
An Empirical Study of Web
API Versioning Practices

Souhaila Serbout
 @SouhailaSerbout
souhaila.serbout@usi.ch
(Speaker)

Cesare Pautasso
 @pautasso@scholar.social
cesare.pautasso@usi.ch

mailto:souhaila.serbout@usi.ch
mailto:pautasso@scholar.social
mailto:cesare.pautasso@usi.ch

Component AComponent B

2

Component AComponent B

Version x Version y

3

MongoDB module dependencies

4

Popularity score:

(Dev dependencies are excluded from the graph)

5

Popularity score:

(Dev dependencies are included in the graph)

Major.Minor.Patch [-Pre]

Incremented when
 backward incompatible
changes are inctroduced

 Incremented if new,
backwards compatible

functionality is introduced

 Incremented if only
backwards compatible bug

fixes are introduced

6

Semantic versioning

[1] https://semver.org/

7 [2] https://docs.npmjs.com/about-semantic-versioning

8 [2] https://docs.npmjs.com/about-semantic-versioning

9
[3] https://github.com/jashkenas/underscore

10

11

Breaking changes (BCs) were spread over
all the software releases: Major (35.8%),
Minor(35.7%), Patch (23.8%)

Maven in 2017

12

Breaking changes (BCs) were spread over
all the software releases: Major (35.8%),
Minor(35.7%), Patch (23.8%).

Maven in 2017

Slight increased adherance to SemVer in
Maven Repositories Over the years [4] .

13

https://doi.org/10.1007/s10664-021-10052-y

Breaking bad? Semantic versioning and impact
of breaking changes in Maven Central

An external and differentiated replication study

Lina Ochoa1 · Thomas Degueule2 · Jean-Rémy Falleri2,3 · Jurgen Vinju1,4

Accepted: 30 August 2021 /
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Just like any software, libraries evolve to incorporate new features, bug fixes, security
patches, and refactorings. However, when a library evolves, it may break the contract previ-
ously established with its clients by introducing Breaking Changes (BCs) in its API. These
changes might trigger compile-time, link-time, or run-time errors in client code. As a result,
clients may hesitate to upgrade their dependencies, raising security concerns and making
future upgrades even more difficult. Understanding how libraries evolve helps client devel-
opers to know which changes to expect and where to expect them, and library developers
to understand how they might impact their clients. In the most extensive study to date, Rae-
maekers et al. investigate to what extent developers of Java libraries hosted on the Maven
Central Repository (MCR) follow semantic versioning conventions to signal the introduc-
tion of BCs and how these changes impact client projects. Their results suggest that BCs
are widespread without regard for semantic versioning, with a significant impact on clients.
In this paper, we conduct an external and differentiated replication study of their work. We
identify and address some limitations of the original protocol and expand the analysis to a
new corpus spanning seven more years of the MCR. We also present a novel static analysis
tool for Java bytecode, Maracas, which provides us with: (i) the set of all BCs between
two versions of a library, and; (ii) the set of locations in client code impacted by individual
BCs. Our key findings, derived from the analysis of 119,879 library upgrades and 293,817
clients, contrast with the original study and show that 83.4% of these upgrades do com-
ply with semantic versioning. Furthermore, we observe that the tendency to comply with
semantic versioning has significantly increased over time. Finally, we find that most BCs
affect code that is not used by any client, and that only 7.9% of all clients are affected
by BCs. These findings should help (i) library developers to understand and anticipate the
impact of their changes; (ii) library users to estimate library upgrading effort and to pick
libraries that are less likely to break, and; (iii) researchers to better understand the dynamics
of library-client co-evolution in Java.

Communicated by: Gabriele Bavota

! Lina Ochoa
l.m.ochoa.venegas@tue.nl

Extended author information available on the last page of the article.

Published online: 17 March 2022

Empirical Software Engineering (2022) 27: 61

14

https://doi.org/10.1007/s10664-021-10052-y

Breaking bad? Semantic versioning and impact
of breaking changes in Maven Central

An external and differentiated replication study

Lina Ochoa1 · Thomas Degueule2 · Jean-Rémy Falleri2,3 · Jurgen Vinju1,4

Accepted: 30 August 2021 /
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Just like any software, libraries evolve to incorporate new features, bug fixes, security
patches, and refactorings. However, when a library evolves, it may break the contract previ-
ously established with its clients by introducing Breaking Changes (BCs) in its API. These
changes might trigger compile-time, link-time, or run-time errors in client code. As a result,
clients may hesitate to upgrade their dependencies, raising security concerns and making
future upgrades even more difficult. Understanding how libraries evolve helps client devel-
opers to know which changes to expect and where to expect them, and library developers
to understand how they might impact their clients. In the most extensive study to date, Rae-
maekers et al. investigate to what extent developers of Java libraries hosted on the Maven
Central Repository (MCR) follow semantic versioning conventions to signal the introduc-
tion of BCs and how these changes impact client projects. Their results suggest that BCs
are widespread without regard for semantic versioning, with a significant impact on clients.
In this paper, we conduct an external and differentiated replication study of their work. We
identify and address some limitations of the original protocol and expand the analysis to a
new corpus spanning seven more years of the MCR. We also present a novel static analysis
tool for Java bytecode, Maracas, which provides us with: (i) the set of all BCs between
two versions of a library, and; (ii) the set of locations in client code impacted by individual
BCs. Our key findings, derived from the analysis of 119,879 library upgrades and 293,817
clients, contrast with the original study and show that 83.4% of these upgrades do com-
ply with semantic versioning. Furthermore, we observe that the tendency to comply with
semantic versioning has significantly increased over time. Finally, we find that most BCs
affect code that is not used by any client, and that only 7.9% of all clients are affected
by BCs. These findings should help (i) library developers to understand and anticipate the
impact of their changes; (ii) library users to estimate library upgrading effort and to pick
libraries that are less likely to break, and; (iii) researchers to better understand the dynamics
of library-client co-evolution in Java.

Communicated by: Gabriele Bavota

! Lina Ochoa
l.m.ochoa.venegas@tue.nl

Extended author information available on the last page of the article.

Published online: 17 March 2022

Empirical Software Engineering (2022) 27: 61

Maven in 2022

83.4% of all library upgrades comply
with SemVer principles ; Breaking
changes were introduced only when they
are expected [5].

What about Web APIs ?

15

What about Web APIs ?
🥹 APIs are not centrally deployed

16

How to version web
APIs ?

17

18

19

20

21

22

How to version web
APIs ?

23

How do developers
version web APIs ?

24

25

7,114 Web APIs
APIs with more than 10 commits

186,259 Commits

26

7,114 Web APIs
APIs with more than 10 commits

186,259 Commits

 | |
 2015 2022

27

28

First commit : September 2020

Minor

No version change

Version decrease !

Patch

Xero OAuth 2 Identity Service API

https://api.xero.com

33 version changes in 154 days

29

First commit : September 2020

Minor

No version change

Version decrease !

Patch

Xero OAuth 2 Identity Service API

https://api.xero.com

30

First commit : September 2020

Minor

No version change

Version decrease !

Patch

Xero OAuth 2 Identity Service API

https://api.xero.com

No major releases

31

First commit : September 2020

Minor

No version change

Version decrease !

Patch

- Breaking changes introduced
in patches.

- Breaking changes introduced
without version change.

Xero OAuth 2 Identity Service API

https://api.xero.com

No major releases

32

33

34

Metadata-based versioning

35

Metadata-based versioning

36

37

38

Dynamic
Versioning

39

Dynamic
Versioning Visualisation tool: OAS2Tree

40

“All in production” interface evolution pattern

[7] "Interface evolution patterns: Balancing compatibility and extensibility across service life
cycles." Proceedings of the 24th European Conference on Pattern Languages of Programs.
2019.

41

“All in production” interface evolution pattern

42

Two

[7] "Interface evolution patterns: Balancing compatibility and extensibility across service life
cycles." Proceedings of the 24th European Conference on Pattern Languages of Programs.
2019.

43

APIs with multiple coexistent versions

44

APIs with multiple coexistent versions

175 Web API adopting the “Two in
production” Interface evolution
pattern

Among 7,114 Web APIs

45

APIs with multiple coexistent versions

175 Web API adopting the “Two in
production” Interface evolution
pattern

Among 7,114 Web APIs

46

APIs with multiple coexistent versions

175 Web API adopting the “Two in
production” Interface evolution
pattern

Among 7,114 Web APIs

https://{DomainName}/{basePath}

Path-based versioning

47

http://myAPI.domain.com/v1/ressources

https://{DomainName}/{basePath}

Path-based versioning

48

http://myAPI.domain.com/v1/ressources

https://{DomainName}/{basePath}

Path-based versioning

http://myAPI.domain.com/v2/ressources

http://myAPI.domain.com/v3/ressources
.
.
.
.

49

Versioning strategy should be defined upfront

50

http://myAPI.domain.com/ressources

http://myAPI.domain.com/v1/ressources

51

Versioning strategy should be defined upfront

Versioning strategy should be defined upfront

http://myAPI.domain.com/ressources

http://myAPI.domain.com/v1/ressources

52

53

54

🏆

7,114 Web APIs
186,259 Commits

Meta data-based versioning Path-based versioning Dynamic versioning

1% 70% 3%36%

55

What are the formats
 of the version identifiers?

56

57

GitHub API

OpenAPI
specification
of

58

GitHub API

OpenAPI
specification
of

59

GitHub API

OpenAPI
specification
of

60

GitHub API

OpenAPI
specification
of

Calendar Versioning (CalVer)

Extract all
metadata
versions

186,259 API Specs

61

Extract all
metadata
versions

186,259 API Specs

Version identifiers
 appearing in Metadata

62

5511 Distinct
version identifiers

Extract all
metadata
versions

186,259 API Specs

Version identifiers
 appearing in Metadata

5498 Distinct
version identifiers

63

Extract all
metadata
versions

186,259 API Specs

Extract versions
from API

endpoints

1,411,337 API Endpoints

Version identifiers
 appearing in Metadata

Metadata version
 identifiers appearing

in API Endpoints

5498 Distinct
version identifiers

64

385 Distinct
version identifiers

Extract all
metadata
versions

186,259 API Specs

Extract versions
from API

endpoints

1,411,337 API Endpoints

Version identifiers
 appearing in Metadata

Metadata version
 identifiers appearing

in API Endpoints

5498 Distinct
version identifiers

65

385 Distinct
version identifiers⊃

66

Version identifiers
 appearing in Metadata

5511 Distinct
version identifiers

67

Version identifiers
 appearing in Metadata

5511 Distinct
version identifiers

Formats
Parser

68

Version identifiers
 appearing in Metadata

5511 Distinct
version identifiers

Formats
Parser

Regular
 expressions

69

Version identifiers
 appearing in Metadata

5511 Distinct
version identifiers

Formats
Parser

Regular
 expressions

Classified

70

Version identifiers
 appearing in Metadata

5511 Distinct
version identifiers

Formats
Parser

Regular
 expressions

Classified

Not classified

71

Version identifiers
 appearing in Metadata

5511 Distinct
version identifiers

Formats
Parser

Regular
 expressions

Classified

Not classified

72

Version identifiers
 appearing in Metadata

5511 Distinct
version identifiers

Formats
Parser

Regular
 expressions

Classified

Not classified

73

Version identifiers
 appearing in Metadata

5511 Distinct
version identifiers

Formats
Parser

Regular
 expressions

Classified

Not classified

74

Version identifiers
 appearing in Metadata

5511 Distinct
version identifiers

Formats
Parser

Regular
 expressions

Classified

Not
classified

75

Version identifiers
 appearing in Metadata

5511 Distinct
version identifiers

Formats
Parser

Regular
 expressions

Classified

Not
classified

R4.2a
auto
Master
バージョン

76

Version
 identifiers appearing

in API Endpoints

385 Distinct
version identifiers

77

Version
 identifiers appearing

in API Endpoints

385 Distinct
version identifiers

Formats
Parser

Classified

Not
classified

78

https://github.com/USI-INF-Software/API-Versioning-practices-detection

2827

55
Version format

Stable release
version format

Pre-release
version format

79

80

81

2827

55
Version format

Stable release
version format

Pre-release
version format

82

83

84

85

86

87

88

89

90

91

v*beta* or v*alpha*

92

93

v1beta1.4

v1beta1

94

Version identifiers formats in APIs
with multiple coexistent versions

95

Version identifiers formats in APIs
with multiple coexistent versions

96

Version identifiers formats in APIs
with multiple coexistent versions

97

Version identifiers formats in APIs
with multiple coexistent versions

Approach

• Usage of the two in-production patterns in 175/7114 APIs. Up to 14 coexistent
versions in the case of an API.

• Usage of Path-based versioning. 36% of the APIs used Path-based versioning.

• X 496 APIs switched to/from Path-based versioning in the middle of their history.

• Usage of Metadata-based versioning. 70% of the APIs use Metada-based
versioning

98

How do developers version Web API?

Version identifiers formats

• Version identifiers are expressed in 55 different formats

• Noticeable switch to SemVer during histories of API that change
versrion identifies formats.

• 4941 APIs used only SemVer during their whole history

• Significant increase in the use of simpler pre-release versioning
formats.

99

How do developers version Web API?

Future Work

How do developers change the
version identifier on
 each API change?

Focus on a subset of APIs with parsable version identifiers during all their history

100

Future Work

How do developers change the
version identifier on
 each API change?

Focus on a subset of APIs with parsable version identifiers during all their history

Analyse the version increase and corresponding APIs changes

101

References

102

[1] https://semver.org/

[2] https://docs.npmjs.com/about-semantic-versioning

[3] https://github.com/jashkenas/underscore

[4] Raemaekers, S., van Deursen, A. and Visser, J., 2017. Semantic versioning and impact of breaking changes

in the Maven repository. Journal of Systems and Software, 129, pp.140-158.

[5] Ochoa, L., Degueule, T., Falleri, J.R. and Vinju, J., 2022. Breaking bad? Semantic versioning and impact of

breaking changes in Maven Central: An external and differentiated replication study. Empirical Software

Engineering, 27(3), p.61.

[6] Di Lauro, F., Serbout, S. and Pautasso, C., 2022. A Large-scale Empirical Assessment of Web API Size

Evolution. Journal of Web Engineering, pp.1937-1980.

[7] Lübke, D., Zimmermann, O., Pautasso, C., Zdun, U. and Stocker, M., 2019, July. Interface evolution patterns:

Balancing compatibility and extensibility across service life cycles. In Proceedings of the 24th European

Conference on Pattern Languages of Programs (pp. 1-24)

[8] Serbout, S., and Pautasso, C., 2023, June. An Emperical Study of Web API Evolution. In Web Engineering:

23st International Conference, ICWE 2023. Alicante, Spain 6-9 June [To Appear]

[9] Visualisation tool: http://api-ace.inf.usi.ch/openapi-to-tree/

https://docs.npmjs.com/about-semantic-versioning

103

https://github.com/USI-INF-Software/API-Versioning-practices-detection
API Visualisation tool: http://api-ace.inf.usi.ch/openapi-to-tree/

An Empirical Study of Web API Versioning Practices
Souhaila Serbout (souhaila.serbout@usi.ch), Cesare Pautasso (cesare.pautasso@usi.ch)

mailto:souhaila.serbout@usi.ch
mailto:cesare.pautasso@usi.ch

