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General Architecture
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The server is a database
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The browser is a terminal
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Model-View Interaction
Pattern

. MVC - Model View Controller

. MVP - Model View Presenter

. MVVM - Model View View-Model

. MV* - Model View (Whatever)



Model View Controller
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Model View Presenter

E = More flexible

= Prone to Presenter overgrowth

et ] = Simple view state




Model View ViewModel

= Most flexible

= Clean separation of view and

controller logic

= Simple view state
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= Roll-your-own

= Good for power applications



Model-View Data Binding

Model (JS):

var model = new Person|({

name : ,
surname :
age :

})
View (DOM):

<div class= >

Name: <span id= ></span><br/>

Surname: <span id= >< /span><br/>

Age: <span 1d= ></span>

</div>




Model-View Data Binding

. No binding: full refresh required

. Event-driven: explicit handlers of model changes

(mono-directional)

. Declarative: HTMLs data- attributes to bind models
to view elements (bi-directional)



View Template Logic

Ensure separation of View and
Presenter/Controller/View-Model layers

1. Templates with embedded logic (more expressive,
hard to maintain)

2. Logic-less templates (faster)



View State Management

l[dentify and Persist the current state of the view
. None (State is lost on refresh)

. URL routing (# hash)

. Event-based



Local state persistence

1. Cookies
2. Key-Value (HTMLs LocalStorage, SessionStorage)
3. SQL (WebSQL)

4. IndexedDB (Asynchronous)



Concurrency Management

1. None: Non-deterministic Collisions
2. Operational Transformation (share.js)
3. Locking (Explicit or Implicit)

4. Global Event Serialization (TeaTime)



More Decisions

1. Frameworks 3. Portability

= Target Browser Platform
= MV* Framework

_ _ = Mobile Support
= HTML Templating Mechanism

. = Feature Detection
= Eventing Framework

= Compatibility with Missing
2. Development HTMLs Features

= Programming Language

= Modularization



MV* Framework

Name MV* MVC MVP MVVM

Backbone X

Angular X

Spine X

Knockout X

Knockback X

YUI X X
Marionette X
GWT X X

Batman X




Template rendering engine

Name Logic-enabled  Logic-less

Dom.js X
Dot.js X
EJS X
Handlebars X
Mustache.js X

Plates.js X

Pure.js X

Transparency X
Underscore.js X




Event Delivery Method

Work around the limitations of HTTP

1. Polling
2. COMET (streaming and long polling)

3. HTMLs WebSockets, Server-Sent Events

4. SPDY



Programming Language
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Modularity

. None

. Require)S

. Marionette

. Browserify



Target Browser Platform

. Google Chrome

. Microsoft Internet Explorer

. Moazilla Firefox

. Apple Safari

. Opera

. Amazon Silk



Mobile Support

1. Responsive Design
2. CSS Media queries

3. jQuery mobile



Feature Detection

1. modernizr

2. user agent-string

3.



Compatibility with Missing
HTMLs Features

1. CSS
2. Embedded Foreign Browser Frame

3. HTMLs shivs and shims (JavaScript backport)



Conclusion

= There are many emerging frameworks for building rich
client applications with HTMLs/JavaScript

= Many architectural decisions are required to design
rich client applications

= Come and visit the Software Architecture Warehouse

if you would like to
make some of those decisions together
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