3

What is a Workflow Management System?

WfMS

Application Server

D

A

B

C

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

Vincenzo Ferme

3

What is a Workflow Management System?

WfMS Users

Applications

Application Server

Web
Service

D

A

B

C

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

Vincenzo Ferme

3

What is a Workflow Management System?

WfMS Users

Applications

Application Server

Instance
Database

DBMS

Web
Service

D

A

B

C

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

Vincenzo Ferme

4

Many Vendors of BPMN 2.0 WfMSs

https://en.wikipedia.org/wiki/List_of_BPMN_2.0_engines

Jan 2011

BPMN 2.0

Jan 2014

BPMN 2.0.2
ISO/IEC 19510

Aug 2009

BETA
BPMN 2.0

Year Number Sum
2009 1 1
2010 5 6
2011 4 10
2012 1 11
2013 8 19
2014 2 21
2015 2 23
2016 0 23

Grand
Total 23

N
um

be
r o

f B
PM

N
 2

.0
 W

fM
Ss

0

5

10

15

20

25

Year of the First Version Supporting BPMN 2.0
2009 2010 2011 2012 2013 2014 2015 2016

�1

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

Vincenzo Ferme

5

Benchmarking Requirements

• Relevant

• Representative

• Portable

• Scalable

• Simple

• Repeatable

• Vendor-neutral

• Accessible

• Efficient

• Affordable

• K. Huppler, The art of building a good benchmark, 2009
• J. Gray, The Benchmark Handbook for Database and Transaction Systems, 1993
• S. E. Sim, S. Easterbrook et al., Using benchmarking to advance research: A

challenge to software engineering, 2003

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

Vincenzo Ferme

6

Why a new Methodology?

No available methodologies involving vendors
for both defining a standard benchmark and

benchmarking production systems

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

Vincenzo Ferme

6

Why a new Methodology?

Already standard benchmarks

No available methodologies involving vendors
for both defining a standard benchmark and

benchmarking production systems

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

Vincenzo Ferme

6

Why a new Methodology?

Already standard benchmarks

Research

No interaction with Vendors

No available methodologies involving vendors
for both defining a standard benchmark and

benchmarking production systems

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

Vincenzo Ferme

7

Why a Container-Centric Methodology?

• Relevant

• Representative

• Portable

• Scalable

• Simple

• Repeatable

• Vendor-neutral

• Accessible

• Efficient

• Affordable

Emerging Technology

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

Vincenzo Ferme

7

Why a Container-Centric Methodology?

• Relevant

• Representative

• Portable

• Scalable

• Simple

• Repeatable

• Vendor-neutral

• Accessible

• Efficient

• Affordable

Emerging Technology

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

Lightweight

Vincenzo Ferme

7

Why a Container-Centric Methodology?

• Relevant

• Representative

• Portable

• Scalable

• Simple

• Repeatable

• Vendor-neutral

• Accessible

• Efficient

• Affordable

Emerging Technology

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

Lightweight

Negligible Performance Impact

Vincenzo Ferme

8

Why a Container-Centric Methodology?

• Relevant

• Representative

• Portable

• Scalable

• Simple

• Repeatable

• Vendor-neutral

• Accessible

• Efficient

• Affordable

Emerging Technology

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

Lightweight

Negligible Performance Impact

Vincenzo Ferme

9

Why a Container-Centric Methodology?

• Relevant

• Representative

• Portable

• Scalable

• Simple

• Repeatable

• Vendor-neutral

• Accessible

• Efficient

• Affordable

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

Emerging Technology

Lightweight

Negligible Performance Impact

Vincenzo Ferme

10

Why a Container-Centric Methodology?

• Relevant

• Representative

• Portable

• Scalable

• Simple

• Repeatable

• Vendor-neutral

• Accessible

• Efficient

• Affordable

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

Emerging Technology

Lightweight

Negligible Performance Impact

Vincenzo Ferme

11

Why a Container-Centric Methodology?

• Relevant

• Representative

• Portable

• Scalable

• Simple

• Repeatable

• Vendor-neutral

• Accessible

• Efficient

• Affordable

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

Emerging Technology

Lightweight

Negligible Performance Impact

Vincenzo Ferme

12

Why a Container-Centric Methodology?

• Relevant

• Representative

• Portable

• Scalable

• Simple

• Repeatable

• Vendor-neutral

• Accessible

• Efficient

• Affordable

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

Emerging Technology

Lightweight

Negligible Performance Impact

Vincenzo Ferme

13

What about the other Requirements?

• Relevant

• Representative

• Portable

• Scalable

• Simple

• Repeatable

• Vendor-neutral

• Accessible

• Efficient

• Affordable

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

Vincenzo Ferme

14

Benchmarking Choreography

Vendor

BenchFlow

Provide
Benchmarking
Methodology

Vendor

BenchFlow

Agree on adding
Vendor's WfMS to the

Benchmark

Benchmarking Methodology Agreement Proposal

Signed Agreement

Vendor

BenchFlow

Provide Containerized
Distribution of WfMS

Containerized WfMS Request

Containerized WfMS

Vendor

BenchFlow

Verify the Benchmark
Results

Results Verification Outcome

Results Verification Request

Vendor

BenchFlow

Provide Draft
Benchmark Results

Draft Benchmark ResultsVerified Benchmark Results

Not Valid

Are the
Results
Valid?

Community

BenchFlow

Publish Benchmark
Results Valid

Figure 4: Benchmarking Methodology Choreography

pending on the WfMS’s architecture. The DBMS
Container can refer to an existing publicly available
Container distributions. The containerized WfMS
should be publicly available (e.g., at the Docker Hub
registry8), or the Benchflow team should be granted
access to a private registry used by the vendor. The
same applies to the Containers’ definition file, i.e., the
Dockerfile (Turnbull, 2014, ch. 4). While private reg-
istries are a solution that can work with vendors of
closed-source systems, they impact the reproducibil-
ity of the results. For each WfMS version to be in-
cluded in the benchmark, there must be a default con-
figuration, i.e., the configuration in which the WfMS
Containers start without modifying any configuration
parameters, except the ones required in order to cor-
rectly start the WfMS, e.g., the database connection.
However, if vendors want to benchmark the perfor-
mance of their WfMS with different configurations,
for example, the configuration provided to users as
a “getting started” configuration, or production-grade
configurations for real-life usage, they can also pro-
vide different configurations. To do that, the Con-
tainers must allow to issue the WfMS configurations
through additional environment variables9, and/or by
specifying the volumes to be exposed10 in order to

8
https://hub.docker.com/

9
https://docs.docker.com/reference/run/

#env-environment-variables

10
https://docs.docker.com/

userguide/dockervolumes/

access the configuration files. Exposing the volumes
allows to access the files defined inside the Contain-
ers, on the host operating system. Precisely, the WES
Container has to, at least, enable the configuration of:
1) the used DB, i.e., DB driver, url, username and
password for connection; 2) the WES itself; and 3) the
logging level of the WES, and the application stack
layers on which it may depend on. Alternatively, in-
stead of providing configuration details, the vendors
can provide different Containers for different config-
urations. However, even in that case enabling the DB
configuration is required.

In order to access relevant data, all WfMS Con-
tainers have to specify the volumes to access the
WfMS log files, and to access all the data useful to
setup the system. For instance, if the WfMS defines
examples as part of the deployment, we may want
to remove those examples by overriding the volume
containing them. Moreover, the WES Container (or
the DBMS Container) has to create the WfMS’s DB
and populate it with data required to run the WfMS.
The vendors need to provide authentication configu-
ration details of the WfMS components (e.g., the user
with admin privileges for the DBMS). Alternatively
the vendor may simply provide the files needed to cre-
ate and populate the DB.

#mount-a-host-directory-as-a-data-volume

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

Vincenzo Ferme

Vendor

BenchFlow

Provide
Benchmarking
Methodology

Vendor

BenchFlow

Agree on adding
Vendor's WfMS to the

Benchmark

Benchmarking Methodology Agreement Proposal

Signed Agreement

Vendor

BenchFlow

Provide Containerized
Distribution of WfMS

Containerized WfMS Request

Containerized WfMS

Vendor

BenchFlow

Verify the Benchmark
Results

Results Verification Outcome

Results Verification Request

Vendor

BenchFlow

Provide Draft
Benchmark Results

Draft Benchmark ResultsVerified Benchmark Results

Not Valid

Are the
Results
Valid?

Community

BenchFlow

Publish Benchmark
Results Valid

Figure 4: Benchmarking Methodology Choreography

pending on the WfMS’s architecture. The DBMS
Container can refer to an existing publicly available
Container distributions. The containerized WfMS
should be publicly available (e.g., at the Docker Hub
registry8), or the Benchflow team should be granted
access to a private registry used by the vendor. The
same applies to the Containers’ definition file, i.e., the
Dockerfile (Turnbull, 2014, ch. 4). While private reg-
istries are a solution that can work with vendors of
closed-source systems, they impact the reproducibil-
ity of the results. For each WfMS version to be in-
cluded in the benchmark, there must be a default con-
figuration, i.e., the configuration in which the WfMS
Containers start without modifying any configuration
parameters, except the ones required in order to cor-
rectly start the WfMS, e.g., the database connection.
However, if vendors want to benchmark the perfor-
mance of their WfMS with different configurations,
for example, the configuration provided to users as
a “getting started” configuration, or production-grade
configurations for real-life usage, they can also pro-
vide different configurations. To do that, the Con-
tainers must allow to issue the WfMS configurations
through additional environment variables9, and/or by
specifying the volumes to be exposed10 in order to

8
https://hub.docker.com/

9
https://docs.docker.com/reference/run/

#env-environment-variables

10
https://docs.docker.com/

userguide/dockervolumes/

access the configuration files. Exposing the volumes
allows to access the files defined inside the Contain-
ers, on the host operating system. Precisely, the WES
Container has to, at least, enable the configuration of:
1) the used DB, i.e., DB driver, url, username and
password for connection; 2) the WES itself; and 3) the
logging level of the WES, and the application stack
layers on which it may depend on. Alternatively, in-
stead of providing configuration details, the vendors
can provide different Containers for different config-
urations. However, even in that case enabling the DB
configuration is required.

In order to access relevant data, all WfMS Con-
tainers have to specify the volumes to access the
WfMS log files, and to access all the data useful to
setup the system. For instance, if the WfMS defines
examples as part of the deployment, we may want
to remove those examples by overriding the volume
containing them. Moreover, the WES Container (or
the DBMS Container) has to create the WfMS’s DB
and populate it with data required to run the WfMS.
The vendors need to provide authentication configu-
ration details of the WfMS components (e.g., the user
with admin privileges for the DBMS). Alternatively
the vendor may simply provide the files needed to cre-
ate and populate the DB.

#mount-a-host-directory-as-a-data-volume

15

Benchmarking Methodology
provide the methodology

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

Vincenzo Ferme

16

The Benchmarking Process

Workload
Model WfMS

Configurations
Test

Types
Workload Metrics

KPIs
Derive

Input/Process/Output Model

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

Vincenzo Ferme

16

The Benchmarking Process

Workload
Model WfMS

Configurations
Test

Types
Workload Metrics

KPIs
Derive

Input/Process/Output Model

Workload
Mix

80%
C

A

B

20%
D

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

Vincenzo Ferme

16

The Benchmarking Process

Workload
Model WfMS

Configurations
Test

Types
Workload Metrics

KPIs
Derive

Input/Process/Output Model

Workload
Mix

80%
C

A

B

20%
D

Load Functions
Test Data

Unsaved diagram
Unsaved diagram

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

Vincenzo Ferme

16

The Benchmarking Process

Workload
Model WfMS

Configurations
Test

Types
Workload Metrics

KPIs
Derive

Input/Process/Output Model

Workload
Mix

80%
C

A

B

20%
D

Load Functions
Test Data

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

Containers

Vincenzo Ferme

16

The Benchmarking Process

Workload
Model WfMS

Configurations
Test

Types
Workload Metrics

KPIs
Derive

Input/Process/Output Model

Workload
Mix

80%
C

A

B

20%
D

Load Functions
Test Data

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

Performance
Data

Workflow
Instance
Duration

Throughput

Containers

Vincenzo Ferme

17

Benchmarking Methodology
agreement with vendors

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

Vendor

BenchFlow

Provide
Benchmarking
Methodology

Vendor

BenchFlow

Agree on adding
Vendor's WfMS to the

Benchmark

Benchmarking Methodology Agreement Proposal

Signed Agreement

Vendor

BenchFlow

Provide Containerized
Distribution of WfMS

Containerized WfMS Request

Containerized WfMS

Vendor

BenchFlow

Verify the Benchmark
Results

Results Verification Outcome

Results Verification Request

Vendor

BenchFlow

Provide Draft
Benchmark Results

Draft Benchmark ResultsVerified Benchmark Results

Not Valid

Are the
Results
Valid?

Community

BenchFlow

Publish Benchmark
Results Valid

Figure 4: Benchmarking Methodology Choreography

pending on the WfMS’s architecture. The DBMS
Container can refer to an existing publicly available
Container distributions. The containerized WfMS
should be publicly available (e.g., at the Docker Hub
registry8), or the Benchflow team should be granted
access to a private registry used by the vendor. The
same applies to the Containers’ definition file, i.e., the
Dockerfile (Turnbull, 2014, ch. 4). While private reg-
istries are a solution that can work with vendors of
closed-source systems, they impact the reproducibil-
ity of the results. For each WfMS version to be in-
cluded in the benchmark, there must be a default con-
figuration, i.e., the configuration in which the WfMS
Containers start without modifying any configuration
parameters, except the ones required in order to cor-
rectly start the WfMS, e.g., the database connection.
However, if vendors want to benchmark the perfor-
mance of their WfMS with different configurations,
for example, the configuration provided to users as
a “getting started” configuration, or production-grade
configurations for real-life usage, they can also pro-
vide different configurations. To do that, the Con-
tainers must allow to issue the WfMS configurations
through additional environment variables9, and/or by
specifying the volumes to be exposed10 in order to

8
https://hub.docker.com/

9
https://docs.docker.com/reference/run/

#env-environment-variables

10
https://docs.docker.com/

userguide/dockervolumes/

access the configuration files. Exposing the volumes
allows to access the files defined inside the Contain-
ers, on the host operating system. Precisely, the WES
Container has to, at least, enable the configuration of:
1) the used DB, i.e., DB driver, url, username and
password for connection; 2) the WES itself; and 3) the
logging level of the WES, and the application stack
layers on which it may depend on. Alternatively, in-
stead of providing configuration details, the vendors
can provide different Containers for different config-
urations. However, even in that case enabling the DB
configuration is required.

In order to access relevant data, all WfMS Con-
tainers have to specify the volumes to access the
WfMS log files, and to access all the data useful to
setup the system. For instance, if the WfMS defines
examples as part of the deployment, we may want
to remove those examples by overriding the volume
containing them. Moreover, the WES Container (or
the DBMS Container) has to create the WfMS’s DB
and populate it with data required to run the WfMS.
The vendors need to provide authentication configu-
ration details of the WfMS components (e.g., the user
with admin privileges for the DBMS). Alternatively
the vendor may simply provide the files needed to cre-
ate and populate the DB.

#mount-a-host-directory-as-a-data-volume

• Production Stable Release

• Provide defined APIs

• Share Containerised
WfMS

• Authorise Publishing of
Results

Main Agreement Points:

Vincenzo Ferme

18

Benchmarking Methodology
containerised WfMSs

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

Vendor

BenchFlow

Provide
Benchmarking
Methodology

Vendor

BenchFlow

Agree on adding
Vendor's WfMS to the

Benchmark

Benchmarking Methodology Agreement Proposal

Signed Agreement

Vendor

BenchFlow

Provide Containerized
Distribution of WfMS

Containerized WfMS Request

Containerized WfMS

Vendor

BenchFlow

Verify the Benchmark
Results

Results Verification Outcome

Results Verification Request

Vendor

BenchFlow

Provide Draft
Benchmark Results

Draft Benchmark ResultsVerified Benchmark Results

Not Valid

Are the
Results
Valid?

Community

BenchFlow

Publish Benchmark
Results Valid

Figure 4: Benchmarking Methodology Choreography

pending on the WfMS’s architecture. The DBMS
Container can refer to an existing publicly available
Container distributions. The containerized WfMS
should be publicly available (e.g., at the Docker Hub
registry8), or the Benchflow team should be granted
access to a private registry used by the vendor. The
same applies to the Containers’ definition file, i.e., the
Dockerfile (Turnbull, 2014, ch. 4). While private reg-
istries are a solution that can work with vendors of
closed-source systems, they impact the reproducibil-
ity of the results. For each WfMS version to be in-
cluded in the benchmark, there must be a default con-
figuration, i.e., the configuration in which the WfMS
Containers start without modifying any configuration
parameters, except the ones required in order to cor-
rectly start the WfMS, e.g., the database connection.
However, if vendors want to benchmark the perfor-
mance of their WfMS with different configurations,
for example, the configuration provided to users as
a “getting started” configuration, or production-grade
configurations for real-life usage, they can also pro-
vide different configurations. To do that, the Con-
tainers must allow to issue the WfMS configurations
through additional environment variables9, and/or by
specifying the volumes to be exposed10 in order to

8
https://hub.docker.com/

9
https://docs.docker.com/reference/run/

#env-environment-variables

10
https://docs.docker.com/

userguide/dockervolumes/

access the configuration files. Exposing the volumes
allows to access the files defined inside the Contain-
ers, on the host operating system. Precisely, the WES
Container has to, at least, enable the configuration of:
1) the used DB, i.e., DB driver, url, username and
password for connection; 2) the WES itself; and 3) the
logging level of the WES, and the application stack
layers on which it may depend on. Alternatively, in-
stead of providing configuration details, the vendors
can provide different Containers for different config-
urations. However, even in that case enabling the DB
configuration is required.

In order to access relevant data, all WfMS Con-
tainers have to specify the volumes to access the
WfMS log files, and to access all the data useful to
setup the system. For instance, if the WfMS defines
examples as part of the deployment, we may want
to remove those examples by overriding the volume
containing them. Moreover, the WES Container (or
the DBMS Container) has to create the WfMS’s DB
and populate it with data required to run the WfMS.
The vendors need to provide authentication configu-
ration details of the WfMS components (e.g., the user
with admin privileges for the DBMS). Alternatively
the vendor may simply provide the files needed to cre-
ate and populate the DB.

#mount-a-host-directory-as-a-data-volume

Vincenzo Ferme

19

Benchmarking Methodology
WfMS

Configurations

requirements from the WfMS

NON-CORECORE

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

Vincenzo Ferme

19

Benchmarking Methodology
WfMS

Configurations

requirements from the WfMS

NON-CORECORE

WfMS

Initialisation APIs

Deploy Process

Start Process
Instance

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

Vincenzo Ferme

19

Benchmarking Methodology
WfMS

Configurations

requirements from the WfMS

NON-CORECORE

WfMS

Initialisation APIs

Deploy Process

Start Process
Instance

+ WfMS

Claim Task Complete Task

User APIs

Create User Create Group

Pending User Tasks

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

Vincenzo Ferme

19

Benchmarking Methodology
WfMS

Configurations

requirements from the WfMS

NON-CORECORE

WfMS

Initialisation APIs

Deploy Process

Start Process
Instance

+ WfMS

Claim Task Complete Task

User APIs

Create User Create Group

Pending User Tasks

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

Invoke WS

Web Service APIs

Vincenzo Ferme

19

Benchmarking Methodology
WfMS

Configurations

requirements from the WfMS

NON-CORECORE

WfMS

Initialisation APIs

Deploy Process

Start Process
Instance

Event APIs

Issue Event

WfMS

Pending Event Tasks

+ WfMS

Claim Task Complete Task

User APIs

Create User Create Group

Pending User Tasks

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

Invoke WS

Web Service APIs

Vincenzo Ferme

20

Benchmarking Methodology
WfMS

Configurations

requirements from the WfMS
Table 1: Summary of Core and Non-core APIs to be imple-
mented by the WfMS

Functionality Min Response Data

C
or

e
AP

Is

Initialisation
APIs

Deploy a process Deployed process ID
Start a process instance Process instance ID

N
on

-c
or

e
AP

Is

User APIs Create a user User ID
Create a group of users User group ID
Access pending tasks Pending tasks IDs
Claim a task*
Complete a task

Event APIs Access pending events Pending events IDs
Issue events

Web service
APIs

Map tasks to Web
service endpoints

*Optional depending on the WfMS implementation

2.1.2 System Under Test

The SUT refers to the system that is being tested for
performance. In our case a WfMS which, accord-
ing to the WfMC (Hollingsworth, 1995), includes the
Workflow Enactment Service (WES) and any envi-
ronments and systems required for its proper func-
tioning, e.g., application servers, virtual machines
(e.g., Java Virtual Machine) and DBMSs. The WES
is a complex middleware component which, in addi-
tion to handling the execution of the process models,
interacts with users, external applications, and Web
services. This kind of SUT offers a large set of con-
figuration options and deployment alternatives. The
DBMS configuration as well as the WES configura-
tions (e.g., the granularity level of history logging,
the DB connection options, the order of asynchronous
jobs acquisition), may affect its performance. More-
over, WfMSs often offer a wide range of deployment
alternatives (e.g., standalone, in a clustered deploy-
ment, behind a load balancer in an elastic cloud in-
frastructure) and target different versions of applica-
tion server stacks (e.g., Apache Tomcat, JBoss).

To add a WfMS in the benchmark, we require the
availability of certain Core and Non-core APIs. A
summary of the same is presented in Table 1.

The Core APIs are Initialisation APIs necessary
for automatic issuing of the simplest workload to the
SUT in order to test SUT’s performance. They in-
clude: 1) deploy a process and return as a response an
identifier of the deployed process (PdID); and 2) start
a process instance by using the PdID and return as a
response the new instance identifier (PiID).

Depending on the execution language of the
WfMS and the constructs that it supports, other Non-

core APIs might be necessary for testing more com-
plex workloads. For instance, if we are targeting
BPMN 2.0 WfMSs we might also require the follow-

ing APIs:
For applying workloads involving human tasks,

the following User APIs are necessary: 1) create
a user and return the identifier of the created user
(UsID); 2) create a group of users, return the cre-
ated group identifier (UgID), and enable adding users
by using their UsIDs; 3) pending user/manual tasks:
access all the pending user/manual task instances of
a given user/manual task identified by its id (Jordan
and Evdemon, 2011, sec. 8.2.1) as specified in the
model serialization. We want to obtain all the pend-
ing tasks with the given id of all the process instances
(PiIDs) of a given deployed process (PdID). The API
has to respond with data, enabling the creation of a
collection that maps the process instances to the list
of their pending tasks <PiID, UtIDs> and <PiID,
MtIDs>; 4) claim a user/manual task identified by
UtID/MtID, if tasks are not automatically assigned by
the WfMS; and 5) complete a user/manual task iden-
tified by UtID/MtID by submitting the data required
to complete the task.

To issue a workload containing process mod-
els with catching external events, the following
Event APIs are necessary: 1) pending catching
events/receive tasks: access the pending catching
event/receive task instances of a given event/task
identified by its id (Jordan and Evdemon, 2011, sec.
8.2.1) specified in the model serialization. We want
to obtain all the pending catching events/receive tasks
with the given id of all the process instances (Pi-
IDs) of a given deployed process (PdID). The API
has to respond with data enabling the creation of a
collection that maps the process instances to the list
of their pending catching events/receive tasks <PiID,
CeIDs> and <PiID, RtIDs>; and 2) issue an event to
a pending catching event/receive task identified by us-
ing CeID/RtID. We require the APIs to accept the data
necessary to correlate the issued event to the correct
process instance, e.g., a correlation key.

Finally, to be able to issue a workload defining in-
teraction with Web services and/or containing throw-
ing events, the WfMS has to support a binding mech-
anism to map each Web service task/throwing event
to the corresponding Web service/throwing event end-
point. The WfMS should preferably allow to specify
the mapping in the serialized version of the model,
so that the binding can be added before deploying the
process.

Since many WfMSs are offered as a service, it is
safe to assume that many WfMSs expose, what we
call, the Core APIs. In our experience with systems
we have evaluated so far (e.g., Activiti, Bonita BPM,
Camunda, Imixs Workflow, jBPM), they support not
only the core APIs, but also the non-core APIs. The

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

Vincenzo Ferme

21

Benchmarking Methodology

DBMS

WfMS
• At least two containers

• DBMS can refer to existing
one publicly available

• Provide a ready to use default
configuration (at least)

• Configurability of: DBMS,
WfMS, Logging Level (at least)

containerised WfMSs

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

Vincenzo Ferme

22

Benchmarking Methodology

Vendor

BenchFlow

Provide
Benchmarking
Methodology

Vendor

BenchFlow

Agree on adding
Vendor's WfMS to the

Benchmark

Benchmarking Methodology Agreement Proposal

Signed Agreement

Vendor

BenchFlow

Provide Containerized
Distribution of WfMS

Containerized WfMS Request

Containerized WfMS

Vendor

BenchFlow

Verify the Benchmark
Results

Results Verification Outcome

Results Verification Request

Vendor

BenchFlow

Provide Draft
Benchmark Results

Draft Benchmark ResultsVerified Benchmark Results

Not Valid

Are the
Results
Valid?

Community

BenchFlow

Publish Benchmark
Results Valid

Figure 4: Benchmarking Methodology Choreography

pending on the WfMS’s architecture. The DBMS
Container can refer to an existing publicly available
Container distributions. The containerized WfMS
should be publicly available (e.g., at the Docker Hub
registry8), or the Benchflow team should be granted
access to a private registry used by the vendor. The
same applies to the Containers’ definition file, i.e., the
Dockerfile (Turnbull, 2014, ch. 4). While private reg-
istries are a solution that can work with vendors of
closed-source systems, they impact the reproducibil-
ity of the results. For each WfMS version to be in-
cluded in the benchmark, there must be a default con-
figuration, i.e., the configuration in which the WfMS
Containers start without modifying any configuration
parameters, except the ones required in order to cor-
rectly start the WfMS, e.g., the database connection.
However, if vendors want to benchmark the perfor-
mance of their WfMS with different configurations,
for example, the configuration provided to users as
a “getting started” configuration, or production-grade
configurations for real-life usage, they can also pro-
vide different configurations. To do that, the Con-
tainers must allow to issue the WfMS configurations
through additional environment variables9, and/or by
specifying the volumes to be exposed10 in order to

8
https://hub.docker.com/

9
https://docs.docker.com/reference/run/

#env-environment-variables

10
https://docs.docker.com/

userguide/dockervolumes/

access the configuration files. Exposing the volumes
allows to access the files defined inside the Contain-
ers, on the host operating system. Precisely, the WES
Container has to, at least, enable the configuration of:
1) the used DB, i.e., DB driver, url, username and
password for connection; 2) the WES itself; and 3) the
logging level of the WES, and the application stack
layers on which it may depend on. Alternatively, in-
stead of providing configuration details, the vendors
can provide different Containers for different config-
urations. However, even in that case enabling the DB
configuration is required.

In order to access relevant data, all WfMS Con-
tainers have to specify the volumes to access the
WfMS log files, and to access all the data useful to
setup the system. For instance, if the WfMS defines
examples as part of the deployment, we may want
to remove those examples by overriding the volume
containing them. Moreover, the WES Container (or
the DBMS Container) has to create the WfMS’s DB
and populate it with data required to run the WfMS.
The vendors need to provide authentication configu-
ration details of the WfMS components (e.g., the user
with admin privileges for the DBMS). Alternatively
the vendor may simply provide the files needed to cre-
ate and populate the DB.

#mount-a-host-directory-as-a-data-volume

executing the benchmark and providing results

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

Vincenzo Ferme

23

BenchFlow Framework
architecture

Instance
Database

DBMSFaban Drivers

ContainersServers

DATA  
TRANSFORMERSANALYSERS

Performance
Metrics

Performance
 KPIs

WfMS

Te
st

 E
xe

cu
ti

on
A

na
ly

se
s

Faban
+

Web
Service

Minio

harness

benchflow
Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

[BPM ’15] [ICPE ’16]

Vincenzo Ferme

24

Performance Metrics and KPIs

WfMS UsersLoad Driver

Instance
Database

Application Server

DBMS

Web
Service

D

A

B
C

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

Vincenzo Ferme

24

Performance Metrics and KPIs

WfMS UsersLoad Driver

Instance
Database

Application Server

DBMS

Web
Service

D

A

B
C

Metrics and KPIs
• Engine Level

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

Vincenzo Ferme

24

Performance Metrics and KPIs

WfMS UsersLoad Driver

Instance
Database

Application Server

DBMS

Web
Service

D

A

B
C

Metrics and KPIs
• Engine Level
• Process Level

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

Vincenzo Ferme

24

Performance Metrics and KPIs

WfMS UsersLoad Driver

Instance
Database

Application Server

DBMS

Web
Service

D

A

B
C

Metrics and KPIs
• Engine Level
• Process Level
• Feature Level

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

Vincenzo Ferme

24

Performance Metrics and KPIs

WfMS UsersLoad Driver

Instance
Database

Application Server

DBMS

Web
Service

D

A

B
C

Metrics and KPIs
• Engine Level
• Process Level
• Feature Level

• Interactions

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

Vincenzo Ferme

24

Performance Metrics and KPIs

WfMS UsersLoad Driver

Instance
Database

Application Server

DBMS

Web
Service

D

A

B
C

Metrics and KPIs
• Engine Level
• Process Level
• Feature Level

• Interactions

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

• Environments

Vincenzo Ferme

25

Executing the Benchmark
minimal data requirements

Accessibility of the Data

DBMS

WfMS

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

Vincenzo Ferme

25

Executing the Benchmark
minimal data requirements

• Workflow & Construct:

• Start Time

• End Time

• [Duration]

Availability of Timing DataAccessibility of the Data

DBMS

WfMS

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

Vincenzo Ferme

25

Executing the Benchmark
minimal data requirements

• Workflow & Construct:

• Start Time

• End Time

• [Duration]

Availability of Timing DataAccessibility of the Data

DBMS

WfMS

Availability of Execution State
State of the workflow execution. E.g., running, completed, error

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

Vincenzo Ferme

26

Benchmarking Methodology
mock example of benchmark results

Workload
Model

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

Vincenzo Ferme

26

Benchmarking Methodology
mock example of benchmark results

Workload
Model

Ap. Tomcat 7.0.62

 WfMS A

 MySQL

MySQL: Community Server 5.6.26

O.S.: Ubuntu 14.04.01
J.V.M.: Oracle Serv. 7u79

App. Server:

WfMS A: v7.0.1

+

Hardware Configuration

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

Vincenzo Ferme

26

Benchmarking Methodology
mock example of benchmark results

Workload
Model

Ap. Tomcat 7.0.62

 WfMS A

 MySQL

MySQL: Community Server 5.6.26

O.S.: Ubuntu 14.04.01
J.V.M.: Oracle Serv. 7u79

App. Server:

WfMS A: v7.0.1

+

Hardware Configuration

+
Metrics and KPIs

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

Vincenzo Ferme

27

Benchmarking Methodology

Vendor

BenchFlow

Provide
Benchmarking
Methodology

Vendor

BenchFlow

Agree on adding
Vendor's WfMS to the

Benchmark

Benchmarking Methodology Agreement Proposal

Signed Agreement

Vendor

BenchFlow

Provide Containerized
Distribution of WfMS

Containerized WfMS Request

Containerized WfMS

Vendor

BenchFlow

Verify the Benchmark
Results

Results Verification Outcome

Results Verification Request

Vendor

BenchFlow

Provide Draft
Benchmark Results

Draft Benchmark ResultsVerified Benchmark Results

Not Valid

Are the
Results
Valid?

Community

BenchFlow

Publish Benchmark
Results Valid

Figure 4: Benchmarking Methodology Choreography

pending on the WfMS’s architecture. The DBMS
Container can refer to an existing publicly available
Container distributions. The containerized WfMS
should be publicly available (e.g., at the Docker Hub
registry8), or the Benchflow team should be granted
access to a private registry used by the vendor. The
same applies to the Containers’ definition file, i.e., the
Dockerfile (Turnbull, 2014, ch. 4). While private reg-
istries are a solution that can work with vendors of
closed-source systems, they impact the reproducibil-
ity of the results. For each WfMS version to be in-
cluded in the benchmark, there must be a default con-
figuration, i.e., the configuration in which the WfMS
Containers start without modifying any configuration
parameters, except the ones required in order to cor-
rectly start the WfMS, e.g., the database connection.
However, if vendors want to benchmark the perfor-
mance of their WfMS with different configurations,
for example, the configuration provided to users as
a “getting started” configuration, or production-grade
configurations for real-life usage, they can also pro-
vide different configurations. To do that, the Con-
tainers must allow to issue the WfMS configurations
through additional environment variables9, and/or by
specifying the volumes to be exposed10 in order to

8
https://hub.docker.com/

9
https://docs.docker.com/reference/run/

#env-environment-variables

10
https://docs.docker.com/

userguide/dockervolumes/

access the configuration files. Exposing the volumes
allows to access the files defined inside the Contain-
ers, on the host operating system. Precisely, the WES
Container has to, at least, enable the configuration of:
1) the used DB, i.e., DB driver, url, username and
password for connection; 2) the WES itself; and 3) the
logging level of the WES, and the application stack
layers on which it may depend on. Alternatively, in-
stead of providing configuration details, the vendors
can provide different Containers for different config-
urations. However, even in that case enabling the DB
configuration is required.

In order to access relevant data, all WfMS Con-
tainers have to specify the volumes to access the
WfMS log files, and to access all the data useful to
setup the system. For instance, if the WfMS defines
examples as part of the deployment, we may want
to remove those examples by overriding the volume
containing them. Moreover, the WES Container (or
the DBMS Container) has to create the WfMS’s DB
and populate it with data required to run the WfMS.
The vendors need to provide authentication configu-
ration details of the WfMS components (e.g., the user
with admin privileges for the DBMS). Alternatively
the vendor may simply provide the files needed to cre-
ate and populate the DB.

#mount-a-host-directory-as-a-data-volume

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

executing the benchmark and providing results

Vincenzo Ferme

28

Benchmarking Methodology

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

Signed Agreement

Ven

Bench

Verify the B
Res

Results Verific

Results VerificVerified Benchmark Results

Are the
Results
Valid?

Community

BenchFlow

Publish Benchmark
Results Valid

publish benchmark results

Vincenzo Ferme

29

Advantages of using Containers

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

• Accomplish some Benchmarking Requirement:

Portability, Repeatability, Accessibility, Efficiency

Vincenzo Ferme

29

Advantages of using Containers

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

• Accomplish some Benchmarking Requirement:

Portability, Repeatability, Accessibility, Efficiency

• Common way to deploy systems provided by
different vendors

Docker Compose Docker Swarm

Vincenzo Ferme

29

Advantages of using Containers

• Standard APIs to access Environment Metrics

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

• Accomplish some Benchmarking Requirement:

Portability, Repeatability, Accessibility, Efficiency

• Common way to deploy systems provided by
different vendors

Docker Compose Docker Swarm

Vincenzo Ferme

30

First Application of the Methodology

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

[CAiSE ’16]
M. Skouradaki, V. Ferme, C. Pautasso, F. Leymann, A. van Hoorn. Micro-
Benchmarking BPMN 2.0 Workflow Management Systems with
Workflow Patterns . In Proc. of CAiSE ’16, June, 2016.

Vincenzo Ferme

30

First Application of the Methodology

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

[CAiSE ’16]
M. Skouradaki, V. Ferme, C. Pautasso, F. Leymann, A. van Hoorn. Micro-
Benchmarking BPMN 2.0 Workflow Management Systems with
Workflow Patterns . In Proc. of CAiSE ’16, June, 2016.

Workload

sequencePattern

Empty
Script 1

Empty
Script 2

…

0

750

1500

0:00 4:00 10:00

Vincenzo Ferme

30

First Application of the Methodology

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

[CAiSE ’16]
M. Skouradaki, V. Ferme, C. Pautasso, F. Leymann, A. van Hoorn. Micro-
Benchmarking BPMN 2.0 Workflow Management Systems with
Workflow Patterns . In Proc. of CAiSE ’16, June, 2016.

 WfMS

 MySQL

3 WfMSsWorkload

sequencePattern

Empty
Script 1

Empty
Script 2

…

0

750

1500

0:00 4:00 10:00

Vincenzo Ferme

30

First Application of the Methodology

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

[CAiSE ’16]
M. Skouradaki, V. Ferme, C. Pautasso, F. Leymann, A. van Hoorn. Micro-
Benchmarking BPMN 2.0 Workflow Management Systems with
Workflow Patterns . In Proc. of CAiSE ’16, June, 2016.

 WfMS

 MySQL

3 WfMSsWorkload

sequencePattern

Empty
Script 1

Empty
Script 2

…

0

750

1500

0:00 4:00 10:00

Metrics

• Engine Level

• Process Level

• Environment

Vincenzo Ferme

30

First Application of the Methodology

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

[CAiSE ’16]
M. Skouradaki, V. Ferme, C. Pautasso, F. Leymann, A. van Hoorn. Micro-
Benchmarking BPMN 2.0 Workflow Management Systems with
Workflow Patterns . In Proc. of CAiSE ’16, June, 2016.

Results: relevant differences among WfMSs

 WfMS

 MySQL

3 WfMSsWorkload

sequencePattern

Empty
Script 1

Empty
Script 2

…

0

750

1500

0:00 4:00 10:00

Metrics

• Engine Level

• Process Level

• Environment

Vincenzo Ferme

31

Future Work

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

• Continue to Apply and Improve the Methodology

Vincenzo Ferme

31

Future Work

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

• Continue to Apply and Improve the Methodology

• Involve more Vendors and Researchers as part of
the Benchmarking Effort

Vincenzo Ferme

32

Future Work

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

• Continue to Apply and Improve the Methodology

• Involve more Vendors and Researchers as part of
the Benchmarking Effort

Vincenzo Ferme

32

Future Work

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

• Continue to Apply and Improve the Methodology

• Involve more Vendors and Researchers as part of
the Benchmarking Effort

Vincenzo Ferme

33

Future Work

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

• Continue to Apply and Improve the Methodology

• Involve more Vendors and Researchers as part of
the Benchmarking Effort

Vincenzo Ferme

33

Future Work

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

• Continue to Apply and Improve the Methodology

• Involve more Vendors and Researchers as part of
the Benchmarking Effort

Workshop
September 5th, 2016

http://uniba-dsg.github.io/peace-ws/

1st International Workshop on
Performance and Conformance of Workflow Engines

Vincenzo Ferme

34

Highlights

Vincenzo Ferme

34

Highlights

Vincenzo Ferme

5

Benchmarking Requirements

• Relevant
• Representative
• Portable
• Scalable
• Simple

• Repeatable
• Vendor-neutral
• Accessible
• Efficient
• Affordable

• K. Huppler, The art of building a good benchmark, 2009
• J. Gray, The Benchmark Handbook for Database and Transaction Systems, 1993
• S. E. Sim, S. Easterbrook et al., Using benchmarking to advance research: A

challenge to software engineering, 2003

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

Benchmarking Requirements

Vincenzo Ferme

34

Highlights

Vincenzo Ferme

5

Benchmarking Requirements

• Relevant
• Representative
• Portable
• Scalable
• Simple

• Repeatable
• Vendor-neutral
• Accessible
• Efficient
• Affordable

• K. Huppler, The art of building a good benchmark, 2009
• J. Gray, The Benchmark Handbook for Database and Transaction Systems, 1993
• S. E. Sim, S. Easterbrook et al., Using benchmarking to advance research: A

challenge to software engineering, 2003

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

Benchmarking Requirements
Vincenzo Ferme

14

Benchmarking Choreography

Vendor

BenchFlow

Provide
Benchmarking
Methodology

Vendor

BenchFlow

Agree on adding
Vendor's WfMS to the

Benchmark

Benchmarking Methodology Agreement Proposal

Signed Agreement

Vendor

BenchFlow

Provide Containerized
Distribution of WfMS

Containerized WfMS Request

Containerized WfMS

Vendor

BenchFlow

Verify the Benchmark
Results

Results Verification Outcome

Results Verification Request

Vendor

BenchFlow

Provide Draft
Benchmark Results

Draft Benchmark ResultsVerified Benchmark Results

Not Valid

Are the
Results
Valid?

Community

BenchFlow

Publish Benchmark
Results Valid

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

Benchmarking Methodology

Vincenzo Ferme

34

Highlights

Vincenzo Ferme

5

Benchmarking Requirements

• Relevant
• Representative
• Portable
• Scalable
• Simple

• Repeatable
• Vendor-neutral
• Accessible
• Efficient
• Affordable

• K. Huppler, The art of building a good benchmark, 2009
• J. Gray, The Benchmark Handbook for Database and Transaction Systems, 1993
• S. E. Sim, S. Easterbrook et al., Using benchmarking to advance research: A

challenge to software engineering, 2003

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

Benchmarking Requirements
Vincenzo Ferme

14

Benchmarking Choreography

Vendor

BenchFlow

Provide
Benchmarking
Methodology

Vendor

BenchFlow

Agree on adding
Vendor's WfMS to the

Benchmark

Benchmarking Methodology Agreement Proposal

Signed Agreement

Vendor

BenchFlow

Provide Containerized
Distribution of WfMS

Containerized WfMS Request

Containerized WfMS

Vendor

BenchFlow

Verify the Benchmark
Results

Results Verification Outcome

Results Verification Request

Vendor

BenchFlow

Provide Draft
Benchmark Results

Draft Benchmark ResultsVerified Benchmark Results

Not Valid

Are the
Results
Valid?

Community

BenchFlow

Publish Benchmark
Results Valid

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

Benchmarking Methodology

Vincenzo Ferme

29

Advantages of using Containers

• Standard APIs to access Environment Metrics

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

• Accomplish some Benchmarking Requirement:

Portability, Repeatability, Accessibility, Efficiency

• Common way to deploy systems provided by
different vendors

Docker Compose Docker Swarm

Advantages of Containers

Vincenzo Ferme

34

Highlights

Vincenzo Ferme

5

Benchmarking Requirements

• Relevant
• Representative
• Portable
• Scalable
• Simple

• Repeatable
• Vendor-neutral
• Accessible
• Efficient
• Affordable

• K. Huppler, The art of building a good benchmark, 2009
• J. Gray, The Benchmark Handbook for Database and Transaction Systems, 1993
• S. E. Sim, S. Easterbrook et al., Using benchmarking to advance research: A

challenge to software engineering, 2003

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

Benchmarking Requirements
Vincenzo Ferme

14

Benchmarking Choreography

Vendor

BenchFlow

Provide
Benchmarking
Methodology

Vendor

BenchFlow

Agree on adding
Vendor's WfMS to the

Benchmark

Benchmarking Methodology Agreement Proposal

Signed Agreement

Vendor

BenchFlow

Provide Containerized
Distribution of WfMS

Containerized WfMS Request

Containerized WfMS

Vendor

BenchFlow

Verify the Benchmark
Results

Results Verification Outcome

Results Verification Request

Vendor

BenchFlow

Provide Draft
Benchmark Results

Draft Benchmark ResultsVerified Benchmark Results

Not Valid

Are the
Results
Valid?

Community

BenchFlow

Publish Benchmark
Results Valid

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

Benchmarking Methodology

Vincenzo Ferme

29

Advantages of using Containers

• Standard APIs to access Environment Metrics

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

• Accomplish some Benchmarking Requirement:

Portability, Repeatability, Accessibility, Efficiency

• Common way to deploy systems provided by
different vendors

Docker Compose Docker Swarm

Advantages of Containers
Vincenzo Ferme

31

Future Work

Context » Benchmarking Requirements » Methodology Overview » Methodology Details » Advantage of Containers » 1st Application » Future Work

• Continue to Apply and Improve the Methodology

• Involve more Vendors and Researchers as part of
the Benchmarking Effort

Future Work

benchflow
benchflow

vincenzo.ferme@usi.ch

http://benchflow.inf.usi.ch

A CONTAINER-CENTRIC
METHODOLOGY FOR

BENCHMARKING WORKFLOW
MANAGEMENT SYSTEMS

Vincenzo	Ferme	(@VincenzoFerme),			
Ana	Ivanchikj,	Prof.	Cesare	Pautasso	

Faculty	of	Informatics	
University	of	Lugano	(USI),	Switzerland

Marigianna	Skouradaki,		
Prof.	Frank	Leymann	

Institute	of	Architecture	of	Application	Systems		
University	of	Stuttgart,	Germany

Cloud Computing Patterns
Fundamentals to Design, Build, and Manage Cloud Applications

Christoph Fehling
Institute of Architecture of Application Systems

University of Stuttgart
Universitätsstr. 38
70569 Stuttgart
Germany

Phone +49-711-685-88 486
Fax +49-711-685-88 472
e-mail Fehling
 @iaas.uni-stuttgart.de

©Fehling

http://benchflow.inf.usi.ch

BACKUP SLIDES

Vincenzo	Ferme,		Ana	Ivanchikj,		
Prof.	Cesare	Pautasso	
Faculty	of	Informatics	

University	of	Lugano	(USI),	Switzerland

Marigianna	Skouradaki,		
Prof.	Frank	Leymann	

Institute	of	Architecture	of	Application	Systems		
University	of	Stuttgart,	Germany

Cloud Computing Patterns
Fundamentals to Design, Build, and Manage Cloud Applications

Christoph Fehling
Institute of Architecture of Application Systems

University of Stuttgart
Universitätsstr. 38
70569 Stuttgart
Germany

Phone +49-711-685-88 486
Fax +49-711-685-88 472
e-mail Fehling
 @iaas.uni-stuttgart.de

©Fehling

Vincenzo Ferme

37

Published Work

[BTW ’15]
C. Pautasso, V. Ferme, D. Roller, F. Leymann, and M. Skouradaki. Towards workflow
benchmarking: Open research challenges. In Proc. of the 16th conference on
Database Systems for Business, Technology, and Web, BTW 2015, pages 331–350, 2015.

[SSP ’14]
M. Skouradaki, D. H. Roller, F. Leymann, V. Ferme, and C. Pautasso. Technical open
challenges on benchmarking workflow management systems. In Proc. of the 2014
Symposium on Software Performance, SSP 2014, pages 105–112, 2014.

[ICPE ’15]
M. Skouradaki, D. H. Roller, L. Frank, V. Ferme, and C. Pautasso. On the Road to
Benchmarking BPMN 2.0 Workflow Engines. In Proc. of the 6th ACM/SPEC
International Conference on Performance Engineering, ICPE ’15, pages 301–304, 2015.

Vincenzo Ferme

38

Published Work

[CLOSER ’15]
M. Skouradaki, V. Ferme, F. Leymann, C. Pautasso, and D. H. Roller. “BPELanon”: Protect
business processes on the cloud. In Proc. of the 5th International Conference on
Cloud Computing and Service Science, CLOSER 2015. SciTePress, 2015.

[SOSE ’15]
M. Skouradaki, K. Goerlach, M. Hahn, and F. Leymann. Application of Sub-Graph
Isomorphism to Extract Reoccurring Structures from BPMN 2.0 Process Models.
In Proc. of the 9th International IEEE Symposium on Service-Oriented System
Engineering, SOSE 2015, 2015.

[BPM ’15]
V. Ferme, A. Ivanchikj, C. Pautasso. A Framework for Benchmarking BPMN 2.0
Workflow Management Systems. In Proc. of the 13th International Conference on
Business Process Management, BPM ’15, pages 251-259, 2015.

Vincenzo Ferme

39

Published Work

[BPMD ’15]
A. Ivanchikj, V. Ferme, C. Pautasso. BPMeter: Web Service and Application for Static
Analysis of BPMN 2.0 Collections. In Proc. of the 13th International Conference on
Business Process Management [Demo], BPM ’15, pages 30-34, 2015.

[ICPE ’16]
V. Ferme, and C. Pautasso. Integrating Faban with Docker for Performance
Benchmarking. In Proc. of the 7th ACM/SPEC International Conference on Performance
Engineering, ICPE ’16, 2016.

[CAiSE ’16]
M. Skouradaki, V. Ferme, C. Pautasso, F. Leymann, A. van Hoorn. Micro-Benchmarking
BPMN 2.0 Workflow Management Systems with Workflow Patterns . In Proc. of
the 28th International Conference on Advanced Information Systems Engineering, CAiSE
’16, 2016.

Vincenzo Ferme

40

Docker Performance

[IBM ’14]
W. Felter, A. Ferreira, R. Rajamony, and J. Rubio. An updated performance comparison
of virtual machines and Linux containers. IBM Research Report, 2014.

Although containers themselves have almost no overhead,
Docker is not without performance gotchas. Docker
volumes have noticeably better performance than files stored in
AUFS. Docker’s NAT also introduces overhead for workloads
with high packet rates. These features represent a tradeoff
between ease of management and performance and should
be considered on a case-by-case basis.

”

“Our results show that containers result in equal or better
performance than VMs in almost all cases.

“
”

BenchFlow Configures Docker for Performance by Default

