Universita Faculty

della of Informatics
WSS

IElELE

The Design Space of
Modern HTMLs/JavaScript
Web Applications

Marcin Nowak, Cesare Pautasso

University of Lugano, Switzerland

c.pautasso@ieee.org
Marcin.Nowak@sonyx.net



Web application Architecture

b Server

N

Client Server



Web application Architecture

Client

Web Browser

Request

-

-

Response

Server

Web Server

b Server




Web application Architecture

E I

¥/
Client Server Backend

] Request ]
Web Browser Web Server
RE‘SDOHSE‘
Application Application File System




Very Thin Client

=lII‘--.‘5, j
—

B~ TTo

Web Browser Web Server
Request

Input/Output Display Application

.

Response




Request _— —

Input/Output Display Application

Response

Client/Server

_, =

| e

Web _Browser Web Server

Request

Display Application

Response




Rich Client

!

L ———

Web Browser Web Server

Request
Display Application
N ) Response




General Architecture

[

—
Web Browser Web Server
Request _
Display ,, Server
Application B Prr— Application




The server is a database

Aeldsig

Aeldsig

EETR KR
= uanenddy [— uoiedddy
lanag | w3
— 1sanka
EETR KR
uaenddy
b 1sanka
| | EETR KR
uonyexjddy Ae|dsig
— b 1sanka
] 1 asuzdsay
uoiyedddy Aejdsig
— B sanbay

1nding fandu)

The browser is a terminal



Rich Client Web Application

Ul State
Presenter |
Controller View Templating
View-Model

\Locar — |« Model-View Data Binding

—_Model
Local Storage




Rich Client Web Application

Ul State
Presenter _
Concurrency _Controller view Templating
View-Model
Management /
P

<Remote: T oa — Model-View Data Binding
__ Model J __Model

Synchronization
Local Storage



Model-View Interaction
Pattern

. MVC - Model View Controller

. MVP - Model View Presenter

. MVVM - Model View View-Model

. MV* - Model View (Whatever)



Model View Controller

ﬂﬁnntmler O S|[T|ple

m @ = Direct mapping from model to view
View m NO view state




Model View Presenter

E = More flexible

= Prone to Presenter overgrowth

et ] = Simple view state




Model View ViewModel

= Most flexible

= Clean separation of view and

controller logic

= Simple view state



View

A

v

/

Model

\

Model View *

= Roll-your-own

= Good for power applications



Model-View Data Binding

Model (JS):

var model = new Person|({

name : ,
surname :
age :

})
View (DOM):

<div class= >

Name: <span id= ></span><br/>

Surname: <span id= >< /span><br/>

Age: <span 1d= ></span>

</div>




Model-View Data Binding

. No binding: full refresh required

. Event-driven: explicit handlers of model changes

(mono-directional)

. Declarative: HTMLs data- attributes to bind models
to view elements (bi-directional)



View Template Logic

Ensure separation of View and
Presenter/Controller/View-Model layers

1. Templates with embedded logic (more expressive,
hard to maintain)

2. Logic-less templates (faster)



View State Management

l[dentify and Persist the current state of the view
. None (State is lost on refresh)

. URL routing (# hash)

. Event-based



Local state persistence

1. Cookies
2. Key-Value (HTMLs LocalStorage, SessionStorage)
3. SQL (WebSQL)

4. IndexedDB (Asynchronous)



Concurrency Management

1. None: Non-deterministic Collisions
2. Operational Transformation (share.js)
3. Locking (Explicit or Implicit)

4. Global Event Serialization (TeaTime)



More Decisions

1. Frameworks 3. Portability

= Target Browser Platform
= MV* Framework

_ _ = Mobile Support
= HTML Templating Mechanism

. = Feature Detection
= Eventing Framework

= Compatibility with Missing
2. Development HTMLs Features

= Programming Language

= Modularization



MV* Framework

Name MV* MVC MVP MVVM

Backbone X

Angular X

Spine X

Knockout X

Knockback X

YUI X X
Marionette X
GWT X X

Batman X




Template rendering engine

Name Logic-enabled  Logic-less

Dom.js X
Dot.js X
EJS X
Handlebars X
Mustache.js X

Plates.js X

Pure.js X

Transparency X
Underscore.js X




Event Delivery Method

Work around the limitations of HTTP

1. Polling
2. COMET (streaming and long polling)

3. HTMLs WebSockets, Server-Sent Events

4. SPDY



Programming Language

(M
'® —
= | <
D J
D (D
W Ve
o | g

Vv c | ©

Java | © | © [ Dart

Javascript




Modularity

. None

. Require)S

. Marionette

. Browserify



Target Browser Platform

. Google Chrome

. Microsoft Internet Explorer

. Moazilla Firefox

. Apple Safari

. Opera

. Amazon Silk



Mobile Support

1. Responsive Design
2. CSS Media queries

3. jQuery mobile



Feature Detection

1. modernizr

2. user agent-string

3.



Compatibility with Missing
HTMLs Features

1. CSS
2. Embedded Foreign Browser Frame

3. HTMLs shivs and shims (JavaScript backport)



Conclusion

= There are many emerging frameworks for building rich
client applications with HTMLs/JavaScript

= Many architectural decisions are required to design
rich client applications

= Come and visit the Software Architecture Warehouse

if you would like to
make some of those decisions together



	Contents
	Foreword
	Foreword
	Preface
	Acknowledgments
	About the Author
	Chapter 1: From Objects to Web Services
	What Are Web Services?
	From Local Objects to Distributed Objects
	Why Use Web Services?
	Web Service Considerations and Alternatives
	Services and the Promise of Loose Coupling
	What about SOA?
	Summary

	Chapter 2: Web Service API Styles
	Introduction
	Design Considerations for Web Service APIs
	RPC API
	Considerations

	Message API
	Considerations

	Resource API
	Considerations


	Chapter 3: Client-Service Interactions
	Introduction
	Request/Response
	Considerations

	Request/Acknowledge
	Considerations

	Media Type Negotiation
	Considerations

	Linked Service
	Considerations


	Chapter 4: Request and Response Management
	Introduction
	Service Controller
	Considerations

	Data Transfer Object
	Data-Binding Considerations
	General Considerations

	Request Mapper
	Considerations

	Response Mapper
	Considerations


	Chapter 5: Web Service Implementation Styles
	Introduction
	Design Considerations for Web Service Implementation
	Transaction Script
	Considerations

	Datasource Adapter
	Considerations

	Operation Script
	Considerations

	Command Invoker
	Considerations

	Workflow Connector
	Considerations


	Chapter 6: Web Service Infrastructures
	Introduction
	Service Connector
	Considerations

	Service Descriptor
	Considerations

	Asynchronous Response Handler
	Considerations

	Service Interceptor
	Idempotent Retry
	Considerations

	A Quick Review of SOA Infrastructure Patterns
	The Service Registry
	The Enterprise Service Bus
	The Orchestration Engine


	Chapter 7: Web Service Evolution
	Introduction
	What Causes Breaking Changes?
	Structural Changes to Media Types or Messages
	Service Descriptor Changes

	Common Versioning Strategies
	Single-Message Argument
	Dataset Amendment
	Considerations

	Tolerant Reader
	Considerations

	Consumer-Driven Contracts
	Considerations

	How the Patterns Promote or Hinder Service Evolution

	Appendix: Reference to External Patterns
	Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W
	X

	Bibliography
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X


