

Università

della

Svizzera italiana

ESTIMATING THE COST FOR EXECUTING BUSINESS PROCESSES IN THE CLOUD

Vincenzo Ferme, Ana Ivanchikj, Cesare Pautasso Faculty of Informatics USI Lugano, Switzerland

Svizzera italiana

Deploying WfMSs to the Cloud

sweet spot in the performance vs. resource consumption trade-off

Università

della Svizzera italiana

Deploying WfMSs to the Cloud

sweet spot in the performance vs. resource consumption trade-off

Università della

Svizzera italiana

Deploying WfMSs to the Cloud

sweet spot in the performance vs. resource consumption trade-off

Università della

Svizzera italiana

Deploying WfMSs to the Cloud

sweet spot in the performance vs. resource consumption trade-off

Università della

Svizzera italiana

Deploying WfMSs to the Cloud

sweet spot in the performance vs. resource consumption trade-off

Università della

Svizzera italiana

Deploying WfMSs to the Cloud

sweet spot in the performance vs. resource consumption trade-off

Università della

Svizzera italiana

Deploying WfMSs to the Cloud

sweet spot in the performance vs. resource consumption trade-off

O Vincenzo Ferme

Svizzera italiana

Challenges in Deploying WfMSs in the Cloud

evaluate the Cloud cost models, determine the best suitable provider

Evaluate the Cloud Offers

Faculty

of Informatics

Challenges in Deploying WfMSs in the Cloud

evaluate the Cloud cost models, determine the best suitable provider

Springs.io

Evaluate the Cloud Offers

Faculty

of Informatics

Challenges in Deploying WfMSs in the Cloud

evaluate the Cloud cost models, determine the best suitable provider

Springs.io

Evaluate the Cloud Offers

Best Suitable Provider?

Faculty

of Informatics

Challenges in Deploying WfMSs in the Cloud

evaluate the Cloud cost models, determine the best suitable provider

Evaluate the Cloud Offers

Best Suitable Provider?

Università

della Svizzera italiana

Goal

select candidate VMs according to workload and wanted performance

Svizzera italiana

Goal

select candidate VMs according to workload and wanted performance

Svizzera italiana

Goal

select candidate VMs according to workload and wanted performance

Svizzera italiana

Goal

select candidate VMs according to workload and wanted performance

Svizzera italiana

Goal

select candidate VMs according to workload and wanted performance

Università della

Svizzera italiana

The Steps of the Method

from performance requirements to cheapest VMs

I. Workload Mix

Università della

Svizzera italiana

The Steps of the Method

from performance requirements to cheapest VMs

Università della

Svizzera italiana

The Steps of the Method

from performance requirements to cheapest VMs

Università della

Svizzera italiana

The Steps of the Method

from performance requirements to cheapest VMs

Università della

Svizzera italiana

The Steps of the Method

from performance requirements to cheapest VMs

Università

della Svizzera italiana

The Steps of the Method

from performance requirements to cheapest VMs

OVincenzo Ferme

Università della

Svizzera italiana

The Steps of the Method

from performance requirements to cheapest VMs

Università

della Svizzera italiana

Assumptions

RAM and CPU, only WfMS no DBMS, workload dependent

Observed Resources

Università

della Svizzera italiana

Assumptions

RAM and CPU, only WfMS no DBMS, workload dependent

No Network, No I/O

Observed Resources

Svizzera italiana

Assumptions

RAM and CPU, only WfMS no DBMS, workload dependent

No Network, No I/O

Observed Resources

Only WfMS

Svizzera italiana

Assumptions

RAM and CPU, only WfMS no DBMS, workload dependent

No Network, No I/O

Observed Resources

Only WfMS

Dependent

Università della

Svizzera italiana

An Example of Application applying the method for the Camunda WfMS

Università della

Svizzera italiana

I. The Workload Mix

realistic, mix of 5 models with different complexity

21 Elements (Nodes + Edges)

Svizzera italiana

I. The Workload Mix

realistic, mix of 5 models with different complexity

32 Elements (Nodes + Edges)

Università della

Svizzera italiana

I. The Workload Mix

realistic, mix of 5 models with different complexity

39 Elements (Nodes + Edges)

Università della

Svizzera italiana

I. The Workload Mix

realistic, mix of 5 models with different complexity

41 Elements (Nodes + Edges)

11

OVincenzo Ferme

Università

Svizzera italiana

della

I. The Workload Mix

realistic, mix of 5 models with different complexity

84 Elements (Nodes + Edges)

Università della Svizzera italiana Faculty

of Informatics

2. The Load Functions

realistic for different sized companies

Università della

Svizzera italiana

2. The Load Functions

realistic for different sized companies

Time (min:sec)
Università della

Svizzera italiana

2. The Load Functions

realistic for different sized companies

Faculty Università of Informatics

della

Svizzera italiana

CPU

3. Performance Requirements determined with "unbounded" experiments

"Unbounded" (U) Configuration: 64 Cores

RAM

Università della

Svizzera italiana

3. Performance Requirements determined with "unbounded" experiments

"Unbounded" (U) Configuration:

Target Performance

Università

della

Svizzera italiana

3. Performance Requirements determined with "unbounded" experiments

"Unbounded" (U) Configuration:

CPU

Target Performance

Client-side Metrics:

- Number of Client Requests per second (REQ/s)
- Response Time (RT)

Università

Svizzera italiana

della

3. Performance Requirements determined with "unbounded" experiments

"Unbounded" (U) Configuration:

Target Performance

Client-side Metrics:

- Number of Client Requests per second (REQ/s)
- Response Time (RT)

• . . .

Server-side Metrics:

- Number of executed BP Instances (N)
- BP Instance Duration (D)
- Throughput (T)

14

Svizzera italiana

4. Run Experiments

the BenchFlow framework

O Vincenzo Ferme

Università della

Svizzera italiana

5. Analyse Results

define (determine) the wanted performance

Università della

Svizzera italiana

5. Analyse Results

define (determine) the wanted performance

3 Servers

WfMS, DBMS, Load Generator

IO Gbit/s IO Gbit/s

Università della

Svizzera italiana

5. Analyse Results

define (determine) the wanted performance

	Users	wavg(D) [ms]	$rac{\mathbf{avg}(\mathbf{N})}{[\mathbf{bpi}]}$	${f avg(T)}\ [bpi/s]$	wavg(REQ/s)	$\mathbf{wavg}(\mathbf{RT})$ $[\mathbf{ms}]$
	50	8'238.13	30 ' 623 ± 22	$44.45{\pm}0.13$	48.85	22.97
\mathbf{U}	500	9'148.13	$272'910 {\pm} 6'024$	$395.90{\pm}8.47$	434.14	152.18
	1'000	64'023.83	$323'783 \pm 5'643$	$329.81{\pm}2.73$	512.71	946.27

Three Runs to Improve Results Reliability

	Users	WfMS	CPU	WfMS	\mathbf{RAM}	DB	\mathbf{CPU}	DB	\mathbf{RAM}
$ \mathbf{U} 50,$	500, 1'000	64	Cores	1	28 GB	64	Cores	1	$28 \mathrm{GB}$

della Svizzera italiana

5. Analyse Results

determine the right amount of needed resources

Normalised performance over number of CPU cores with 500 Users

della

Svizzera italiana

5. Analyse Results

determine the right amount of needed resources

Normalised performance over number of CPU cores with 500 Users

Svizzera italiana

5. Analyse Results

determine the right amount of needed resources

	Users	WfMS CPU	WfMS RAM	DB CPU	DB RAM
	50	6 Cores	$1 \mathrm{GB}$	6 Cores	2 GB
$ \mathbf{B} $	500	16 Cores	$2 \mathrm{GB}$	16 Cores	$10~\mathrm{GB}$
	1'000	24 Cores	$2 \mathrm{GB}$	24 Cores	$12 \mathrm{~GB}$
$ \mathbf{U} $	50,500,1'000	64 Cores	$128~\mathrm{GB}$	64 Cores	128 GB

Normalised performance over number of CPU cores with 500 Users

Università della

Svizzera italiana

5. Analyse Results validate the performance results

	Users	wavg(D) [ms]	$rac{\mathbf{avg}(\mathbf{N})}{[\mathbf{bpi}]}$	${f avg(T)}\ [bpi/s]$	wavg(REQ/s)	wavg(RT) [ms]
	50	8'337.41	$30'590{\pm}43$	$ $ 44.38 \pm 0.18	48.84	24.53
$ \mathbf{B} $	500	9'079.07	$273'116\pm3'063$	396.21 ± 4.79	435.27	149.21
	1'000	65'772.55	$328'248\pm2'268$	$ 329.80{\pm}3.83$	519.14	921.57

Unbound vs Bound Performance Results

18

Università della

Svizzera italiana

5. Analyse Results validate the performance results

	Users	wavg(D) [ms]	$f{avg(N)}$ [bpi]	${f avg(T)}\ [bpi/s]$	wavg(REQ/s)	wavg(RT) [ms]
U	50 500 1'000	8'238.13 9'148.13 64'023.83	$30'623\pm22$ $272'910\pm6'024$ $323'783\pm5'643$	$\begin{array}{c} 44.45{\pm}0.13\\ 395.90{\pm}8.47\\ 329.81{\pm}2.73\end{array}$	$\begin{array}{r} 48.85 \\ 434.14 \\ 512.71 \end{array}$	$\begin{array}{c} 22.97 \\ 152.18 \\ 946.27 \end{array}$
в	50 500 1'000	8'337.41 9'079.07 65'772.55	$30'590{\pm}43$ $273'116{\pm}3'063$ $328'248{\pm}2'268$	$\begin{vmatrix} 44.38 \pm 0.18 \\ 396.21 \pm 4.79 \\ 329.80 \pm 3.83 \end{vmatrix}$	48.84 435.27 519.14	$\begin{array}{c c} 24.53 \\ 149.21 \\ 921.57 \end{array}$

Unbound vs Bound Performance Results

Svizzera italiana

6. Cloud Offers

match resource requirements with Cloud offers

19

Università

della Svizzera italiana

6. Cloud Offers

match resource requirements with Cloud offers

	Cloud Provider	Instance type	CPU	Memory (GB) Price	$({ m USD/hr})$
	Required resources	-	6 Cores	1	-
rs	Amazon (Am)	Compute Optimised - c4.2xlarge	8 Cores	15	0.419
Jse	Azure (Az)	General purpose - basic tier - A4	8 Cores	14	0.376
	Google Predefined (Gp)	High-CPU - n1-highcpu-8	8 Cores	7.2	0.232
50	Google Custom (Gc)	-	6 Cores	5.4	0.25827
\bigcirc	Springs.io (S)	-	$12 \mathrm{GHz}$	1	0.107

6. Cloud Offers

match resource requirements with Cloud offers

	Cloud Provider	Instance type	CPU	Memory	(GB) Price	(USD/hr)
	Required resources	_	16 Cores		2	-
ers	Amazon (Am)	Compute Optimised - c4.4xlarge	16 Cores	6	30	0.838
US S	Azure (Az)	Compute Optimised - D5 v2	16 Cores	6	56	1.17
	Google Predefined (Gp)	High-CPU - n1-highcpu-16	16 Cores	6	14.4	0.464
50	Google Custom (Gc)	-	16 Cores	6	14.4	0.68872
	Springs.io (S)	-	-		-	-

6. Cloud Offers

match resource requirements with Cloud offers

	Cloud Provider	Instance type	CPU	Memory	(GB) Price	(USD/hr)
N N	Required resources	-	24 Cores		2	-
Ser	Amazon (Am)	Compute Optimised - c4.8xlarge	36 Cores		60	1.675
Ď	Azure (Az)	Performance optimized compute - G5	32 Cores		448	8.69
0	Google Predefined (Gp)	High-CPU - n1-highcpu-32	$32 \mathrm{Cores}$		28.8	0.928
100	Google Custom (Gc)	-	24 Cores		21.6	1.03308
	Springs.io (S)	_	-		-	-

Svizzera italiana

7. VMs Selection

select the set of suitable VMs, and identify the cheapest ones

Normalised Cores Utilisation vs Price of VMs

Svizzera italiana

7. VMs Selection

select the set of suitable VMs, and identify the cheapest ones

Normalised Cores Utilisation vs Price of VMs

Svizzera italiana

7. VMs Selection

select the set of suitable VMs, and identify the cheapest ones

Normalised Cores Utilisation vs Price of VMs

Limitations and Future Work approximation of the actual performance on the Cloud

Faculty

of Informatics

Università

della Svizzera italiana

Performance on the Cloud has more Variance

24

della

Faculty

of Informatics

Limitations and Future Work measure on the Cloud, validate the approach

I. Workload Mix

Università della

Svizzera italiana

Limitations and Future Work measure on the Cloud, validate the approach

③ Vincenzo Ferme

25

Faculty

of Informatics

Limitations and Future Work

measure on the Cloud, validate the approach

25

Faculty

of Informatics

Limitations and Future Work

measure on the Cloud, validate the approach

Faculty

of Informatics

Limitations and Future Work

measure on the Cloud, validate the approach

Highlights

Deploying WfMSs to the Cloud

Svizzera italiana

Highlights

Deploying WfMSs to the Cloud

Proposed Method

Highlights

Deploying WfMSs to the Cloud

Proposed Method

Application to Camunda

Highlights

Deploying WfMSs to the Cloud

Application to Camunda

Proposed Method

Limitations and Future Work

Università

Svizzera italiana

della

ESTIMATING THE COST FOR EXECUTING BUSINESS PROCESSES IN THE CLOUD

benchflow
 http://benchflow.inf.usi.ch

⊠ vincenzo.ferme@usi.ch

Vincenzo Ferme, Ana Ivanchikj, Cesare Pautasso Faculty of Informatics USI Lugano, Switzerland

Faculty

of Informatics

BACKUP SLIDES

Vincenzo Ferme, Ana Ivanchikj, Cesare Pautasso Faculty of Informatics USI Lugano, Switzerland

Published Work

[SSP '14]

M. Skouradaki, D. H. Roller, F. Leymann, V. Ferme, and C. Pautasso. **Technical open challenges on benchmarking workflow management systems**. In Proc. of the 2014 Symposium on Software Performance, SSP 2014, pages 105–112, 2014.

[BTW '15]

C. Pautasso, V. Ferme, D. Roller, F. Leymann, and M. Skouradaki. **Towards workflow benchmarking: Open research challenges**. In Proc. of the 16th conference on Database Systems for Business, Technology, and Web, BTW 2015, pages 331–350, 2015.

[ICPE 'I5]

M. Skouradaki, D. H. Roller, L. Frank, V. Ferme, and C. Pautasso. **On the Road to Benchmarking BPMN 2.0 Workflow Engines**. In Proc. of the 6th ACM/SPEC International Conference on Performance Engineering, ICPE '15, pages 301–304, 2015.

Università della

Svizzera italiana

Published Work

[CLOSER'15]

M. Skouradaki, V. Ferme, F. Leymann, C. Pautasso, and D. H. Roller. "**BPELanon'': Protect business processes on the cloud.** In Proc. of the 5th International Conference on Cloud Computing and Service Science, CLOSER 2015. SciTePress, 2015.

[SOSE '15]

M. Skouradaki, K. Goerlach, M. Hahn, and F. Leymann. **Application of Sub-Graph Isomorphism to Extract Reoccurring Structures from BPMN 2.0 Process Models**. In Proc. of the 9th International IEEE Symposium on Service-Oriented System Engineering, SOSE 2015, 2015.

[BPM '15]

V. Ferme, A. Ivanchikj, C. Pautasso. **A Framework for Benchmarking BPMN 2.0 Workflow Management Systems**. In Proc. of the 13th International Conference on Business Process Management, BPM '15, pages 251-259, 2015.

Svizzera italiana

Published Work

[BPMD '15]

A. Ivanchikj, V. Ferme, C. Pautasso. **BPMeter: Web Service and Application for Static Analysis of BPMN 2.0 Collections**. In Proc. of the 13th International Conference on Business Process Management [Demo], BPM '15, pages 30-34, 2015.

[ICPE '16] V. Ferme, and C. Pautasso. **Integrating Faban with Docker for Performance Benchmarking**. In Proc. of the 7th ACM/SPEC International Conference on Performance Engineering, ICPE '16, 2016.

[CLOSER '16]

V. Ferme, A. Ivanchikj, C. Pautasso., M. Skouradaki, F. Leymann. **A Container-centric Methodology for Benchmarking Workflow Management Systems**. In Proc. of the 6th International Conference on Cloud Computing and Service Science, CLOSER 2016. SciTePress, 2016.
Università della

Svizzera italiana

Published Work

[ICWE'16]

C. Jürgen, V. Ferme, H.C. Gall. Using Docker Containers to Improve Reproducibility in Software and Web Engineering Research. In Proc. of the 16th International Conference on Web Engineering, 2016.

[CAiSE '16]

M. Skouradaki, V. Ferme, C. Pautasso, F. Leymann, A. van Hoorn. **Micro-Benchmarking BPMN 2.0 Workflow Management Systems with Workflow Patterns**. In Proc. of the 28th International Conference on Advanced Information Systems Engineering, CAiSE '16, 2016.

[ICWS '16]

M. Skouradaki, V. Andrikopoulos, F. Leymann. **Representative BPMN 2.0 Process Model Generation from Recurring Structures**. In Proc. of the 23rd IEEE International Conference on Web Services, ICWS '16, 2016.

Università della

Svizzera italiana

Published Work

[SummerSOC '16]

M. Skouradaki, T. Azad, U. Breitenbücher, O. Kopp, F. Leymann. **A Decision Support System for the Performance Benchmarking of Workflow Management Systems**. In Proc. of the 10th Symposium and Summer School On Service-Oriented Computing, SummerSOC '16, 2016.

[BPM Forum '16]

V. Ferme, A. Ivanchikj, C. Pautasso. Estimating the Cost for Executing Business **Processes in the Cloud**. In Proc. of the 14th International Conference on Business Process Management, BPM Forum '16, 2016.

[OTM '16]

M. Skouradaki, V. Andrikopoulos, O. Kopp, F. Leymann. **RoSE: Reoccurring Structures Detection in BPMN 2.0 Process Models Collections.** In Proc. of On the Move to Meaningful Internet Systems Conference, OTM '16, 2016. (to appear)

Docker Performance

[IBM '14]

Università

della

Svizzera italiana

W. Felter, A. Ferreira, R. Rajamony, and J. Rubio. An updated performance comparison of virtual machines and Linux containers. IBM Research Report, 2014.

⁶⁶Our results show that containers result in equal or better performance than VMs in almost all cases.

Although containers themselves have almost no overhead, Docker is not without performance gotchas. Docker volumes have noticeably better performance than files stored in AUFS. Docker's NAT also introduces overhead for workloads with high packet rates. These features represent a tradeoff between ease of management and performance and should be considered on a case-by-case basis.

BenchFlow Configures Docker for Performance by Default

Università

della Svizzera italiana

Call for Collaboration WfMSs, process models, process logs

WfMSs

- We want to add more and more WfMSs to the benchmark
- Contact us for collaboration, and BenchFlow framework support

Process Models

- We want to characterise the Workload Mix using Real-World process models
- Share your executable BPMN 2.0 process models, even anonymised

Execution Logs

- We want to characterise the Load Functions using Real-World behaviours
- Share your execution logs, even anonymised

Faculty

of Informatics

State of the Art of WfMSs in the Cloud

Cloud WfMSs, business process optimisations, capacity planning

- Cloud WfMSs: emerging market
- BPaaS: started to be evaluated
- Business Process Execution Optimisations
- Cost-aware WfMSs

Faculty

of Informatics

State of the Art of WfMSs in the Cloud

Cloud WfMSs, business process optimisations, capacity planning

- Cloud WfMSs: emerging market
- BPaaS: started to be evaluated
- Business Process Execution Optimisations
- Cost-aware WfMSs

We Focus on Capacity Planning with a Widely Used WfMSs

Faculty Università of Informatics

della Svizzera italiana

BenchFlow Framework

system under test

Università

della Svizzera italiana

BenchFlow Framework

system under test

Università della

Svizzera italiana

BenchFlow Framework

system under test

Docker Machine

Docker Engine

Università della

Svizzera italiana

BenchFlow Framework

system under test

Docker Machine

Docker Engine Containers

Università della

Svizzera italiana

BenchFlow Framework

system under test

Università della

Svizzera italiana

BenchFlow Framework

system under test

Università della

Svizzera italiana

Server-side Data and Metrics Collection

asynchronous execution of workflows

Faculty

of Informatics

Università della

Svizzera italiana

asynchronous execution of workflows

OVincenzo Ferme

Faculty

of Informatics

Università della

Svizzera italiana

asynchronous execution of workflows

OVincenzo Ferme

monitors

Faculty

of Informatics

Università

della Svizzera italiana

monitors

Faculty

of Informatics

Università della

Svizzera italiana

monitors

Monitors' Characteristics:

RESTful services

Faculty

of Informatics

Università della

Svizzera italiana

- Lightweight (written in Go)
- As less invasive on the SUT as possible

Examples of Monitors:

- CPU usage
- Database state

monitors

Monitors' Characteristics:

RESTful services

Faculty

of Informatics

Università della

Svizzera italiana

- Lightweight (written in Go)
- As less invasive on the SUT as possible

Examples of Monitors:

- CPU usage
- Database state

collect data

Faculty

of Informatics

Università della

Svizzera italiana

collect data

Faculty

of Informatics

Università della

Svizzera italiana

collect data

Collectors' Characteristics:

RESTful services

Faculty

of Informatics

Università della

Svizzera italiana

- Lightweight (written in Go)
- Two types: online and offline
- Buffer data locally

Examples of Collectors:

- Container's Stats (e.g., CPU usage)
- Database dump
- Applications Logs

collect data

Collectors' Characteristics:

RESTful services

Faculty

of Informatics

Università della

Svizzera italiana

- Lightweight (written in Go)
- Two types: online and offline
- Buffer data locally

Examples of Collectors:

- Container's Stats (e.g., CPU usage)
- Database dump
- Applications Logs