CWE:

An Empirical Study of Web
API Versioning Practices

Universita Software Souhaila Serbout Cesare Pautasso

della Institute i .

Svizzera Bl @SouhailaSerbout (@ @pautasso@scholar.social

italiana souhaila.serbout@usi.ch cesare.pautasso@usi.ch
(Speaker)

mailto:souhaila.serbout@usi.ch
mailto:pautasso@scholar.social
mailto:cesare.pautasso@usi.ch

Component B ‘> Component A

Version X Version y

Component B 4‘>’ Component A

MongoDB module dependencies

@types/node@16.1 8.23)
(@types/whatwg-url@a.z.z @types/webidl-conversions@7.0.0)
bson@5.2.0)
/ 4,@46@3.0.0) P(punycode@Z.B.O)

mongodb-connection-string-url@2.6.0) b(whatwg-url@1 1.0.0

. | webidl-conversions@7.0.0)

saslprep@1 .0.3) b(sparse-bitﬂeld@3.0.3jl
- | memory-pager@1 .5.0)
(mongodb@S.Z.(D b@ocks@z.lﬂ DGp@Z.0.0)
\\\ \\\\ ~~~~~~~ ‘: \

NN [@aws—sdk/credentiaI-providers@3.306.0) (smart-buffer@4.2.0)

\
\ NS

N =~
N Gongodb—client-encryption@2.7.1)

Popularity score: =0%, =50%, =100%

(Dev dependencies are excluded from the graph)

4

Q=D

Tvon

(e,

Tvat)
T

LT

Tion
ofgramma
v
R
(BT G G

v R

2 ¢ (@ies e T

e B
Teamted Erovsizide
= e
o P
T
e
T
e
P] e T
+ L) ¢'2 {(@4aeanuB-we-xnui|-Addeus/si-idf 8
G « T
o
o
G
S .
SEES (T Teweney-Aefe
-
G
G0 STy
s
Py
P
)
=
[G
N
/ v
{izemnee I o T g N
et - \
T
T
S
T
—
T
R
T
o D
ra /
= e
oy 24 L1 pssaxdxa/sadilo
LI
roaw
oI
T
T
G
=
)
hs-ansmsaid-spi0c {2z T@anos:
G
T T SRR
o
oo R
e —
G ———
T -~
T
e —
~1 e
o
=
R N
T
o
Y T
G
Err) o camn
.
.
i
)
\\
T P
i =
G I
D
I G
(vouimeroe) v{1@deuney sdkwioid Ahse
o)
R T,
5
T
o N 3
st
o
B
s
&
(zreomunn (Fea@sapnpurheds
ot
e R
T
T G —
D) ~ e a
” s ~
W
T T —
R L S .
ot e
e
T
RS
=
=
o N mm—— o
S g)
Y ! / | R)
Cimor \ — N\
/
ST)@ Gz ofzam) o=
ES0mn T T Bwou: ofroidisenst-arel
S
T
o
v ‘£@eep-abexped-2aie.
e)
T P G
s)
s = s g
R

T— i)

T ! |
|
|

- |
. s |
T |
|

{creasi-hmd) |

G
T, [
ot i
G b |
=" — |
-
@ 6 ! o |
f
/
/
e |
P /
S >)
/
s /
/
T
y
s
T / i
T —— /
= G \ ‘
GEEET: Tios) y
o) == - ,
T
oo
o
@ vouapm- = 0> 7
=
S G - ,
T -
=
)
N
T :
Sromm) et / B b
= P e 7
P
e s
v 182965 e . | —— -
T
Ll 1118400} 6@uoIsIaN-pIepUS
o, /
o oo
=
(Tz@voun- (2@«
e =
G Z@asiedun-SEph. .
(0 couwdwpl =
A
o)
o
T \
s —
o
T
s o -
S P
 CEE— P
= -
= W ey -
= -
o =
e . -
7
>
- T
GETIDD 1 {z@swewwod-uosi-d) -~
G — —
P ——
S oo e =)
S e
Tseem) e
(b v@rsps- d
]& \
T —
=== \
< (T o —
G _ / |
= o / |
Fecust /
S \ |
/ /
\ ;
o \ /
/
/
/ /
oavn \ /
/
o
== /
O /
/
G
(o o i /
G
oD
= e
G G —
Gin oo
=
(z @9doxsuy \
/
/
/
=)
i \ \
G / /
(G / /
| et = / 7
/
Py R /
I o
T p
Y% —
| o
\)
T
= -
W)
(G
form=3
Gy e o
oG
T
o e
o) O
e
T
P ——
|)
I —
o T e A =
=
e
G)
z26%) T TS
-,
"
) z¢@ao) ofos@apnpxe-
v /
/
GO J
D, Ta
e
= WL R —
G
o
N s

P s

ofzammsio)

o

Teaum)

o s R

iz

o (T

T G
I QT e

o(cBun aosimm)

- (e

T zaneru e

BT

[3 (e

T e

I

ot o)

ofFa ey

s

E G

(reoue)

21 e S ST

T

oot

(ozeasye TR

(g

Geovor

= e

ofTommi

oFrouston)

T

e

EOTETET)

@eosmemant

Grasemm)

=100%

= 50%,
(Dev dependencies are included in the graph)

O = 0%,

Popularity score

5

Semantic versioning

Incremented when Incremented if only
backward incompatible backwards compatible bug
changes are inctroduced fixes are introduced

inor.Patch [-Pre]

Incremented if new,
backwards compatible
functionality is introduced

[1] https://semver.org/

Incrementing semantic versions in published packages

To help developers who rely on your code, we recommend starting your package version
at 1.0.0 and incrementing as follows:

Example
Code status Stage Rule ,
version
: New .
First release Start with 1.0.0 1.0.0
product
Backward compatible Patch
, i Increment the third digit 1.0.1
bug fixes release
Backward compatible Minor Increment the middle digit 110
new features release and reset last digit to zero o
Changes that break , Increment the first digit and
Major . ..
backward reset middle and last digits 2.0.0
— release
compatibility to zero

[2] https://docs.npmjs.com/about-semantic-versioning

Incrementing semantic versions in published packages

To help developers who rely on your code, we recommend starting your package version
at 1.0.0 and incrementing as follows:

¥ Example
Code status Stage % Rule 3 :
| version
. New ; . 3
First release £ Start with 1.0.0 : 1.0.0
product § §
Backward compatible Patch }
, B ¢ Increment the third digit 5 1.0.1
bug fixes release }
Backward compatible Minor ¢ Increment the middle digit 110
new features release § andreset lastdigittozero §
Changes that break , " Increment the first digit and
Major ' . . :
backward } reset middle and last digits § 2.0.0
— release
compatibility ¥ to zero '

g rad PP I 2 aa o gy aha
_ G A > g = Dabiécy = e Bg- _pot SR
= = - 2

[2] https://docs.npmjs.com/about-semantic-versioning

Fix the versioning #1805 S

@ github.com/jashkenas/underscore
Q)i danielchatfield opened this issue on Aug 27, 2014 - 68 comments

Homepage

& underscorejs.org

danielchatfield commented on Aug 27, 2014 + Weekly Downloads

W
10,323,984

The number of dependant modules which are now broken as a result is huge, personally | think that 1.7.0
should be killed (removed from npm) and 2.0 released - the longer the delay the harder it will be to do this.

underscore.js is solely consumed via package managers that mandate the use of semver, you may personally
not like semver but that is what is used by the installers to determine compatibility. Last time this was brought
up you stated that if you used semver then we would be on underscore version 47 now - well that is much
better than having broken code everywhere and lodash has managed to keep the version number below 4.0.0
without breaking everyone's code.

©) (& 12

[3] https://github.com/jashkenas/underscore

The Journal of Systems and Software 129 (2017) 140-158

=

Ihe foav sl of
Systems and Softwore

Contents lists available at ScienceDirect

The Journal of Systems and Software

R journal homepage: www.elsevier.com/locate/jss ll \’H\ H

Semantic versioning and impact of breaking changes in the @Cmmrk
Maven repository

S. Raemaekers®"*, A. van Deursen®,]. Visser¢

*ING, Haarlemmerweg, Amsterdam, The Netherlands
b Technical University Delft, Delft, The Netherlands
¢ Software Improvement Group, Amsterdam, The Netherlands

ARTICLE INFO ABSTRACT

Am’ffe history: Systems that depend on third-party libraries may have to be updated when updates to these libraries
Received 16 February 2015 become available in order to benefit from new functionality, security patches, bug fixes, or API improve-
iev:setd dz?s l;:bT;rg' 150]6 ments. However, often such changes come with changes to the existing interfaces of these libraries, pos-
ccepe pri . sibly causing rework on the client system. In this paper, we investigate versioning practices in a set of

Available online 22 April 2016 .) .
more than 100,000 jar files from Maven Central, spanning over 7 years of history of more than 22,000

Keywords: different libraries. We investigate to what degree versioning conventions are followed in this repository.
Semantic versioning Semantic versioning provides strict rules regarding major (breaking changes allowed), minor (no break-
Breaking changes ing changes allowed), and patch releases (only backward-compatible bug fixes allowed). We find that
Software libraries around one third of all releases introduce at least one breaking change. We perform an empirical study

on potential rework caused by breaking changes in library releases and find that breaking changes have
a significant impact on client libraries using the changed functionality. We find out that minor releases
generally have larger release intervals than major releases. We also investigate the use of deprecation
tags and find out that these tags are applied improperly in our dataset.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction a versioning scheme in which three digit version numbers MA-
JOR.MINOR.PATCH have the following semantics:
For users of software libraries or application programming in-

terfaces (APIs), backward compatibility is a desirable trait. Without MAJOR: This number should be incremented when incompatible
backward compatibility, library users will face increased risk and API changes are made;

cost when upgrading their dependencies. In spite of these costs MINOR: This number should be incremented when functionality
and risks, library upgrades may be desirable or even necessary, for is added in a backward-compatible manner;

example if the newer version contains required additional func- PATCH: This number should be incremented when backward-

tionality or critical security fixes. To conduct the upgrade, the li- compatible bug fixes are made.
brary user will need to know whether there are incompatibilities,

and, if so, which ones.

Determining whether there are incompatibilities, however, is
hard to do for the library user (it is, in fact, undecidable in gen-
eral). Therefore, it is the library creator’s responsibility to indi-
cate the level of compatibility of a library update. One way to
inform library users about incompatibilities is through version
numbers. As an example, semantic versioning' (semver) suggests

* Corresponding author at: Technical University Delft, Delft, The Netherlands.
Tel.: +31626966234.

E-mail addresses: stevenraemaekers@gmail.com (S. Raemaekers),
arie.vandeursen@tudelft.nl (A. van Deursen), j.visser@sig.eu (]. Visser).
! http://semver.org.

http://dx.doi.org/10.1016/j.jss.2016.04.008
0164-1212/© 2016 Elsevier Inc. All rights reserved.

As an approximation of the (undecidable) notion of backward
compatibility, we use the concept of a binary compatibility as de-
fined in the Java language specification. The Java Language Spec-
ification? states that a change to a type is binary compatible with
(equivalently, does not break binary compatibility with) pre-existing
binaries if pre-existing binaries that previously linked without error
will continue to link without error. This is an underestimation, since
binary incompatibilities are certainly breaking, but there are likely
to be different (semantic) incompatibilities as well. For the pur-
pose of this paper, we define any change that does not main-
tain binary compatibility between releases to be a breaking change.

2 http://docs.oracle.com/javase/specs/jls/se7/html/jls-13.html.

10

The Journal of Systems and Software 129 (2017) 140-158

journal homepage: www.elsevier.com/locate/jss

Contents lists available at ScienceDirect

The Journal of Systems and Software

b §

{P‘h-'dlud

oy

aidinibatl

Semantic versioning and impact of breaking changes in the

Maven repository

S. Raemaekers®"*, A. van Deursen®,]. Visser®

?ING, Haarlemmerweg, Amsterdam, The Netherlands
b Technical University Delft, Delft, The Netherlands
¢ Software Improvement Group, Amsterdam, The Netherlands

@ CrossMark

ARTICLE INFO ABSTRACT

Article history:

Received 16 February 2015
Revised 20 February 2016
Accepted 6 April 2016
Available online 22 April 2016

Keywords:

Semantic versioning
Breaking changes
Software libraries

Systems that depend on third-party libraries may have to be updated when updates to these libraries
become available in order to benefit from new functionality, security patches, bug fixes, or API improve-
ments. However, often such changes come with changes to the existing interfaces of these libraries, pos-
sibly causing rework on the client system. In this paper, we investigate versioning practices in a set of
more than 100,000 jar files from Maven Central, spanning over 7 years of history of more than 22,000
different libraries. We investigate to what degree versioning conventions are followed in this repository.
Semantic versioning provides strict rules regarding major (breaking changes allowed), minor (no break-
ing changes allowed), and patch releases (only backward-compatible bug fixes allowed). We find that
around one third of all releases introduce at least one breaking change. We perform an empirical study
on potential rework caused by breaking changes in library releases and find that breaking changes have
a significant impact on client libraries using the changed functionality. We find out that minor releases
generally have larger release intervals than major releases. We also investigate the use of deprecation

tags and find out that these tags are applied improperly in our dataset.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

For users of software libraries or application programming in-
terfaces (APIs), backward compatibility is a desirable trait. Without
backward compatibility, library users will face increased risk and
cost when upgrading their dependencies. In spite of these costs
and risks, library upgrades may be desirable or even necessary, for
example if the newer version contains required additional func-
tionality or critical security fixes. To conduct the upgrade, the li-
brary user will need to know whether there are incompatibilities,
and, if so, which ones.

Determining whether there are incompatibilities, however, is
hard to do for the library user (it is, in fact, undecidable in gen-
eral). Therefore, it is the library creator’s responsibility to indi-
cate the level of compatibility of a library update. One way to
inform library users about incompatibilities is through version
numbers. As an example, semantic versioning' (semver) suggests

* Corresponding author at: Technical University Delft, Delft, The Netherlands.
Tel.: +31626966234.
E-mail addresses: stevenraemaekers@gmail.com (S. Raemaekers),
arie.vandeursen@tudelft.nl (A. van Deursen), j.visser@sig.eu (J. Visser).
1 http://semver.org.

http://dx.doi.org/10.1016/).j55.2016.04.008
0164-1212/© 2016 Elsevier Inc. All rights reserved.

a versioning scheme in which three digit version numbers MA-

JOR.MINOR.PATCH have the following semantics:

MAJOR: This number should be incremented when incompatible
API changes are made;

MINOR: This number should be incremented when functionality
is added in a backward-compatible manner;

PATCH: This number should be incremented when backward-
compatible bug fixes are made.

As an approximation of the (undecidable) notion of backward
compatibility, we use the concept of a binary compatibility as de-
fined in the Java language specification. The Java Language Spec-
ification? states that a change to a type is binary compatible with
(equivalently, does not break binary compatibility with) pre-existing
binaries if pre-existing binaries that previously linked without error
will continue to link without error. This is an underestimation, since
binary incompatibilities are certainly breaking, but there are likely
to be different (semantic) incompatibilities as well. For the pur-
pose of this paper, we define any change that does not main-
tain binary compatibility between releases to be a breaking change.

2 http://docs.oracle.com/javase/specs/jls/se7/html/jls-13.html.

Maven in 2017

Breaking changes (BCs) were spread over
all the software releases: Major (35.8%),
Minor(35.7%), Patch (23.8%

11

The Journal of Systems and Software 129 (2017) 140-158

Il
The Journal of Systems and Software WM“

x
yateuns and S

i

Contents lists available at ScienceDirect it

andiilladl

journal homepage: www.elsevier.com/locate/jss

Semantic versioning and impact of breaking changes in the

Maven repository

@ CrossMark

S. Raemaekers®"*, A. van Deursen®,]. Visser®

?ING, Haarlemmerweg, Amsterdam, The Netherlands
b Technical University Delft, Delft, The Netherlands

¢ Software Improvement Group, Amsterdam, The Netherlands

ARTICLE INFO

Article history:

Received 16 February 2015
Revised 20 February 2016
Accepted 6 April 2016
Available online 22 April 2016

Keywords:

Semantic versioning
Breaking changes
Software libraries

ABSTRACT

Systems that depend on third-party libraries may have to be updated when updates to these libraries
become available in order to benefit from new functionality, security patches, bug fixes, or API improve-
ments. However, often such changes come with changes to the existing interfaces of these libraries, pos-
sibly causing rework on the client system. In this paper, we investigate versioning practices in a set of
more than 100,000 jar files from Maven Central, spanning over 7 years of history of more than 22,000
different libraries. We investigate to what degree versioning conventions are followed in this repository.
Semantic versioning provides strict rules regarding major (breaking changes allowed), minor (no break-
ing changes allowed), and patch releases (only backward-compatible bug fixes allowed). We find that
around one third of all releases introduce at least one breaking change. We perform an empirical study
on potential rework caused by breaking changes in library releases and find that breaking changes have
a significant impact on client libraries using the changed functionality. We find out that minor releases
generally have larger release intervals than major releases. We also investigate the use of deprecation

tags and find out that these tags are applied improperly in our dataset.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

For users of software libraries or application programming in-
terfaces (APIs), backward compatibility is a desirable trait. Without
backward compatibility, library users will face increased risk and
cost when upgrading their dependencies. In spite of these costs
and risks, library upgrades may be desirable or even necessary, for
example if the newer version contains required additional func-
tionality or critical security fixes. To conduct the upgrade, the li-
brary user will need to know whether there are incompatibilities,
and, if so, which ones.

Determining whether there are incompatibilities, however, is
hard to do for the library user (it is, in fact, undecidable in gen-
eral). Therefore, it is the library creator’s responsibility to indi-
cate the level of compatibility of a library update. One way to
inform library users about incompatibilities is through version
numbers. As an example, semantic versioning' (semver) suggests

* Corresponding author at: Technical University Delft, Delft, The Netherlands.
Tel.: +31626966234.
E-mail addresses: stevenraemaekers@gmail.com (S. Raemaekers),
arie.vandeursen@tudelft.nl (A. van Deursen), j.visser@sig.eu (J. Visser).
1 http://semver.org.

http://dx.doi.org/10.1016/}.j55.2016.04.008
0164-1212/© 2016 Elsevier Inc. All rights reserved.

a versioning scheme in which three digit version numbers MA-
JOR.MINOR.PATCH have the following semantics:

MAJOR: This number should be incremented when incompatible
API changes are made;

MINOR: This number should be incremented when functionality
is added in a backward-compatible manner;

PATCH: This number should be incremented when backward-

compatible bug fixes are made.

As an approximation of the (undecidable) notion of backward
compatibility, we use the concept of a binary compatibility as de-
fined in the Java language specification. The Java Language Spec-
ification? states that a change to a type is binary compatible with
(equivalently, does not break binary compatibility with) pre-existing
binaries if pre-existing binaries that previously linked without error
will continue to link without error. This is an underestimation, since
binary incompatibilities are certainly breaking, but there are likely
to be different (semantic) incompatibilities as well. For the pur-
pose of this paper, we define any change that does not main-
tain binary compatibility between releases to be a breaking change.

2 http://docs.oracle.com/javase/specs/jls/se7/html/jls-13.html.

Maven in 2017

Breaking changes (BCs) were spread over
all the software releases: Major (35.8%),
Minor(35.7%), Patch (23.8%).

Slight increased adherance to SemVer in
Maven Repositories Over the years [4] .

12

Empirical Software Engineering (2022) 27: 61
https://doi.org/10.1007/s10664-021-10052-y

®

Check for
updates

Breaking bad? Semantic versioning and impact
of breaking changes in Maven Central

An external and differentiated replication study

Lina Ochoa’ - Thomas Degueule? () . Jean-Rémy Falleri®3 - Jurgen Vinju'*

Accepted: 30 August 2021 /Published online: 17 March 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract

Just like any software, libraries evolve to incorporate new features, bug fixes, security
patches, and refactorings. However, when a library evolves, it may break the contract previ-
ously established with its clients by introducing Breaking Changes (BCs) in its API. These
changes might trigger compile-time, link-time, or run-time errors in client code. As a result,
clients may hesitate to upgrade their dependencies, raising security concerns and making
future upgrades even more difficult. Understanding how libraries evolve helps client devel-
opers to know which changes to expect and where to expect them, and library developers
to understand how they might impact their clients. In the most extensive study to date, Rae-
maekers et al. investigate to what extent developers of Java libraries hosted on the Maven
Central Repository (MCR) follow semantic versioning conventions to signal the introduc-
tion of BCs and how these changes impact client projects. Their results suggest that BCs
are widespread without regard for semantic versioning, with a significant impact on clients.
In this paper, we conduct an external and differentiated replication study of their work. We
identify and address some limitations of the original protocol and expand the analysis to a
new corpus spanning seven more years of the MCR. We also present a novel static analysis
tool for Java bytecode, Maracas, which provides us with: (1) the set of all BCs between
two versions of a library, and; (i1) the set of locations in client code impacted by individual
BCs. Our key findings, derived from the analysis of 119,879 library upgrades and 293,817
clients, contrast with the original study and show that 83.4% of these upgrades do com-
ply with semantic versioning. Furthermore, we observe that the tendency to comply with
semantic versioning has significantly increased over time. Finally, we find that most BCs
affect code that is not used by any client, and that only 7.9% of all clients are affected
by BCs. These findings should help (i) library developers to understand and anticipate the
impact of their changes; (ii) library users to estimate library upgrading effort and to pick
libraries that are less likely to break, and; (i11) researchers to better understand the dynamics
of library-client co-evolution in Java.

Communicated by: Gabriele Bavota

>4 Lina Ochoa
l.m.ochoa.venegas @tue.nl

13

Empirical Software Engineering (2022) 27: 61
https://doi.org/10.1007/s10664-021-10052-y

®

Check for
updates

Breaking bad? Semantic versioning and impact
of breaking changes in Maven Central

An external and differentiated replication study

Lina Ochoa’ - Thomas Degueule? () . Jean-Rémy Falleri®3 - Jurgen Vinju'*

Accepted: 30 August 2021 /Published online: 17 March 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract

Just like any software, libraries evolve to incorporate new features, bug fixes, security
patches, and refactorings. However, when a library evolves, it may break the contract previ-
ously established with its clients by introducing Breaking Changes (BCs) in its API. These
changes might trigger compile-time, link-time, or run-time errors in client code. As a result,
clients may hesitate to upgrade their dependencies, raising security concerns and making
future upgrades even more difficult. Understanding how libraries evolve helps client devel-
opers to know which changes to expect and where to expect them, and library developers
to understand how they might impact their clients. In the most extensive study to date, Rae-
maekers et al. investigate to what extent developers of Java libraries hosted on the Maven
Central Repository (MCR) follow semantic versioning conventions to signal the introduc-
tion of BCs and how these changes impact client projects. Their results suggest that BCs
are widespread without regard for semantic versioning, with a significant impact on clients.
In this paper, we conduct an external and differentiated replication study of their work. We
identify and address some limitations of the original protocol and expand the analysis to a
new corpus spanning seven more years of the MCR. We also present a novel static analysis
tool for Java bytecode, Maracas, which provides us with: (1) the set of all BCs between
two versions of a library, and; (i1) the set of locations in client code impacted by individual
BCs. Our key findings, derived from the analysis of 119,879 library upgrades and 293,817
clients, contrast with the original study and show that 83.4% of these upgrades do com-
ply with semantic versioning. Furthermore, we observe that the tendency to comply with
semantic versioning has significantly increased over time. Finally, we find that most BCs
affect code that is not used by any client, and that only 7.9% of all clients are affected
by BCs. These findings should help (i) library developers to understand and anticipate the
impact of their changes; (ii) library users to estimate library upgrading effort and to pick
libraries that are less likely to break, and; (i11) researchers to better understand the dynamics
of library-client co-evolution in Java.

Communicated by: Gabriele Bavota

>4 Lina Ochoa
l.m.ochoa.venegas @tue.nl

Maven in 2022

83.4% of all library upgrades comply
with SemVer principles ; Breaking
changes were introduced only when they
are expected [5].

14

What about Web APIs ?

What about Web APIs ?

@ APIs are not centrally deployed

How to version web
APls ?

Google Cloud Blog (Contact sales> Get started for free

API Management

Versioning in APl design: What it is, and
deciding which version of versioning is
right for you l

March 29, 2018 REST versioning - URL vs. header

Asked 9 years, 6 months ago Modified 4 years, 10 months ago Viewed 19k times

Martin Nally

. . | am planning to write a RESTful APl and | am clueless how to handle versioning. | have read
Software Developer and API designer, Apigee

many discussions and blog articles, which suggest to use the accept header for versioning.

33
But then | found following website listening popular REST APIs and their versioning method and
There's a lot of advice on the web about API versioning, much of most of them using the URL for versioning. Why?
ContradICtory and inconclusive: One expert says to put version Why are most people saying: "Don't use the URL, but use the accept header", but popular APls
identifiers in HTTP headers, another expert insists on version idg using URL?

in URL paths, and a third says that versioning of APIs is not nece
all. (For some examples of those divergent views, take a look at .
post and its bibliography and this interview with the author of tF

;

18

GO g|€ Cloud B|Og CContact sales) Get started for free

API Management

Versioning in APl design: What it is, and
deciding which version of versioning is

right for you

March 29, 2018

Martin Nally
Software Developer and API designer, Apigee

Q Search Medium

% Xeno Fox Yy O @ ¢
Y9 May13,2019 - Timinread - @ Listen

You’re thinking about API versioning in the
wrong way.

And the way you have implemented versioning is not correct.

:

REST versioning - URL vs. header

Asked 9 years, 6 months ago Modified 4 years, 10 months ago Viewed 19k times

292

| am planning to write a RESTful APl and | am clueless how to handle versioning. | have read
many discussions and blog articles, which suggest to use the accept header for versioning.

1en | found following website listening popular REST APIs and their versioning method and
of them using the URL for versioning. Why?

are most people saying: "Don't use the URL, but use the accept header", but popular APIs
URL?

P ———

19

Google Cloud Blog

Versioning in APl design: What it is, and

<Contact sales> Get started for free

API Management alleqro Tech Blog boutus 1 ¥ MmN\ O

deciding which version of versioning is .
right for you Content headers or how to version your
March 29, 2018 J REST versioning - AP |7

Software De

i

Q Search Medium

Xeno Fox
May 13,2019 - 11minread - @ Listen

You’re thinking about API
wrong way.

how to version your API?
Now brace yourself, here is what you need to take away from reading this

article.

asy to upgrade. If you forget about it, you
your APl will force you to contact all your
11 . . [} . .

You should not be versioning your API at all. , both you and your clients will be very
1s of your resources. But there is no single
different ways. Below you find three most

Now before you Alt+Tab away, you might as well hear me out, since you've

read this far into the article. Versioning your API is not the correct way to

ber?

resolve the problem you are facing. Instead you should be versioning your

And the way you have implemented versioning is not correct. ' l Versionin UﬁL

The easiest way to handle multiple versions is to put the version number into the URL. You can find
this approach for example in Twitter API.

http://myapplication.com/api/vl/user/1
http://myapplication.com/api/v2/user/1

20

Google Cloud Blog <Contact sales) Get started for free

allegro Tech Blog aboutus B} W m N\ ©

API Management

Versioning in APl design: What it is, and

deciding which version of versioning is .
right for you Content headers or how to version your
March 29, 2018 J REST versioning - AP |7

how to version your API?
Now brace yourself, here is what you need to take away from reading this
Software De .
J 1 article.
‘.‘ (Q search Medium asy to upgrade. If you forget about it, you
‘ your APl will force you to contact all your
114 . . 33))
You should not be versioning your API at all. , both you and your clients will be very
: 1s of your resources. But there is no single

different ways. Below you find three most

rht as well hear me out, since you've

Your API versioning is wrong, which
g your API is not the correct way to ber?

iS Why I deCided to dO lt 3 different stead you should be versioning your
Wrong Ways W

The easiest way to handle multiple versions is to put the version number into the URL. You can find
- f in < -5 this approach for example in Twitter API.

10 FEBRUARY 2014 http://myapplication.com/api/v1l/user/1
http://myapplication.com/api/v2/user/1

N T ———————————
ﬂ In the end, I decided the fairest, most balanced way was to piss everyone off equally. Of course I'm

talking about API versioning and not since the great “tabs versus spaces” debate have I seen so many

strong beliefs in entirely different camps. 21

GO g|€ Cloud B|Og <Contact sales> Get started for free

allegro Tech Blog aboutus 1 W M N O

API Management

Versioning in APl design: What it is, and
deciding which version of versioning is
right for you

Go gle Cloud Blog <Contact sales> Get started for free

March 29, 2018 J REST versioning -
APl Management
N No?fvlbrace yourself, here is what you need to API ver si Onin g b e st
1 1 arficle.
‘.. Q Search Medium praCtlces: When you need
“You should not be versioning! versioning and when you
- | don't
Your API versioning is wrong, which 3" y

. . . . g your . ay 15, 2017

is why I decided to do it 3 different stead
Wrong Ways m Martin Nally

The Software Developer and API designer,
Yy f in & this Apigee

10 FEBRUARY 2014

K & B8 €

When versioning makes sense—and when it

-~ doesn't

ﬁ In the end, I decided the fairest, most balanced way was to piss everyone off equally. Of course I'm

talking about API versioning and not since the great “tabs versus spaces” debate have I seen so many

strong beliefs in entirely different camps. 22

How to version web
APls ?

How do developers
version web APls ?

7

.‘.'/4. Y

Y

wy

“Q
X

)
L\

7,114 Web APIs

I APIs with more than 10 commits

186,259 Commits

25

\/
qg?é
wyY ‘ng
wyY

“0.0
G

/7,114 Web APIs

APIs with more than 10 commits

180,259 Commits

o 0 © o0 0 00

| |
2015 2022

500

400 |

300

200

#Comumits

100

 p=0.13

7114 APlIs

|
100

J
200 300
Version changes

27

400

J
500

Xero OAuth 2 Identity Service API First commit : September 2020
https://api.xero.com l

33 version changes in 154 days

D No version change

. Version decrease !

Xero OAuth 2 Identity Service API First commit : September 2020
https://api.xero.com l

D No version change

. Version decrease !

Xero OAuth 2 Identity Service API First commit : September 2020
https://api.xero.com l

D No version change

. Version decrease !

No major releases

Xero OAuth 2 Identity Service API First commit : September 2020
https://api.xero.com l

- Breaking changes introduced
in patches.

- Breaking changes introduced
without version change.

D No version change

. Version decrease !

No major releases

Xero OAuth 2 Identity Service API

Version: 2.9.4
Description: These endpoints are related to managing authentication tokens and identity for Xero API

0 Connections

(idy ™

openapi: 3.0.0
info:
version: "2.3.0"
title: Xero oAuth 2 identity service
description: This specifing endpoints related to managing authentication tokens
and identity for Xero API
termsOfService:
"https://developer.xero.com/xero—-developer-platform-terms—-conditions/"
contact:
name: '"Xero Platform Team"
email: "api@xero.com"
url: "https://developer.xero.com"
license:
name: MIT
url: 'https://github.com/XeroAPI/Xero-0OpenAPI/blob/master/LICENSE"’
servers:
— description: Xero Identity service API
url: 'https://api.xero.com’

33

Metadata-based versioning

openapl: 3.0.0

info:
4 version: "2.3.0"
title: Xero oAuth 2 identity service
description: This specifing endpoints related to managing authentication tokens

and identity for Xero API

termsOfService:
"https://developer.xero.com/xero-developer-platform-terms-conditions/"
contact:

name: "Xero Platform Team"

email: "api@xero.com"

url: "https://developer.xero.com"

license:
name: MIT
url: 'https://github.com/XeroAPI/Xero-0OpenAPI/blob/master/LICENSE"
servers:

— description: Xero Identity service API
url: 'https://api.xero.com’

34

Metadata-based versioning

openapl: 3.0.0

info:
4 version: "2.3.0"
title: Xero oAuth 2 identity service
description: This specifing endpoints related to managing authentication tokens

and identity for Xero API

termsOfService:
"https://developer.xero.com/xero-developer-platform-terms-conditions/"
contact:

name: "Xero Platform Team"

email: "api@xero.com"

url: "https://developer.xero.com"

license:
name: MIT
url: 'https://github.com/XeroAPI/Xero-0OpenAPI/blob/master/LICENSE"
servers:

— description: Xero Identity service API
url: 'https://api.xero.com’

35

activepromotions” ‘ ©

healthz/

>
teams”
activepromotions™
histories
{history} u
(/] - log
{team} o
components
{component} o values ‘<
o
config)
>
queue
histories {queue} o
version ‘ S log
(ooen)
\ component’ & -
webhook
. (pos1) s
github N

36

O &

activepromotions” ‘ ©

healthz/ ©
(>
(>
>
teams” _]
activepromotions
histories
{history} o
(/] - log
{team} o
components

@
config ’<9
>
queue
histories {queue} o
version ‘ S log
(ooed)
component | \a ’
webhook
(posT) s
github N

37

{component} o values ‘<

O &

Dynamic
Versioning

activepromotions”
healthz/
teams”

version

webhook

(>
>
activepromotions™
histories
{history} o
H log
{team} o
components
{component} o values
@
config &
>
queue
histories {queue} o
G © 100
_(haed)—
component \a ”
(Soed)
github & g

38

O &

Dynamic
Versioning

- R i1 . E‘ \}‘r »
oo Sbkienc gy (T .
B> \/ersion
P

activepromotions”
healthz”
teams™

V.

activepromotions™

Visualisation tool: OAS2Tree

© OAS2Tree
oas2tree | & 74installs | (0) | Free
<,
" “ OpenAPI Specification text to tree transformation visualizer.

<

m Trouble Installing? 2

histories

{team} u

components

{component} o

o
config S

I

queue

{history}

values

histories

webhook

G °

component |

github

39

® ®

Um, dude?! There's a
eroblem with the AP!!

Uh... | mean
| was planning
fo tell vou...

It's because we
deploved a new version,
and all the endpoints
have changed

Are you kidding”?

And when were

You planning on
telling us??

Riant now! I'm telling
wou about it right now!

Now vyou know about
the cnhanges!

\

)/

/I I\

¢ 3| “Allin production” interface evolution pattern
= %

[7] "Interface evolution patterns: Balancing compatibility and extensibility across service life
cycles." Proceedings of the 24th European Conference on Pattern Languages of Programs.
2019.

41

[I I\ 3 o ° . .
¢ 3| “Atin production” interface evolution pattern
- _/

[7] "Interface evolution patterns: Balancing compatibility and extensibility across service life
cycles." Proceedings of the 24th European Conference on Pattern Languages of Programs.
2019.

42

100

+#APIs

o0

APls with multiple coexistent versions

119

30
I . 5 5 3 1 1 1
- H B m - - -
| | | | | |
2 3 4 5 6 7 81014
Number of coexisting versions

43

100

+#APIs

o0

APls with multiple coexistent versions

119

Among 7,114 Web APIs

175 Web API adopting the "Two In
production” Interface evolution
pattern

30
I e 5 5 3 1 1 1
- H B m - - -
| | | | | |
2 3 4 5 6 7 81014
Number of coexisting versions

44

100

+#APIs

510

APls with multiple coexistent versions

119

Among 7,114 Web APIs

175 Web API adopting the "Two In
production” Interface evolution
pattern

30
I e 5 5 3 1 1 1
- H B m - - -
| | | | | | | |
2 3 4 5 6 7 81014
Number of coexisting versions

45

APls with multiple coexistent versions

119

- Among 7,114 Web APIs

O [
) — 175 Web API adopting the “Two in
E production” Interface evolution
< o pattern
F*= | -

10
5 95 3 1 1 1

| | | |

Number of coexisting versions

46

Path-based versioning
https://{DomainName}/{basePath}

47

Path-based versioning

https://{DomainName}/{basePath}
http://myAPI.domain.com/v1l/ressources

48

Path-based versioning

https://{DomainName}/{basePath}
http://myAPI.domain.com/v1l/ressources

http://myAPI.domain.com/v2/ressources

http://myAPI.domain.com/v3/ressources

49

Versioning strategy should be defined upfront

50

Versioning strategy should be defined upfront

http://myAPI.domain.com/ressources

¥ http://myAPI.domain.com/v1/ressources

51

Versioning strategy should be defined upfront

http://myAPI.domain.com/ressources -

¥ http://myAPI.domain.com/v1/ressources

52

Qo VeI‘SiOD

< Path-based version and Metadata-based version >

53

@o VersiOD

< Path-based version and Metadata-based version >

54

7,114 Web APIs
186,259 Commits

o

Path-based versioning jif Meta data-based versioning | Dynamic versioning

1% 36% 0% 3%

55

What are the formats
of the version identifiers?

"/versions'':

get:
summary: Get all API versions
OpenAPI description: Get all supported GitHub API versions.
g : tags:
specification :
- meta

operationlId: meta/get-all-versions

of
G-tH b API externalDocs:
I u description: API method documentation

url: https://docs.github.com/rest/reference/meta#get-all-api-versions
responses:

‘200" :
description: Response
content:
application/json:
schema:
type: array
items:

type: string

format: date

example: '2021-01-01°
examp les:

default:

value:

- '2021-01-01"

- '2021-06-01"

- '2022-01-01" g7

Ay "'/versions":

get:
summary: Get all API versions
OpenAPI description: Get all supported GitHub API versions.
g : tags:
specification :
- meta

operationlId: meta/get-all-versions

of
G-tH b API externalDocs:
I u description: API method documentation

url: https://docs.github.com/rest/reference/meta#get-all-api-versions
responses:

‘200" :
description: Response
content:
application/json:
schema:
type: array
items:

type: string

format: date

example: '2021-01-01°
examp les:

default:

value:

- '2021-01-01"

- '2021-06-01"

- '2022-01-01" g

Ay "'/versions":

get:
summary: Get all API versions
OpenAPI description: Get all supported GitHub API versions.
g - tags:
specification :
- meta

operationlId: meta/get-all-versions

of
G-tH b API externalDocs:
I u description: API method documentation

url: https://docs.github.com/rest/reference/meta#get-all-api-versions
responses:

‘200" :
description: Response
content:
application/json:
_ schema:
~willp type: array
| items:

type: string

format: date

example: '2021-01-01°
examp les:

default:

value:

- '2021-01-01"

- '2021-06-01"

- '2022-01-01" g

Ay "'/versions":

get:
summary: Get all API versions
OpenAPl description: Get all supported GitHub API versions.
- £ - tags:
specification :
- meta

operationlId: meta/get-all-versions

of
G-tH b API externalDocs:
I u description: API method documentation

url: https://docs.github.com/rest/reference/meta#get-all-api-versions
responses:
‘200" :
description: Response
content:
application/json:
_ schema:
R type: array
| items:
type: string
format: date f=—== Calendar Versioning (CalVer)
example: '2021-01-01"
examp les:
default:
value:
- '2021-01-01"
- '2021-06-01"
- '2022-01-01" 4o

180,259 API Specs

|

Extract all

metadata
versions

o1

186,259 API Specs

|

Extract all

metadata
versions

Version identifiers
appearing in Metadata

\h}.

5511 Distinct
version identifiers

62

186,259 API Specs

|

Extract all

metadata
versions

Version identifiers
appearing in Metadata

\h}.

5498 Distinct
version identifiers

03

186,259 API Specs 1,411,337 API Endpoints

| |

Extract all Extract versions

from API
endpoints

metadata
versions

Metadata version
identifiers appearing
in APl Endpoints

appearing in Metady’
\ k’ \ k’
4 A

Version identifiers

5498 Distinct 385 Distinct
version identifiers version identifiers

o4

186,259 API Specs 1,411,337 API Endpoints

| |

Extract all

Extract versions

from API
endpoints

metadata
versions

Metadata version
identifiers appearing
in APl Endpoints

appearing in Metady’
\ k’ \ k’
4 A

Version identifiers

385 Distinct
D version identifiers

5498 Distinct
version identifiers

65

Version identifiers
appearing in Metadata

k’
A

5511 Distinct
version identifiers

006

Version identifiers
appearing in Metadata

>’ Formats

5511 Distinct
version identifiers

67

% Regular
expressions

Version identifiers l
appearing in Metadata

>’ Formats
£ — Parser

5511 Distinct
version identifiers

63

Version identifiers
appearing in Metadata

% Regular
expressions
A
[

Formats
_j—’
5511 Distinct

version identifiers

@D

69

% Regular
expressions

Version identifiers
appearing in Metadata

>’ Formats
L Parser

5511 Distinct
version identifiers

Not classified

70

Regular
expressions

%

Version identifiers
appearing in Metadata

A m— Parser \
5511 Distinct

version identifiers

Not classified

[a

Regular
expressions

%

Formats /
ammmmm— 4 Parser \

version identifiers

Version identifiers
appearing in Metadata

k’
A

5511 Distinct

Not classified

(2

Regular
expressions

Version identifiers
appearing in Metadata

B
k’
¥

— B
— Parser

\
5511 Distinct

version identifiers

Not classified

73

A

Regular

Version identifiers
appearing in Metadata

expressions
A m— Parser \
5511 Distinct

version identifiers

Not
classified

4

A

Regular

Version identifiers
appearing in Metadata

expressions
A
/’ Formats
g — 0
5511 Distinct

version identifiers

Classified

classified

\

R4.2a
auto
Master

N—2 3

lge

Version
identifiers appearing
in APl Endpoints

k’
A

385 Distinct
version identifiers

/0

Version
identifiers appearing Classified

in APl Endpoints
A Formats
/)
\

classified
385 Distinct
version identifiers

’r’

https://github.com/USI-INF-Software/API-Versioning-practices-detection

/3

20

. Version format ™

27 28

Stable release Pre-release
version format version format

79

Most Frequent #Commits vVC
Format Version Identifier #APIs|max avg mdn stdev|max avg mdn stdev
semver-3 1.0.0 40.45% 35311031 28 17 37| 496 4 0 17
semver-2 1.0 64.92% 1093|3585 30 15 116 77 1 0 4
v* vl 80.32% 489 692 42 20 74 4 0 0 0
date(yyyy-mm-dd) 2017-03-01 4.87% 327 52 14 12 4| 52 0 0 3
other v1lb3 7.23% 213 222 29 18 32| 33 1 0 3
integer 1 36.30% 48| 143 27 17 24| 113 5 0 20
v¥*beta* vlbetal 60.10% 115| 360 136 35 146 3 0 0 1
date-preview™ 2015-10-01-preview 11.93% 72 47 13 12 5 2 0 0 0
semver-3# 1.0.0-0as3 27.62% 33| 215 32 15 41| 18 2 0 4
v¥beta™.* v2betal.l 19.44% 2600 30 24 24 4 12 3 3 4
latest™ latest 52.75% 25 137 27 15 28 2 0 0 0
v*alpha* vlalpha 51.34% 18| 339 56 24 91 3 0 0 1
semver-SNAPSHOT™* 1.0.0-SNAPSHOT 31.61% 18 172 32 16 38| 36 5 0 9
semver-beta* v1.0-beta 28.37% 17| 113 40 29 29 9 1 0 2
v¥p*beta* vlip3betal 23.45% 9| 347 162 35 153 3 1 0 1
beta 1betal 100.00% 7 37 15 11 9 0O O 0 0
beta* beta. 65.49% 7| 47 26 26 12 0O O 0 0
semver-alpha™ 1.0.0-alpha 28.04% 7 48 23 15 15 2 0 0 1
semver-2# 1.3-DUMMY 12.26% 6| 24 16 15 5 3 2 2 1
semver (beta*) 1.0 (beta) 29.89% 6| 58 39 46 13| 46 18 26 18
date(yyyy.mm.dd) 2019.10.15 10.45% 6| 24 22 24 4| 24 20 24 9
#semver-3 2019.0.0 29.73% 5| 37 22 17 11 3 1 2 1
semver-rc* 1.0.0-rcl 38.14% 4] 190 60 20 75 8 4 5 3
semver-4 6.4.3.0 3.31% 41 23 16 17 5 9 2 0 4
semver-rc*.* 2.0.0-RC1.0 41.69% 4] 85 54 63 26 O O 0 0]
v*alpha*.* v2alpha?2.6 61.76% 3| 26 23 22 2l 4 1 0 2
alpha™ alpha 73.85% 2] 35 26 35 9 O O 0 0
dev* dev 98.38% 2] 172 91 172 81 0 0 0 0
date(yyyy-mm) 2021-10 67.44% 2| 14 13 14 1 2 1 2 1
semver-pre*.* 3.5.0-pre.0 100.00% 1| 10 10 10 0 0O O 0 0
date(yyyymmdd) 20190111 29.63% 1/ 13 13 13 0 0O O 0 0
semver-dev™ 0.7.0.dev20191230 15.52% 1| 40 40 40 0 0 0 0 0]
v*-date v1-20160622 57.14% 1 18 18 18 0 2 2 2 0
semver-alpha™.* 1.1.0-alpha.1 1| 146 146 146 0 0O O 0 0

4.94%

OVJU

Format

semver-3
semver-2
v ¥
idate(yyy:
other

integer
v¥beta*
date-preview™
semver-3#
v¥beta*.*
latest™
v*alpha*
semver-SNAPSHOT™*
semver-beta*
v¥p*beta™*

*beta™

beta™

semver-alpha™
semver-2#F

semver (beta™)
date(yyyy.mm.dd)
F#semver-3
semver-rc*

semver-4

semver-rc¥*.*

v*alpha™*.*
alpha*
dev*

date(yyyy-mm)
semver-pre*.*

date(yyyymmdd)
semver-dev™
v*-date
semver-alpha™.*

T VID3

Most Frequent
Version Identifier

1.0.0

1.0
vl

2017-03-01 _

1

vlbetal
2015-10-01-preview
1.0.0-o0as3
v2betal.l

latest

vlalpha
1.0.0-SNAPSHOT
v1.0-beta
vlip3betal

1betal

beta

1.0.0-alpha
1.3-DUMMY

1.0 (beta)
2019.10.15
2019.0.0

1.0.0-rcl

6.4.3.0
2.0.0-RC1.0
v2alpha2.6

alpha

dev

2021-10
3.9.0-pre.0
20190111
0.7.0.dev20191230
v1-20160622
1.1.0-alpha.l

23.45%

100.00%

65.49%
28.04%
12.26%
29.89%
10.45%
29.73%
38.14%

3.31%
41.69%
61.76%
73.85%
98.38%
67.44%

100.00%

29.63%
15.52%
57.14%

4.94%

M = EMNMNNWRRRATDO O~ O

#Commits
#APIsmaxr avg mdn stdev

VC

max avg mdn stdev

353111031

28 17

30 15

692 42 20
52 14 12

222 29 18
143 27 17
360 136 35
47 13 12

215 32 15
30 24 24

137 27 15
339 56 24
172 32 16
113 40 29
347 162 35
37 15 11

47 26 26

48 23 15

24 16 15

58 39 46

24 22 24

37 22 17

190 60 20
23 16 17

8 54 63

26 23 22

35 26 35

172 91 172
14 13 14

10 10 10

13 13 13

40 40 40

18 18 18

146 146 146

37
116
74
4
32
24
146
s)
41
4
28
91
38
29
153
9
12
15
s)
13
4
11
75
s)
26

COO0O OO EFEFON

496
77
4
52
33
113
3

2
18

ek
(\V)

N

OCNOOONOOKROOOMWEROOOWNOOWOO WN

DN =
OCNOOORFROOFONPFROONOOORFRF PR OUOIOCOWNOO UL OO Ix

0

N DO
ONOOONOOOOOUINPAERONOOOO OO OO WOOOOO O OO

17
4
0

ek
OCO OO OHOONOPRWHFOXOHFHFFOOFFNOFOPRROHFHFOWWW

(O

20

- Version format ™

28

27

Stable release Pre-release

version format version format
: : Develop

Major version number Snapshot

SemVer Preview

~ag Alpha

Date Bota

Other - Release Candidate

APIs with stable formats

Sem Ver 4941
Major version number 804
Date 336
No version 208
Preview 73
Other 61
Beta 37
Tag 25
Snapshot 17
Alpha 10

Release Candidate 8

83

No version 208
Preview 73
Other 61
Beta 37
Tag 25
Snapshot 17
Alpha 10
Release Candidate 8

34

60

16

20

60 versicD

A
60 146

10
4 l Snapshot

10

34

85

‘. Major version number)

31

N
= o
-
@ O
- =
7 &
o>
V N
N— W
2 2
S O
e S
N Ry
[]
"0
a0 .S
==
c .m
7 8
o>
> O
o e
-
=
=R
<L .9
a >
c O
T R
N A
N
.,,“;_.,._:4, <«
-
—

(%) uorpdopy SUIUOISIDA JIJURWOG O

100%

80%

60%
140%

20%

AMMMHIHGHITas

o -m S\

O o __

NN

QAN

N

SITWIWIO)) #

2016 2017 2018 2019 2020 2021 2022 0%

2015

. v
. 'l . ‘>‘
. N o 3 ,‘ » G 3 PN
S <~ S DAV S o
- Y-
o0 r
4
¢

86

Stable (Versioned)

N Preview (Semantic Versioning) M Preview (Versioned) .

ZStable (Semantic Versioning)

.10%

100%

(%) uorpdopy SUIUOISIDA JIJURWOG O

. INTIDDOEOGGDGg g
3 S

o I M

0 BN\

: EN\E

: RIS

SITWIWIO)) #

Year

87

=
= 9
=
g .9
o>
V(
N
=
<L .9
93
e S
N Ry
[]
"0
=
o o
2 .9
5>
> 9
QO
S 3
=
g O
o N
N
/I\W
bom
il
T R
N A
N
<H
O
1

(%) uorpdopy SUIUOISIOA OIJURUIOS o

7 N NN
3 S

o I M

o BN\

: EN\E

: RIS

SITWIWIO)) #

Year

83

Stable (Versioned)

Y ZStable (Semantic Versioning)

4, * N Preview (Semantic Versioning) M Preview (Versioned)

100%

(%) uorpdopy SUIUOISIDA JIJURWOG O

. INTIDDOEOGGDGg g
3 S

o I M

0 BN\

: EN\E

: RIS

SITWIWIO)) #

Year

89

Stable (Versioned)

ZStable (Semantic Versioning)

N Preview (Semantic Versioning) M Preview (Versioned)

104

(%) uorpdopy SUIUOISIDA JIJURWOG O

" Y //////////////. m
- E5 //////////////////////////?//m
> | N //.////////m

0 I M

0 BN\

o m%m

o _zm

SO 7

Year

90

Stable (Versioned)

N Preview (Semantic Versioning) M Preview (Versioned)

ZStable (Semantic Versioning)

104

£100%

80%

60%
140%

(%) uorpdopy SUIUOISIDA JIJURWOG O

20%

c Y

RN

SO 7

2016 2017 2018 2019 2020 2021 2022 0%

2015

Year

91

NN

Stable (Semantic Versioning) Stable (Versioned) v*beta* or v*alpha*
N Preview (Semantic Versioning) M Preview (Versioned) | /

v

#Commits

.10% /
| | | 100%

..
O e O 807 .‘S
e N e o é"
: <
% bl 60% o
Z :
B Z 140% E
'R R R
w . 0 U &
v 7 7 % 20% &
- - ;
7 N

2015 2016 2017 2018 2019 2021 2022

Year

92

Provisioner

Version: vibetal.4

-V Description: With the Provisioner service in Splunk Cloud Services, you can provision and manage tenants.
vibetai.4 P g d P g
[>)
POST >
{tenant}’.provisioner vibeta invites
=
(>)
vibetai
0 >
(>)
(oned)
jobs” tenants provision ¥ >
system —provisioner vibetai
© obigy ®

tenants

{tenantName} o . e

100

+#APIs

o0

Version identifiers formats in APls
with multiple coexistent versions

119

30
I e 5 5 3 1 1 1
- H B m - - -
| | | | | |
2 3 4 5 6 7 81014
Number of coexisting versions

94

Version identifiers formats in APls
with multiple coexistent versions

- 2,102 | | | | | | | |
= |
~ & Major Version Number (MVN)
N § . Other version formats
2N
5 o | N
= 2| N
5 < K -
O — | R
S s 462
NN
ol l\‘ § N 5-1 2_5 s 2
| | | | | | | | |

2 3 4 5 6 7 8 10 14
Number of coexisting versions

95

Version identifiers formats in APls
with multiple coexistent versions

- 2,102 | | | | | | | | - w
8 . ~ N Tag— MVN (169)
~ & Major Version Number (MVN) SemVer (100)
N § . Other version formats =m — = % E:: ((Zj))
.“.:47 § oL Boner (60)
E - § N MVN—Other (58)
E - § 0 N Date—MVN (28)
O O.\ B § - é o g Beta—MVN (18)
A \ -
O § S X _ Tag (17)
\ 462 8 N SemVer—MVN (12)
:H: s :H: /// Tag—DBeta (5)
N 184 Z SemVer—Beta (1)
s s 73 ol 25 8 Beta—Other (1)
| | | | | | | | | §
S
2 3 45 6 7 81014 NI B
Number of coexisting versions

|
2 3 4 5 o6 7 8 10 14
096 Number of coexisting versions

Version identifiers formats in APls
with multiple coexistent versions

o | 2,102 | | | | | | | | - \
8 . | | = N Tag—MVN (169) ==
N & Major Version Number (MVN) SemVer (100)
4(2 § . Other version formats e S ;E:: ((Zj))
o r L Other (60)
E - s MVN-—Other (58)‘-——
E O § o -8 § Date—MVN (28) ‘—
o O.\ B s é o . g Beta—MVN (18) .
— <[Tag (17)
@, s CE> Q -
462 O SemVer—MVN (12)
:H: s :H: /// Tag—DBeta (5)
N 184 @ SemVer—Beta (1)
s § 73 51 . Beta—Other 1
§ § N - 25 3 1 5 o % (1)
O . N A\ pr— —_— _ —
| | | | | | | | | §
NS
2 3 45 6 7 8 1014 NN B
Number of coexisting versions

|
2 3 4 5 6 7 8 10 14
97 Number of coexisting versions

How do developers version Web API?

Approach

 Usage of the two in-production patterns in 175/7114 APIs. Up to 14 coexistent
versions in the case of an API.

* Usage of Path-based versioning. 36% of the APIs used Path-based versioning.

e X 496 APIs switched to/from Path-based versioning in the middle of their history.

 Usage of Metadata-based versioning. /0% of the APIs use Metada-based
versioning

98

How do developers version Web API?

Version identifiers formats
* \ersion identifiers are expressed in 55 different formats

* Noticeable switch to SemVer during histories of API that change
versrion identifies formats.

* 4941 APIs used only SemVer during their whole history

» Significant increase in the use of simpler pre-release versioning
formats.

99

Future Work

How do developers change the
version identifier on
each API change?

Focus on a subset of APIs with parsable version identifiers during all their history

100

Future Work

How do developers change the
version identifier on
each API change?

Focus on a subset of APIs with parsable version identifiers during all their history

Analyse the version increase and corresponding APIs changes

101

References

nttps://semver.org/

nttps://docs.npmjs.com/about-semantic-versioning

KL =

nttps://github.com/jashkenas/underscore

4] Raemaekers, S., van Deursen, A. and Visser, J., 2017. Semantic versioning and impact of breaking changes

in the Maven repository. Journal of Systems and Software, 129, pp.140-158.

[5] Ochoa, L., Degueule, T., Falleri, J.R. and Vinju, J., 2022. Breaking bad? Semantic versioning and impact of
breaking changes in Maven Central: An external and differentiated replication study. Empirical Software
Engineering, 27(3), p.61.

[6] Di Lauro, F., Serbout, S. and Pautasso, C., 2022. A Large-scale Empirical Assessment of Web API Size
Evolution. Journal of Web Engineering, pp.1937-1980.

[7] Labke, D., Zimmermann, O., Pautasso, C., Zdun, U. and Stocker, M., 2019, July. Interface evolution patterns:
Balancing compatibility and extensibility across service life cycles. In Proceedings of the 24th European
Conference on Pattern Languages of Programs (pp. 1-24)

[8] Serbout, S., and Pautasso, C., 2023, June. An Emperical Study of Web API Evolution. In Web Engineering:

23st International Conference, ICWE 2023. Alicante, Spain 6-9 June [To Appear]

[9] Visualisation tool: http://api-ace.inf.usi.ch/openapi-to-tree/
102

https://docs.npmjs.com/about-semantic-versioning

An Empirical Study of Web API Versioning Practices

Souhaila Serbout (souhaila.serbout@usi.ch), Cesare Pautasso (cesare.pautasso@usi.ch)

Empirical Software Engineering (2022) 27: 61
https://doi.org/10.1007/510664-021-10052-y

ccccccc

Breaking bad? Semantic versioning and impact
of breaking changes in Maven Central

An external and differentiated replication study

Lina Ochoa' - Thomas Degueule? © . Jean-Rémy Falleri?3 . Jurgen Vinju'#

Accepted: 30 August 2021/Published online: 17 March 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract

Just like any software, libraries evolve to incorporate new features, bug fixes, security
patches, and refactorings. However, when a library evolves, it may break the contract previ-
ously established with its clients by introducing Breaking Changes (BCs) in its API. These
changes might trigger compile-time, link-time, or run-time errors in client code. As a result,
clients may hesitate to upgrade their dependencies, raising security concerns and making
future upgrades even more difficult. Understanding how libraries evolve helps client devel-
opers to know which changes to expect and where to expect them, and library developers
to understand how they might impact their clients. In the most extensive study to date, Rae-
maekers et al. investigate to what extent developers of Java libraries hosted on the Maven
Central Repository (MCR) follow semantic versioning conventions to signal the introduc-
tion of BCs and how these changes impact client projects. Their results suggest that BCs
are widespread without regard for semantic versioning, with a significant impact on clients.
In this paper, we conduct an external and differentiated replication study of their work. We
identify and address some limitations of the original protocol and expand the analysis to a
new corpus spanning seven more years of the MCR. We also present a novel static analysis
tool for Java bytecode, Maracas, which provides us with: (i) the set of all BCs between
two versions of a library, and; (ii) the set of locations in client code impacted by individual
BCs. Our key findings, derived from the analysis of 119,879 library upgrades and 293,817
clients, contrast with the original study and show that 83.4% of these upgrades do com-
ply with semantic versioning. Furthermore, we observe that the tendency to comply with
semantic versioning has significantly increased over time. Finally, we find that most BCs
affect code that is not used by any client, and that only 7.9% of all clients are affected
by BCs. These findings should help (i) library developers to understand and anticipate the
impact of their changes; (ii) library users to estimate library upgrading effort and to pick
libraries that are less likely to break, and; (iii) researchers to better understand the dynamics
of library-client co-evolution in Java.

Communicated by: Gabriele Bavota

54 Lina Ochoa
Lm.ochoa.venegas@tue.nl

Maven in 2022

83.4% of all library upgrades comply
with SemVer principles ; Breaking
changes were introduced only when they
are expected [5].

13

O
o

o
7,114 Web APIs

APIs with more than 10 commits

186,259 Commits

| |
2015 2022

28

#APIs

50

100

APIls with multiple coexistent versions

119

Among 7,114 Web APIs

pattern

30

10
5 5 3 1 1 1
l H B = - -

2 345 6 7 81014
Number of coexisting versions

41

7,114 Web APIs
186,259 Commits

Path-based versioning ‘ Meta data-based versioning

Ve € API <1% 30%
|
Jc € API 1% 36%

62% 2%
70% 3%

69

https://github.com/USI-INF-Software/API-Versioning-practices-detection

A

Regular
expressions

Version identifiers
appearing in Metadata

b>’ /
p Parser
\‘

5511 Distinct
version identifiers

Not
classified

R4.2a
auto
Master
N—=23>

75

90

Version format

27 28

Pre-release
version format

Stable release
version format

. . Develo
Major version number P
Snapshot
Sem Ver Previ
review

Tag Alpha
Date Beta

Other 120 Release Candidate

API Visualisation tool: http://api-ace.inf.usi.ch/openapi-to-tree/

103

175 Web API adopting the “Two in
production” Interface evolution

mailto:souhaila.serbout@usi.ch
mailto:cesare.pautasso@usi.ch

